mirror of
https://github.com/RPCS3/llvm.git
synced 2026-01-31 01:25:19 +01:00
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
737 lines
26 KiB
C++
737 lines
26 KiB
C++
//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the TypeBasedAliasAnalysis pass, which implements
|
|
// metadata-based TBAA.
|
|
//
|
|
// In LLVM IR, memory does not have types, so LLVM's own type system is not
|
|
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
|
|
// a type system of a higher level language. This can be used to implement
|
|
// typical C/C++ TBAA, but it can also be used to implement custom alias
|
|
// analysis behavior for other languages.
|
|
//
|
|
// We now support two types of metadata format: scalar TBAA and struct-path
|
|
// aware TBAA. After all testing cases are upgraded to use struct-path aware
|
|
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
|
|
// can be dropped.
|
|
//
|
|
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
|
|
// three fields, e.g.:
|
|
// !0 = !{ !"an example type tree" }
|
|
// !1 = !{ !"int", !0 }
|
|
// !2 = !{ !"float", !0 }
|
|
// !3 = !{ !"const float", !2, i64 1 }
|
|
//
|
|
// The first field is an identity field. It can be any value, usually
|
|
// an MDString, which uniquely identifies the type. The most important
|
|
// name in the tree is the name of the root node. Two trees with
|
|
// different root node names are entirely disjoint, even if they
|
|
// have leaves with common names.
|
|
//
|
|
// The second field identifies the type's parent node in the tree, or
|
|
// is null or omitted for a root node. A type is considered to alias
|
|
// all of its descendants and all of its ancestors in the tree. Also,
|
|
// a type is considered to alias all types in other trees, so that
|
|
// bitcode produced from multiple front-ends is handled conservatively.
|
|
//
|
|
// If the third field is present, it's an integer which if equal to 1
|
|
// indicates that the type is "constant" (meaning pointsToConstantMemory
|
|
// should return true; see
|
|
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
|
|
//
|
|
// With struct-path aware TBAA, the MDNodes attached to an instruction using
|
|
// "!tbaa" are called path tag nodes.
|
|
//
|
|
// The path tag node has 4 fields with the last field being optional.
|
|
//
|
|
// The first field is the base type node, it can be a struct type node
|
|
// or a scalar type node. The second field is the access type node, it
|
|
// must be a scalar type node. The third field is the offset into the base type.
|
|
// The last field has the same meaning as the last field of our scalar TBAA:
|
|
// it's an integer which if equal to 1 indicates that the access is "constant".
|
|
//
|
|
// The struct type node has a name and a list of pairs, one pair for each member
|
|
// of the struct. The first element of each pair is a type node (a struct type
|
|
// node or a scalar type node), specifying the type of the member, the second
|
|
// element of each pair is the offset of the member.
|
|
//
|
|
// Given an example
|
|
// typedef struct {
|
|
// short s;
|
|
// } A;
|
|
// typedef struct {
|
|
// uint16_t s;
|
|
// A a;
|
|
// } B;
|
|
//
|
|
// For an access to B.a.s, we attach !5 (a path tag node) to the load/store
|
|
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
|
|
// type short) and the offset is 4.
|
|
//
|
|
// !0 = !{!"Simple C/C++ TBAA"}
|
|
// !1 = !{!"omnipotent char", !0} // Scalar type node
|
|
// !2 = !{!"short", !1} // Scalar type node
|
|
// !3 = !{!"A", !2, i64 0} // Struct type node
|
|
// !4 = !{!"B", !2, i64 0, !3, i64 4}
|
|
// // Struct type node
|
|
// !5 = !{!4, !2, i64 4} // Path tag node
|
|
//
|
|
// The struct type nodes and the scalar type nodes form a type DAG.
|
|
// Root (!0)
|
|
// char (!1) -- edge to Root
|
|
// short (!2) -- edge to char
|
|
// A (!3) -- edge with offset 0 to short
|
|
// B (!4) -- edge with offset 0 to short and edge with offset 4 to A
|
|
//
|
|
// To check if two tags (tagX and tagY) can alias, we start from the base type
|
|
// of tagX, follow the edge with the correct offset in the type DAG and adjust
|
|
// the offset until we reach the base type of tagY or until we reach the Root
|
|
// node.
