mirror of
https://github.com/RPCS3/llvm.git
synced 2026-01-31 01:25:19 +01:00
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309673 91177308-0d34-0410-b5e6-96231b3b80d8
991 lines
35 KiB
C++
991 lines
35 KiB
C++
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// Generic dominator tree construction - This file provides routines to
|
|
/// construct immediate dominator information for a flow-graph based on the
|
|
/// Semi-NCA algorithm described in this dissertation:
|
|
///
|
|
/// Linear-Time Algorithms for Dominators and Related Problems
|
|
/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
|
|
/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
|
|
///
|
|
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
|
|
/// out that the theoretically slower O(n*log(n)) implementation is actually
|
|
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
|
|
///
|
|
/// The file uses the Depth Based Search algorithm to perform incremental
|
|
/// updates (insertion and deletions). The implemented algorithm is based on
|
|
/// this publication:
|
|
///
|
|
/// An Experimental Study of Dynamic Dominators
|
|
/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
|
|
/// https://arxiv.org/pdf/1604.02711.pdf
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
|
|
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
|
|
|
|
#include <queue>
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
|
|
#define DEBUG_TYPE "dom-tree-builder"
|
|
|
|
namespace llvm {
|
|
namespace DomTreeBuilder {
|
|
|
|
template <typename NodePtr, bool Inverse>
|
|
struct ChildrenGetter {
|
|
static auto Get(NodePtr N) -> decltype(reverse(children<NodePtr>(N))) {
|
|
return reverse(children<NodePtr>(N));
|
|
}
|
|
};
|
|
|
|
template <typename NodePtr>
|
|
struct ChildrenGetter<NodePtr, true> {
|
|
static auto Get(NodePtr N) -> decltype(inverse_children<NodePtr>(N)) {
|
|
return inverse_children<NodePtr>(N);
|
|
}
|
|
};
|
|
|
|
template <typename DomTreeT>
|
|
struct SemiNCAInfo {
|
|
using NodePtr = typename DomTreeT::NodePtr;
|
|
using NodeT = typename DomTreeT::NodeType;
|
|
using TreeNodePtr = DomTreeNodeBase<NodeT> *;
|
|
static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
|
|
|
|
// Information record used by Semi-NCA during tree construction.
|
|
struct InfoRec {
|
|
unsigned DFSNum = 0;
|
|
unsigned Parent = 0;
|
|
unsigned Semi = 0;
|
|
NodePtr Label = nullptr;
|
|
NodePtr IDom = nullptr;
|
|
SmallVector<NodePtr, 2> ReverseChildren;
|
|
};
|
|
|
|
// Number to node mapping is 1-based. Initialize the mapping to start with
|
|
// a dummy element.
|
|
std::vector<NodePtr> NumToNode = {nullptr};
|
|
DenseMap<NodePtr, InfoRec> NodeToInfo;
|
|
|
|
void clear() {
|
|
NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
|
|
NodeToInfo.clear();
|
|
}
|
|
|
|
NodePtr getIDom(NodePtr BB) const {
|
|
auto InfoIt = NodeToInfo.find(BB);
|
|
if (InfoIt == NodeToInfo.end()) return nullptr;
|
|
|
|
return InfoIt->second.IDom;
|
|
}
|
|
|
|
TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
|
|
if (TreeNodePtr Node = DT.getNode(BB)) return Node;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
NodePtr IDom = getIDom(BB);
|
|
|
|
assert(IDom || DT.DomTreeNodes[nullptr]);
|
|
TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
|
|
|
|
// Add a new tree node for this NodeT, and link it as a child of
|
|
// IDomNode
|
|
return (DT.DomTreeNodes[BB] = IDomNode->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
|
|
.get();
|
|
}
|
|
|
|
static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
|
|
|
|
struct BlockNamePrinter {
|
|
NodePtr N;
|
|
|
|
BlockNamePrinter(NodePtr Block) : N(Block) {}
|
|
BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
|
|
if (!BP.N)
|
|
O << "nullptr";
|
|
else
|
|
BP.N->printAsOperand(O, false);
|
|
|
|
return O;
|
|
}
|
|
};
|
|
|
|
// Custom DFS implementation which can skip nodes based on a provided
|
|
// predicate. It also collects ReverseChildren so that we don't have to spend
|
|
// time getting predecessors in SemiNCA.
|
|
template <typename DescendCondition>
|
|
unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
|
|
unsigned AttachToNum) {
|
|
assert(V);
|
|
SmallVector<NodePtr, 64> WorkList = {V};
|
|
if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
|
|
|
|
while (!WorkList.empty()) {
|
|
const NodePtr BB = WorkList.pop_back_val();
|
|
auto &BBInfo = NodeToInfo[BB];
|
|
|
|
// Visited nodes always have positive DFS numbers.
