Files
archived-llvm/include/llvm/Target/GenericOpcodes.td
Amara Emerson 3cc39d23bb [GlobalISel] Add a G_BRJT opcode.
This is a branch opcode that takes a jump table pointer, jump table index and an
index into the table to do an indirect branch.

We pass both the table pointer and JTI to allow targets like ARM64 to more
easily use the existing jump table compression optimization without having to
walk up the block to find a paired G_JUMP_TABLE.

Differential Revision: https://reviews.llvm.org/D63159

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363434 91177308-0d34-0410-b5e6-96231b3b80d8
2019-06-14 17:55:48 +00:00

895 lines
26 KiB
TableGen

//===-- GenericOpcodes.td - Opcodes used with GlobalISel ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic opcodes used with GlobalISel.
// After instruction selection, these opcodes should not appear.
//
//===----------------------------------------------------------------------===//
//------------------------------------------------------------------------------
// Unary ops.
//------------------------------------------------------------------------------
class GenericInstruction : StandardPseudoInstruction;
// Extend the underlying scalar type of an operation, leaving the high bits
// unspecified.
def G_ANYEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Sign extend the underlying scalar type of an operation, copying the sign bit
// into the newly-created space.
def G_SEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Zero extend the underlying scalar type of an operation, putting zero bits
// into the newly-created space.
def G_ZEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Truncate the underlying scalar type of an operation. This is equivalent to
// G_EXTRACT for scalar types, but acts elementwise on vectors.
def G_TRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_IMPLICIT_DEF : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins);
let hasSideEffects = 0;
}
def G_PHI : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins variable_ops);
let hasSideEffects = 0;
}
def G_FRAME_INDEX : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$src2);
let hasSideEffects = 0;
}
def G_GLOBAL_VALUE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$src);
let hasSideEffects = 0;
}
def G_INTTOPTR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_PTRTOINT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_BITCAST : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Only supports scalar result types
def G_CONSTANT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$imm);
let hasSideEffects = 0;
}
// Only supports scalar result types
def G_FCONSTANT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$imm);
let hasSideEffects = 0;
}
def G_VASTART : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$list);
let hasSideEffects = 0;
let mayStore = 1;
}
def G_VAARG : GenericInstruction {
let OutOperandList = (outs type0:$val);
let InOperandList = (ins type1:$list, unknown:$align);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
def G_CTLZ : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTLZ_ZERO_UNDEF : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTTZ : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTTZ_ZERO_UNDEF : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_CTPOP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_BSWAP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
def G_ADDRSPACE_CAST : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_BLOCK_ADDR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$ba);
let hasSideEffects = 0;
}
def G_JUMP_TABLE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$jti);
let hasSideEffects = 0;
}
//------------------------------------------------------------------------------
// Binary ops.
//------------------------------------------------------------------------------
// Generic addition.
def G_ADD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic subtraction.
def G_SUB : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic multiplication.
def G_MUL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed division.
def G_SDIV : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic unsigned division.
def G_UDIV : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic signed remainder.
def G_SREM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic unsigned remainder.
def G_UREM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic bitwise and.
def G_AND : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic bitwise or.
def G_OR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic bitwise xor.
def G_XOR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic left-shift.
def G_SHL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic logical right-shift.
def G_LSHR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic arithmetic right-shift.
def G_ASHR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic integer comparison.
def G_ICMP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$tst, type1:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic floating-point comparison.
def G_FCMP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins unknown:$tst, type1:$src1, type1:$src2);
let hasSideEffects = 0;
}
// Generic select
def G_SELECT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$tst, type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic pointer offset.
def G_GEP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type1:$src2);
let hasSideEffects = 0;
}
def G_PTR_MASK : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src, unknown:$bits);
let hasSideEffects = 0;
}
// Generic signed integer minimum.
def G_SMIN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed integer maximum.
def G_SMAX : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic unsigned integer minimum.
def G_UMIN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic unsigned integer maximum.
def G_UMAX : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