|
|
if (BBInfo.DFSNum != 0) continue;
|
|
BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
|
|
BBInfo.Label = BB;
|
|
NumToNode.push_back(BB);
|
|
|
|
for (const NodePtr Succ : ChildrenGetter<NodePtr, IsPostDom>::Get(BB)) {
|
|
const auto SIT = NodeToInfo.find(Succ);
|
|
// Don't visit nodes more than once but remember to collect
|
|
// ReverseChildren.
|
|
if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
|
|
if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
|
|
continue;
|
|
}
|
|
|
|
if (!Condition(BB, Succ)) continue;
|
|
|
|
// It's fine to add Succ to the map, because we know that it will be
|
|
// visited later.
|
|
auto &SuccInfo = NodeToInfo[Succ];
|
|
WorkList.push_back(Succ);
|
|
SuccInfo.Parent = LastNum;
|
|
SuccInfo.ReverseChildren.push_back(BB);
|
|
}
|
|
}
|
|
|
|
return LastNum;
|
|
}
|
|
|
|
NodePtr eval(NodePtr VIn, unsigned LastLinked) {
|
|
auto &VInInfo = NodeToInfo[VIn];
|
|
if (VInInfo.DFSNum < LastLinked)
|
|
return VIn;
|
|
|
|
SmallVector<NodePtr, 32> Work;
|
|
SmallPtrSet<NodePtr, 32> Visited;
|
|
|
|
if (VInInfo.Parent >= LastLinked)
|
|
Work.push_back(VIn);
|
|
|
|
while (!Work.empty()) {
|
|
NodePtr V = Work.back();
|
|
auto &VInfo = NodeToInfo[V];
|
|
NodePtr VAncestor = NumToNode[VInfo.Parent];
|
|
|
|
// Process Ancestor first
|
|
if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
|
|
Work.push_back(VAncestor);
|
|
continue;
|
|
}
|
|
Work.pop_back();
|
|
|
|
// Update VInfo based on Ancestor info
|
|
if (VInfo.Parent < LastLinked)
|
|
continue;
|
|
|
|
auto &VAInfo = NodeToInfo[VAncestor];
|
|
NodePtr VAncestorLabel = VAInfo.Label;
|
|
NodePtr VLabel = VInfo.Label;
|
|
if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
|
|
VInfo.Label = VAncestorLabel;
|
|
VInfo.Parent = VAInfo.Parent;
|
|
}
|
|
|
|
return VInInfo.Label;
|
|
}
|
|
|
|
// This function requires DFS to be run before calling it.
|
|
void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
|
|
const unsigned NextDFSNum(NumToNode.size());
|
|
// Initialize IDoms to spanning tree parents.
|
|
for (unsigned i = 1; i < NextDFSNum; ++i) {
|
|
const NodePtr V = NumToNode[i];
|
|
auto &VInfo = NodeToInfo[V];
|
|
VInfo.IDom = NumToNode[VInfo.Parent];
|
|
}
|
|
|
|
// Step #1: Calculate the semidominators of all vertices.
|
|
for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
|
|
NodePtr W = NumToNode[i];
|
|
auto &WInfo = NodeToInfo[W];
|
|
|
|
// Initialize the semi dominator to point to the parent node.
|
|
WInfo.Semi = WInfo.Parent;
|
|
for (const auto &N : WInfo.ReverseChildren) {
|
|
if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
|
|
continue;
|
|
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
// Skip predecessors whose level is above the subtree we are processing.
|
|
if (TN && TN->getLevel() < MinLevel)
|
|
continue;
|
|
|
|
unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
|
|
if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
|
|
}
|
|
}
|
|
|
|
// Step #2: Explicitly define the immediate dominator of each vertex.
|
|
// IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
|
|
// Note that the parents were stored in IDoms and later got invalidated
|
|
// during path compression in Eval.
|
|
for (unsigned i = 2; i < NextDFSNum; ++i) {
|
|
const NodePtr W = NumToNode[i];
|
|
auto &WInfo = NodeToInfo[W];
|
|
const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
|
|
NodePtr WIDomCandidate = WInfo.IDom;
|
|
while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
|
|
WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
|
|
|
|
WInfo.IDom = WIDomCandidate;
|
|
}
|
|
}
|
|
|
|
template <typename DescendCondition>
|
|
unsigned doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
|
|
unsigned Num = 0;
|
|
|
|
// If the DT is a PostDomTree, always add a virtual root.
|
|
if (IsPostDom) {
|
|
auto &BBInfo = NodeToInfo[nullptr];
|
|
BBInfo.DFSNum = BBInfo.Semi = ++Num;
|
|
BBInfo.Label = nullptr;
|
|
|
|
NumToNode.push_back(nullptr); // NumToNode[n] = V;
|
|
}
|
|
|
|
const unsigned InitialNum = Num;
|
|
for (auto *Root : DT.Roots) Num = runDFS(Root, Num, DC, InitialNum);
|
|
|
|
return Num;
|
|
}
|
|
|
|
static void FindAndAddRoots(DomTreeT &DT) {
|
|
assert(DT.Parent && "Parent pointer is not set");
|
|
using TraitsTy = GraphTraits<typename DomTreeT::ParentPtr>;
|
|
|
|
if (!IsPostDom) {
|
|
// Dominators have a single root that is the function's entry.
|
|
NodeT *entry = TraitsTy::getEntryNode(DT.Parent);
|
|
DT.addRoot(entry);
|
|
} else {
|
|
// Initialize the roots list for PostDominators.
|
|
for (auto *Node : nodes(DT.Parent))
|
|
if (TraitsTy::child_begin(Node) == TraitsTy::child_end(Node))
|
|
DT.addRoot(Node);
|
|
}
|
|
}
|
|
|
|
void calculateFromScratch(DomTreeT &DT) {
|
|
// Step #0: Number blocks in depth-first order and initialize variables used
|
|
// in later stages of the algorithm.
|
|
FindAndAddRoots(DT);
|
|
doFullDFSWalk(DT, AlwaysDescend);
|
|
|
|
runSemiNCA(DT);
|
|
|
|
if (DT.Roots.empty()) return;
|
|
|
|
// Add a node for the root. If the tree is a PostDominatorTree it will be
|
|
// the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
|
|
// all real exits (including multiple exit blocks, infinite loops).
|
|
NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
|
|
|
|
DT.RootNode = (DT.DomTreeNodes[Root] =
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
|
|
.get();
|
|
attachNewSubtree(DT, DT.RootNode);
|
|
}
|
|
|
|
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
|
|
// Attach the first unreachable block to AttachTo.
|
|
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
|
|
// Loop over all of the discovered blocks in the function...
|
|
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
|
|
NodePtr W = NumToNode[i];
|
|
DEBUG(dbgs() << "\tdiscovered a new reachable node "
|
|
<< BlockNamePrinter(W) << "\n");
|
|
|
|
// Don't replace this with 'count', the insertion side effect is important
|
|
if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
|
|
|
|
NodePtr ImmDom = getIDom(W);
|
|
|
|
// Get or calculate the node for the immediate dominator
|
|
TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DT.DomTreeNodes[W] = IDomNode->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
|
|
}
|
|
}
|
|
|
|
void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
|
|
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
|
|
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
|
|
const NodePtr N = NumToNode[i];
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
assert(TN);
|
|
const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
|
|
TN->setIDom(NewIDom);
|
|
}
|
|
}
|
|
|
|
// Helper struct used during edge insertions.
|
|
struct InsertionInfo {
|
|
using BucketElementTy = std::pair<unsigned, TreeNodePtr>;
|
|
struct DecreasingLevel {
|
|
bool operator()(const BucketElementTy &First,
|
|
const BucketElementTy &Second) const {
|
|
return First.first > Second.first;
|
|
}
|
|
};
|
|
|
|
std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>,
|
|
DecreasingLevel>
|
|
Bucket; // Queue of tree nodes sorted by level in descending order.
|
|
SmallDenseSet<TreeNodePtr, 8> Affected;
|
|
SmallDenseSet<TreeNodePtr, 8> Visited;
|
|
SmallVector<TreeNodePtr, 8> AffectedQueue;
|
|
SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue;
|
|
};
|
|
|
|
static void InsertEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) {
|
|
assert(From && To && "Cannot connect nullptrs");
|
|
DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
|
|
<< BlockNamePrinter(To) << "\n");
|
|
const TreeNodePtr FromTN = DT.getNode(From);
|
|
|
|
// Ignore edges from unreachable nodes.
|
|
if (!FromTN) return;
|
|
|
|
DT.DFSInfoValid = false;
|
|
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN)
|
|
InsertUnreachable(DT, FromTN, To);
|
|
else
|
|
InsertReachable(DT, FromTN, ToTN);
|
|
}
|
|
|
|
// Handles insertion to a node already in the dominator tree.