//------------------------------------------------------------------------------
// Overflow ops
//------------------------------------------------------------------------------
// Generic unsigned addition producing a carry flag.
def G_UADDO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic unsigned addition consuming and producing a carry flag.
def G_UADDE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic signed addition producing a carry flag.
def G_SADDO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed addition consuming and producing a carry flag.
def G_SADDE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic unsigned subtraction producing a carry flag.
def G_USUBO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic unsigned subtraction consuming and producing a carry flag.
def G_USUBE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic signed subtraction producing a carry flag.
def G_SSUBO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic signed subtraction consuming and producing a carry flag.
def G_SSUBE : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2, type1:$carry_in);
let hasSideEffects = 0;
}
// Generic unsigned multiplication producing a carry flag.
def G_UMULO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic signed multiplication producing a carry flag.
def G_SMULO : GenericInstruction {
let OutOperandList = (outs type0:$dst, type1:$carry_out);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Multiply two numbers at twice the incoming bit width (unsigned) and return
// the high half of the result.
def G_UMULH : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Multiply two numbers at twice the incoming bit width (signed) and return
// the high half of the result.
def G_SMULH : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
//------------------------------------------------------------------------------
// Floating Point Unary Ops.
//------------------------------------------------------------------------------
def G_FNEG : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
def G_FPEXT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FPTRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FPTOSI : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FPTOUI : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_SITOFP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_UITOFP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
def G_FABS : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
def G_FCOPYSIGN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src0, type1:$src1);
let hasSideEffects = 0;
}
def G_FCANONICALIZE : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src);
let hasSideEffects = 0;
}
//------------------------------------------------------------------------------
// Floating Point Binary ops.
//------------------------------------------------------------------------------
// Generic FP addition.
def G_FADD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic FP subtraction.
def G_FSUB : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic FP multiplication.
def G_FMUL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
let isCommutable = 1;
}
// Generic fused multiply-add instruction.
// Behaves like llvm fma intrinsic ie src1 * src2 + src3
def G_FMA : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2, type0:$src3);
let hasSideEffects = 0;
let isCommutable = 0;
}
// Generic FP division.
def G_FDIV : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Generic FP remainder.
def G_FREM : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Floating point exponentiation.
def G_FPOW : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1, type0:$src2);
let hasSideEffects = 0;
}
// Floating point base-e exponential of a value.
def G_FEXP : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-2 exponential of a value.
def G_FEXP2 : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-2 logarithm of a value.
def G_FLOG : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-2 logarithm of a value.
def G_FLOG2 : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point base-10 logarithm of a value.
def G_FLOG10 : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point ceiling of a value.
def G_FCEIL : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point cosine of a value.
def G_FCOS : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point sine of a value.
def G_FSIN : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point square root of a value.
// This returns NaN for negative nonzero values.
// NOTE: Unlike libm sqrt(), this never sets errno. In all other respects it's
// libm-conformant.
def G_FSQRT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point floor of a value.
def G_FFLOOR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point round to next integer.
def G_FRINT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
// Floating point round to the nearest integer.
def G_FNEARBYINT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
//------------------------------------------------------------------------------
// Opcodes for LLVM Intrinsics
//------------------------------------------------------------------------------
def G_INTRINSIC_TRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
def G_INTRINSIC_ROUND : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
}
//------------------------------------------------------------------------------
// Memory ops
//------------------------------------------------------------------------------
// Generic load. Expects a MachineMemOperand in addition to explicit operands.
def G_LOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins ptype1:$addr);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Generic sign-extended load. Expects a MachineMemOperand in addition to explicit operands.