|
|
static void InsertReachable(DomTreeT &DT, const TreeNodePtr From,
|
|
const TreeNodePtr To) {
|
|
DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
|
|
<< " -> " << BlockNamePrinter(To->getBlock()) << "\n");
|
|
const NodePtr NCDBlock =
|
|
DT.findNearestCommonDominator(From->getBlock(), To->getBlock());
|
|
assert(NCDBlock || DT.isPostDominator());
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
assert(NCD);
|
|
|
|
DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
|
|
const TreeNodePtr ToIDom = To->getIDom();
|
|
|
|
// Nothing affected -- NCA property holds.
|
|
// (Based on the lemma 2.5 from the second paper.)
|
|
if (NCD == To || NCD == ToIDom) return;
|
|
|
|
// Identify and collect affected nodes.
|
|
InsertionInfo II;
|
|
DEBUG(dbgs() << "Marking " << BlockNamePrinter(To) << " as affected\n");
|
|
II.Affected.insert(To);
|
|
const unsigned ToLevel = To->getLevel();
|
|
DEBUG(dbgs() << "Putting " << BlockNamePrinter(To) << " into a Bucket\n");
|
|
II.Bucket.push({ToLevel, To});
|
|
|
|
while (!II.Bucket.empty()) {
|
|
const TreeNodePtr CurrentNode = II.Bucket.top().second;
|
|
II.Bucket.pop();
|
|
DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: "
|
|
<< BlockNamePrinter(CurrentNode) << "\n");
|
|
II.Visited.insert(CurrentNode);
|
|
II.AffectedQueue.push_back(CurrentNode);
|
|
|
|
// Discover and collect affected successors of the current node.
|
|
VisitInsertion(DT, CurrentNode, CurrentNode->getLevel(), NCD, II);
|
|
}
|
|
|
|
// Finish by updating immediate dominators and levels.
|
|
UpdateInsertion(DT, NCD, II);
|
|
}
|
|
|
|
// Visits an affected node and collect its affected successors.
|
|
static void VisitInsertion(DomTreeT &DT, const TreeNodePtr TN,
|
|
const unsigned RootLevel, const TreeNodePtr NCD,
|
|
InsertionInfo &II) {
|
|
const unsigned NCDLevel = NCD->getLevel();
|
|
DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << "\n");
|
|
|
|
assert(TN->getBlock());
|
|
for (const NodePtr Succ :
|
|
ChildrenGetter<NodePtr, IsPostDom>::Get(TN->getBlock())) {
|
|
const TreeNodePtr SuccTN = DT.getNode(Succ);
|
|
assert(SuccTN && "Unreachable successor found at reachable insertion");
|
|
const unsigned SuccLevel = SuccTN->getLevel();
|
|
|
|
DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
|
|
<< ", level = " << SuccLevel << "\n");
|
|
|
|
// Succ dominated by subtree From -- not affected.
|
|
// (Based on the lemma 2.5 from the second paper.)
|
|
if (SuccLevel > RootLevel) {
|
|
DEBUG(dbgs() << "\t\tDominated by subtree From\n");
|
|
if (II.Visited.count(SuccTN) != 0) continue;
|
|
|
|
DEBUG(dbgs() << "\t\tMarking visited not affected "
|
|
<< BlockNamePrinter(Succ) << "\n");
|
|
II.Visited.insert(SuccTN);
|
|
II.VisitedNotAffectedQueue.push_back(SuccTN);
|
|
VisitInsertion(DT, SuccTN, RootLevel, NCD, II);
|
|
} else if ((SuccLevel > NCDLevel + 1) && II.Affected.count(SuccTN) == 0) {
|
|
DEBUG(dbgs() << "\t\tMarking affected and adding "
|
|
<< BlockNamePrinter(Succ) << " to a Bucket\n");
|
|
II.Affected.insert(SuccTN);
|
|
II.Bucket.push({SuccLevel, SuccTN});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Updates immediate dominators and levels after insertion.
|
|
static void UpdateInsertion(DomTreeT &DT, const TreeNodePtr NCD,
|
|
InsertionInfo &II) {
|
|
DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
|
|
|
|
for (const TreeNodePtr TN : II.AffectedQueue) {
|
|
DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
|
|
<< ") = " << BlockNamePrinter(NCD) << "\n");
|
|
TN->setIDom(NCD);
|
|
}
|
|
|
|
UpdateLevelsAfterInsertion(II);
|
|
}
|
|
|
|
static void UpdateLevelsAfterInsertion(InsertionInfo &II) {
|
|
DEBUG(dbgs() << "Updating levels for visited but not affected nodes\n");
|
|
|
|
for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) {
|
|
DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = ("
|
|
<< BlockNamePrinter(TN->getIDom()) << ") "
|
|
<< TN->getIDom()->getLevel() << " + 1\n");
|
|
TN->UpdateLevel();
|
|
}
|
|
}
|
|
|
|
// Handles insertion to previously unreachable nodes.
|
|
static void InsertUnreachable(DomTreeT &DT, const TreeNodePtr From,
|
|
const NodePtr To) {
|
|
DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
|
|
<< " -> (unreachable) " << BlockNamePrinter(To) << "\n");
|
|
|
|
// Collect discovered edges to already reachable nodes.
|
|
SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
|
|
// Discover and connect nodes that became reachable with the insertion.
|
|
ComputeUnreachableDominators(DT, To, From, DiscoveredEdgesToReachable);
|
|
|
|
DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
|
|
<< " -> (prev unreachable) " << BlockNamePrinter(To) << "\n");
|
|
|
|
DEBUG(DT.print(dbgs()));
|
|
|
|
// Used the discovered edges and inset discovered connecting (incoming)
|
|
// edges.
|
|
for (const auto &Edge : DiscoveredEdgesToReachable) {
|
|
DEBUG(dbgs() << "\tInserting discovered connecting edge "
|
|
<< BlockNamePrinter(Edge.first) << " -> "
|
|
<< BlockNamePrinter(Edge.second) << "\n");
|
|
InsertReachable(DT, DT.getNode(Edge.first), Edge.second);
|
|
}
|
|
}
|
|
|
|
// Connects nodes that become reachable with an insertion.
|
|
static void ComputeUnreachableDominators(
|
|
DomTreeT &DT, const NodePtr Root, const TreeNodePtr Incoming,
|
|
SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
|
|
&DiscoveredConnectingEdges) {
|
|
assert(!DT.getNode(Root) && "Root must not be reachable");
|
|
|
|
// Visit only previously unreachable nodes.
|
|
auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
|
|
NodePtr To) {
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN) return true;
|
|
|
|
DiscoveredConnectingEdges.push_back({From, ToTN});
|
|
return false;
|
|
};
|
|
|
|
SemiNCAInfo SNCA;
|
|
SNCA.runDFS(Root, 0, UnreachableDescender, 0);
|
|
SNCA.runSemiNCA(DT);
|
|
SNCA.attachNewSubtree(DT, Incoming);
|
|
|
|
DEBUG(dbgs() << "After adding unreachable nodes\n");
|
|
DEBUG(DT.print(dbgs()));
|
|
}
|
|
|
|
// Checks if the tree contains all reachable nodes in the input graph.
|
|
bool verifyReachability(const DomTreeT &DT) {
|
|
clear();
|
|
doFullDFSWalk(DT, AlwaysDescend);
|
|
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
|
|
// Virtual root has a corresponding virtual CFG node.
|
|
if (DT.isVirtualRoot(TN)) continue;
|
|
|
|
if (NodeToInfo.count(BB) == 0) {
|
|
errs() << "DomTree node " << BlockNamePrinter(BB)
|
|
<< " not found by DFS walk!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const NodePtr N : NumToNode) {
|
|
if (N && !DT.getNode(N)) {
|
|
errs() << "CFG node " << BlockNamePrinter(N)
|
|
<< " not found in the DomTree!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void DeleteEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) {
|
|
assert(From && To && "Cannot disconnect nullptrs");
|
|
DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
|
|
<< BlockNamePrinter(To) << "\n");
|
|
|
|
#ifndef NDEBUG
|
|
// Ensure that the edge was in fact deleted from the CFG before informing
|
|
// the DomTree about it.
|
|
// The check is O(N), so run it only in debug configuration.
|
|
auto IsSuccessor = [](const NodePtr SuccCandidate, const NodePtr Of) {
|
|
auto Successors = ChildrenGetter<NodePtr, IsPostDom>::Get(Of);
|
|
return llvm::find(Successors, SuccCandidate) != Successors.end();
|
|
};
|
|
(void)IsSuccessor;
|
|
assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
|
|
#endif
|
|
|
|
const TreeNodePtr FromTN = DT.getNode(From);
|
|
// Deletion in an unreachable subtree -- nothing to do.
|
|
if (!FromTN) return;
|
|
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
assert(ToTN && "To already unreachable -- there is no edge to delete");
|
|
const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
|
|
// To dominates From -- nothing to do.