def G_SEXTLOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins ptype1:$addr);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Generic zero-extended load. Expects a MachineMemOperand in addition to explicit operands.
def G_ZEXTLOAD : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins ptype1:$addr);
let hasSideEffects = 0;
let mayLoad = 1;
}
// Generic store. Expects a MachineMemOperand in addition to explicit operands.
def G_STORE : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$src, ptype1:$addr);
let hasSideEffects = 0;
let mayStore = 1;
}
// Generic atomic cmpxchg with internal success check. Expects a
// MachineMemOperand in addition to explicit operands.
def G_ATOMIC_CMPXCHG_WITH_SUCCESS : GenericInstruction {
let OutOperandList = (outs type0:$oldval, type1:$success);
let InOperandList = (ins type2:$addr, type0:$cmpval, type0:$newval);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
// Generic atomic cmpxchg. Expects a MachineMemOperand in addition to explicit
// operands.
def G_ATOMIC_CMPXCHG : GenericInstruction {
let OutOperandList = (outs type0:$oldval);
let InOperandList = (ins ptype1:$addr, type0:$cmpval, type0:$newval);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
// Generic atomicrmw. Expects a MachineMemOperand in addition to explicit
// operands.
class G_ATOMICRMW_OP : GenericInstruction {
let OutOperandList = (outs type0:$oldval);
let InOperandList = (ins ptype1:$addr, type0:$val);
let hasSideEffects = 0;
let mayLoad = 1;
let mayStore = 1;
}
def G_ATOMICRMW_XCHG : G_ATOMICRMW_OP;
def G_ATOMICRMW_ADD : G_ATOMICRMW_OP;
def G_ATOMICRMW_SUB : G_ATOMICRMW_OP;
def G_ATOMICRMW_AND : G_ATOMICRMW_OP;
def G_ATOMICRMW_NAND : G_ATOMICRMW_OP;
def G_ATOMICRMW_OR : G_ATOMICRMW_OP;
def G_ATOMICRMW_XOR : G_ATOMICRMW_OP;
def G_ATOMICRMW_MAX : G_ATOMICRMW_OP;
def G_ATOMICRMW_MIN : G_ATOMICRMW_OP;
def G_ATOMICRMW_UMAX : G_ATOMICRMW_OP;
def G_ATOMICRMW_UMIN : G_ATOMICRMW_OP;
//------------------------------------------------------------------------------
// Variadic ops
//------------------------------------------------------------------------------
// Extract a register of the specified size, starting from the block given by
// index. This will almost certainly be mapped to sub-register COPYs after
// register banks have been selected.
def G_EXTRACT : GenericInstruction {
let OutOperandList = (outs type0:$res);
let InOperandList = (ins type1:$src, unknown:$offset);
let hasSideEffects = 0;
}
// Extract multiple registers specified size, starting from blocks given by
// indexes. This will almost certainly be mapped to sub-register COPYs after
// register banks have been selected.
// The output operands are always ordered from lowest bits to highest:
// %bits_0_7:(s8), %bits_8_15:(s8),
// %bits_16_23:(s8), %bits_24_31:(s8) = G_UNMERGE_VALUES %0:(s32)
def G_UNMERGE_VALUES : GenericInstruction {
let OutOperandList = (outs type0:$dst0, variable_ops);
let InOperandList = (ins type1:$src);
let hasSideEffects = 0;
}
// Insert a smaller register into a larger one at the specified bit-index.
def G_INSERT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src, type1:$op, unknown:$offset);
let hasSideEffects = 0;
}
// Concatenate multiple registers of the same size into a wider register.
// The input operands are always ordered from lowest bits to highest:
// %0:(s32) = G_MERGE_VALUES %bits_0_7:(s8), %bits_8_15:(s8),
// %bits_16_23:(s8), %bits_24_31:(s8)
def G_MERGE_VALUES : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
/// Create a vector from multiple scalar registers. No implicit
/// conversion is performed (i.e. the result element type must be the
/// same as all source operands)
def G_BUILD_VECTOR : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
/// Like G_BUILD_VECTOR, but truncates the larger operand types to fit the
/// destination vector elt type.
def G_BUILD_VECTOR_TRUNC : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
/// Create a vector by concatenating vectors together.
def G_CONCAT_VECTORS : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src0, variable_ops);
let hasSideEffects = 0;
}
// Intrinsic without side effects.
def G_INTRINSIC : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 0;
}
// Intrinsic with side effects.
def G_INTRINSIC_W_SIDE_EFFECTS : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$intrin, variable_ops);
let hasSideEffects = 1;
let mayLoad = 1;
let mayStore = 1;
}
//------------------------------------------------------------------------------
// Branches.
//------------------------------------------------------------------------------
// Generic unconditional branch.
def G_BR : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins unknown:$src1);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
let isBarrier = 1;
}
// Generic conditional branch.
def G_BRCOND : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$tst, unknown:$truebb);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
}
// Generic indirect branch.
def G_BRINDIRECT : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins type0:$src1);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
}
// Generic branch to jump table entry
def G_BRJT : GenericInstruction {
let OutOperandList = (outs);
let InOperandList = (ins ptype0:$tbl, unknown:$jti, type1:$idx);
let hasSideEffects = 0;
let isBranch = 1;
let isTerminator = 1;
}
//------------------------------------------------------------------------------
// Vector ops
//------------------------------------------------------------------------------
// Generic insertelement.
def G_INSERT_VECTOR_ELT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type0:$src, type1:$elt, type2:$idx);
let hasSideEffects = 0;
}
// Generic extractelement.
def G_EXTRACT_VECTOR_ELT : GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$src, type2:$idx);
let hasSideEffects = 0;
}
// Generic shufflevector.
def G_SHUFFLE_VECTOR: GenericInstruction {
let OutOperandList = (outs type0:$dst);
let InOperandList = (ins type1:$v1, type1:$v2, type2:$mask);
let hasSideEffects = 0;
}
// TODO: Add the other generic opcodes.