|
|
if (ToTN == NCD) return;
|
|
|
|
const TreeNodePtr ToIDom = ToTN->getIDom();
|
|
DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
|
|
<< BlockNamePrinter(ToIDom) << "\n");
|
|
|
|
// To remains reachable after deletion.
|
|
// (Based on the caption under Figure 4. from the second paper.)
|
|
if (FromTN != ToIDom || HasProperSupport(DT, ToTN))
|
|
DeleteReachable(DT, FromTN, ToTN);
|
|
else
|
|
DeleteUnreachable(DT, ToTN);
|
|
}
|
|
|
|
// Handles deletions that leave destination nodes reachable.
|
|
static void DeleteReachable(DomTreeT &DT, const TreeNodePtr FromTN,
|
|
const TreeNodePtr ToTN) {
|
|
DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) << " -> "
|
|
<< BlockNamePrinter(ToTN) << "\n");
|
|
DEBUG(dbgs() << "\tRebuilding subtree\n");
|
|
|
|
// Find the top of the subtree that needs to be rebuilt.
|
|
// (Based on the lemma 2.6 from the second paper.)
|
|
const NodePtr ToIDom =
|
|
DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
|
|
assert(ToIDom || DT.isPostDominator());
|
|
const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
|
|
assert(ToIDomTN);
|
|
const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
|
|
// Top of the subtree to rebuild is the root node. Rebuild the tree from
|
|
// scratch.
|
|
if (!PrevIDomSubTree) {
|
|
DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
|
|
DT.recalculate(*DT.Parent);
|
|
return;
|
|
}
|
|
|
|
// Only visit nodes in the subtree starting at To.
|
|
const unsigned Level = ToIDomTN->getLevel();
|
|
auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
|
|
return DT.getNode(To)->getLevel() > Level;
|
|
};
|
|
|
|
DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) << "\n");
|
|
|
|
SemiNCAInfo SNCA;
|
|
SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
|
|
DEBUG(dbgs() << "\tRunning Semi-NCA\n");
|
|
SNCA.runSemiNCA(DT, Level);
|
|
SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
|
|
}
|
|
|
|
// Checks if a node has proper support, as defined on the page 3 and later
|
|
// explained on the page 7 of the second paper.
|
|
static bool HasProperSupport(DomTreeT &DT, const TreeNodePtr TN) {
|
|
DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) << "\n");
|
|
for (const NodePtr Pred :
|
|
ChildrenGetter<NodePtr, !IsPostDom>::Get(TN->getBlock())) {
|
|
DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
|
|
if (!DT.getNode(Pred)) continue;
|
|
|
|
const NodePtr Support =
|
|
DT.findNearestCommonDominator(TN->getBlock(), Pred);
|
|
DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
|
|
if (Support != TN->getBlock()) {
|
|
DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
|
|
<< " is reachable from support "
|
|
<< BlockNamePrinter(Support) << "\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Handle deletions that make destination node unreachable.
|
|
// (Based on the lemma 2.7 from the second paper.)
|
|
static void DeleteUnreachable(DomTreeT &DT, const TreeNodePtr ToTN) {
|
|
DEBUG(dbgs() << "Deleting unreachable subtree " << BlockNamePrinter(ToTN)
|
|
<< "\n");
|
|
assert(ToTN);
|
|
assert(ToTN->getBlock());
|
|
|
|
SmallVector<NodePtr, 16> AffectedQueue;
|
|
const unsigned Level = ToTN->getLevel();
|
|
|
|
// Traverse destination node's descendants with greater level in the tree
|
|
// and collect visited nodes.
|
|
auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
|
|
const TreeNodePtr TN = DT.getNode(To);
|
|
assert(TN);
|
|
if (TN->getLevel() > Level) return true;
|
|
if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
|
|
AffectedQueue.push_back(To);
|
|
|
|
return false;
|
|
};
|
|
|
|
SemiNCAInfo SNCA;
|
|
unsigned LastDFSNum =
|
|
SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
|
|
|
|
TreeNodePtr MinNode = ToTN;
|
|
|
|
// Identify the top of the subtree to rebuild by finding the NCD of all
|
|
// the affected nodes.
|
|
for (const NodePtr N : AffectedQueue) {
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
const NodePtr NCDBlock =
|
|
DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
|
|
assert(NCDBlock || DT.isPostDominator());
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
assert(NCD);
|
|
|
|
DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
|
|
<< " with NCD = " << BlockNamePrinter(NCD)
|
|
<< ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
|
|
if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
|
|
}
|
|
|
|
// Root reached, rebuild the whole tree from scratch.
|
|
if (!MinNode->getIDom()) {
|
|
DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
|
|
DT.recalculate(*DT.Parent);
|
|
return;
|
|
}
|
|
|
|
// Erase the unreachable subtree in reverse preorder to process all children
|
|
// before deleting their parent.
|
|
for (unsigned i = LastDFSNum; i > 0; --i) {
|
|
const NodePtr N = SNCA.NumToNode[i];
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
|
|
|
|
EraseNode(DT, TN);
|
|
}
|
|
|
|
// The affected subtree start at the To node -- there's no extra work to do.
|
|
if (MinNode == ToTN) return;
|
|
|
|
DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
|
|
<< BlockNamePrinter(MinNode) << "\n");
|
|
const unsigned MinLevel = MinNode->getLevel();
|
|
const TreeNodePtr PrevIDom = MinNode->getIDom();
|
|
assert(PrevIDom);
|
|
SNCA.clear();
|
|
|
|
// Identify nodes that remain in the affected subtree.
|
|
auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
return ToTN && ToTN->getLevel() > MinLevel;
|
|
};
|
|
SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
|
|
|
|
DEBUG(dbgs() << "Previous IDom(MinNode) = " << BlockNamePrinter(PrevIDom)
|
|
<< "\nRunning Semi-NCA\n");
|
|
|
|
// Rebuild the remaining part of affected subtree.
|
|
SNCA.runSemiNCA(DT, MinLevel);
|
|
SNCA.reattachExistingSubtree(DT, PrevIDom);
|
|
}
|
|
|
|
// Removes leaf tree nodes from the dominator tree.
|
|
static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
|
|
assert(TN);
|
|
assert(TN->getNumChildren() == 0 && "Not a tree leaf");
|
|
|
|
const TreeNodePtr IDom = TN->getIDom();
|
|
assert(IDom);
|
|
|
|
auto ChIt = llvm::find(IDom->Children, TN);
|
|
assert(ChIt != IDom->Children.end());
|
|
std::swap(*ChIt, IDom->Children.back());
|
|
IDom->Children.pop_back();
|
|
|
|
DT.DomTreeNodes.erase(TN->getBlock());
|
|
}
|
|
|
|
//~~
|
|
//===--------------- DomTree correctness verification ---------------------===
|
|
//~~
|
|
|
|
// Check if for every parent with a level L in the tree all of its children
|
|
// have level L + 1.
|
|
static bool VerifyLevels(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB) continue;
|
|
|
|
const TreeNodePtr IDom = TN->getIDom();
|
|
if (!IDom && TN->getLevel() != 0) {
|
|
errs() << "Node without an IDom " << BlockNamePrinter(BB)
|
|
<< " has a nonzero level " << TN->getLevel() << "!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
|
|
if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
|
|
errs() << "Node " << BlockNamePrinter(BB) << " has level "
|
|
<< TN->getLevel() << " while its IDom "
|
|
<< BlockNamePrinter(IDom->getBlock()) << " has level "
|
|
<< IDom->getLevel() << "!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks if for every edge From -> To in the graph
|
|
// NCD(From, To) == IDom(To) or To.
|
|
bool verifyNCD(const DomTreeT &DT) {
|
|
clear();
|
|
doFullDFSWalk(DT, AlwaysDescend);
|
|
|
|
for (auto &BlockToInfo : NodeToInfo) {
|
|
auto &Info = BlockToInfo.second;
|
|
|
|
const NodePtr From = NumToNode[Info.Parent];
|
|
if (!From) continue;
|
|
|
|
const NodePtr To = BlockToInfo.first;
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
assert(ToTN);
|
|
|
|
const NodePtr NCD = DT.findNearestCommonDominator(From, To);
|
|
const TreeNodePtr NCDTN = DT.getNode(NCD);
|
|
const TreeNodePtr ToIDom = ToTN->getIDom();
|
|
if (NCDTN != ToTN && NCDTN != ToIDom) {
|
|
errs() << "NearestCommonDominator verification failed:\n\tNCD(From:"
|
|
<< BlockNamePrinter(From) << ", To:" << BlockNamePrinter(To)
|
|
<< ") = " << BlockNamePrinter(NCD)
|
|
<< ",\t (should be To or IDom[To]: " << BlockNamePrinter(ToIDom)
|
|
<< ")\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// The below routines verify the correctness of the dominator tree relative to
|
|
// the CFG it's coming from. A tree is a dominator tree iff it has two
|
|
// properties, called the parent property and the sibling property. Tarjan
|
|
// and Lengauer prove (but don't explicitly name) the properties as part of
|
|
// the proofs in their 1972 paper, but the proofs are mostly part of proving
|
|
// things about semidominators and idoms, and some of them are simply asserted
|
|
// based on even earlier papers (see, e.g., lemma 2). Some papers refer to
|
|
// these properties as "valid" and "co-valid". See, e.g., "Dominators,
|
|
// directed bipolar orders, and independent spanning trees" by Loukas
|
|
// Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
|
|
// and Vertex-Disjoint Paths " by the same authors.
|
|
|
|
// A very simple and direct explanation of these properties can be found in
|
|
// "An Experimental Study of Dynamic Dominators", found at
|
|
// https://arxiv.org/abs/1604.02711
|
|
|
|
// The easiest way to think of the parent property is that it's a requirement
|
|
// of being a dominator. Let's just take immediate dominators. For PARENT to
|
|
// be an immediate dominator of CHILD, all paths in the CFG must go through
|
|
// PARENT before they hit CHILD. This implies that if you were to cut PARENT
|
|
// out of the CFG, there should be no paths to CHILD that are reachable. If
|
|
// there are, then you now have a path from PARENT to CHILD that goes around
|
|
// PARENT and still reaches CHILD, which by definition, means PARENT can't be
|
|
// a dominator of CHILD (let alone an immediate one).
|
|
|
|
// The sibling property is similar. It says that for each pair of sibling
|
|
// nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
|
|
// other. If sibling LEFT dominated sibling RIGHT, it means there are no
|
|
// paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
|
|
// LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
|
|
// RIGHT, not a sibling.
|
|
|
|
// It is possible to verify the parent and sibling properties in
|
|
// linear time, but the algorithms are complex. Instead, we do it in a
|
|
// straightforward N^2 and N^3 way below, using direct path reachability.
|
|
|
|
|
|
// Checks if the tree has the parent property: if for all edges from V to W in
|
|
// the input graph, such that V is reachable, the parent of W in the tree is
|
|
// an ancestor of V in the tree.
|
|
//
|
|
// This means that if a node gets disconnected from the graph, then all of
|
|
// the nodes it dominated previously will now become unreachable.
|
|
bool verifyParentProperty(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB || TN->getChildren().empty()) continue;
|
|
|
|
clear();
|
|
doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
|
|
return From != BB && To != BB;
|
|
});
|
|
|
|
for (TreeNodePtr Child : TN->getChildren())
|
|
if (NodeToInfo.count(Child->getBlock()) != 0) {
|
|
errs() << "Child " << BlockNamePrinter(Child)
|
|
<< " reachable after its parent " << BlockNamePrinter(BB)
|
|
<< " is removed!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the tree has sibling property: if a node V does not dominate a
|
|
// node W for all siblings V and W in the tree.
|
|
//
|
|
// This means that if a node gets disconnected from the graph, then all of its
|
|
// siblings will now still be reachable.
|
|
bool verifySiblingProperty(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB || TN->getChildren().empty()) continue;
|
|
|
|
const auto &Siblings = TN->getChildren();
|
|
for (const TreeNodePtr N : Siblings) {
|
|
clear();
|
|
NodePtr BBN = N->getBlock();
|
|
doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
|
|
return From != BBN && To != BBN;
|
|
});
|
|
|
|
for (const TreeNodePtr S : Siblings) {
|
|
if (S == N) continue;
|
|
|
|
if (NodeToInfo.count(S->getBlock()) == 0) {
|
|
errs() << "Node " << BlockNamePrinter(S)
|
|
<< " not reachable when its sibling " << BlockNamePrinter(N)
|
|
<< " is removed!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <class DomTreeT>
|
|
void Calculate(DomTreeT &DT) {
|
|
SemiNCAInfo<DomTreeT> SNCA;
|
|
SNCA.calculateFromScratch(DT);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To) {
|
|
if (DT.isPostDominator()) std::swap(From, To);
|
|
SemiNCAInfo<DomTreeT>::InsertEdge(DT, From, To);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To) {
|
|
if (DT.isPostDominator()) std::swap(From, To);
|
|
SemiNCAInfo<DomTreeT>::DeleteEdge(DT, From, To);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
bool Verify(const DomTreeT &DT) {
|
|
SemiNCAInfo<DomTreeT> SNCA;
|
|
return SNCA.verifyReachability(DT) && SNCA.VerifyLevels(DT) &&
|
|
SNCA.verifyNCD(DT) && SNCA.verifyParentProperty(DT) &&
|
|
SNCA.verifySiblingProperty(DT);
|
|
}
|
|
|
|
} // namespace DomTreeBuilder
|
|
} // namespace llvm
|
|
|
|
#undef DEBUG_TYPE
|
|
|
|
#endif
|