|
|
// If we reach the base type of tagY, compare the adjusted offset with
|
|
// offset of tagY, return Alias if the offsets are the same, return NoAlias
|
|
// otherwise.
|
|
// If we reach the Root node, perform the above starting from base type of tagY
|
|
// to see if we reach base type of tagX.
|
|
//
|
|
// If they have different roots, they're part of different potentially
|
|
// unrelated type systems, so we return Alias to be conservative.
|
|
// If neither node is an ancestor of the other and they have the same root,
|
|
// then we say NoAlias.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
|
|
using namespace llvm;
|
|
|
|
// A handy option for disabling TBAA functionality. The same effect can also be
|
|
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
|
|
// more convenient.
|
|
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
/// isNewFormatTypeNode - Return true iff the given type node is in the new
|
|
/// size-aware format.
|
|
static bool isNewFormatTypeNode(const MDNode *N) {
|
|
if (N->getNumOperands() < 3)
|
|
return false;
|
|
// In the old format the first operand is a string.
|
|
if (!isa<MDNode>(N->getOperand(0)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a higher-level
|
|
/// interface by hiding the details of how alias analysis information is encoded
|
|
/// in its operands.
|
|
template<typename MDNodeTy>
|
|
class TBAANodeImpl {
|
|
MDNodeTy *Node = nullptr;
|
|
|
|
public:
|
|
TBAANodeImpl() = default;
|
|
explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
|
|
|
|
/// getNode - Get the MDNode for this TBAANode.
|
|
MDNodeTy *getNode() const { return Node; }
|
|
|
|
/// isNewFormat - Return true iff the wrapped type node is in the new
|
|
/// size-aware format.
|
|
bool isNewFormat() const { return isNewFormatTypeNode(Node); }
|
|
|
|
/// getParent - Get this TBAANode's Alias tree parent.
|
|
TBAANodeImpl<MDNodeTy> getParent() const {
|
|
if (isNewFormat())
|
|
return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
|
|
|
|
if (Node->getNumOperands() < 2)
|
|
return TBAANodeImpl<MDNodeTy>();
|
|
MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
|
|
if (!P)
|
|
return TBAANodeImpl<MDNodeTy>();
|
|
// Ok, this node has a valid parent. Return it.
|
|
return TBAANodeImpl<MDNodeTy>(P);
|
|
}
|
|
|
|
/// Test if this TBAANode represents a type for objects which are
|
|
/// not modified (by any means) in the context where this
|
|
/// AliasAnalysis is relevant.
|
|
bool isTypeImmutable() const {
|
|
if (Node->getNumOperands() < 3)
|
|
return false;
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
|
|
if (!CI)
|
|
return false;
|
|
return CI->getValue()[0];
|
|
}
|
|
};
|
|
|
|
/// \name Specializations of \c TBAANodeImpl for const and non const qualified
|
|
/// \c MDNode.
|
|
/// @{
|
|
using TBAANode = TBAANodeImpl<const MDNode>;
|
|
using MutableTBAANode = TBAANodeImpl<MDNode>;
|
|
/// @}
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a
|
|
/// higher-level interface by hiding the details of how alias analysis
|
|
/// information is encoded in its operands.
|
|
template<typename MDNodeTy>
|
|
class TBAAStructTagNodeImpl {
|
|
/// This node should be created with createTBAAAccessTag().
|
|
MDNodeTy *Node;
|
|
|
|
public:
|
|
explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
|
|
|
|
/// Get the MDNode for this TBAAStructTagNode.
|
|
MDNodeTy *getNode() const { return Node; }
|
|
|
|
/// isNewFormat - Return true iff the wrapped access tag is in the new
|
|
/// size-aware format.
|
|
bool isNewFormat() const {
|
|
if (Node->getNumOperands() < 4)
|
|
return false;
|
|
if (MDNodeTy *AccessType = getAccessType())
|
|
if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
MDNodeTy *getBaseType() const {
|
|
return dyn_cast_or_null<MDNode>(Node->getOperand(0));
|
|
}
|
|
|
|
MDNodeTy *getAccessType() const {
|
|
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
}
|
|
|
|
uint64_t getOffset() const {
|
|
return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
|
|
}
|
|
|
|
uint64_t getSize() const {
|
|
if (!isNewFormat())
|
|
return UINT64_MAX;
|
|
return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
|
|
}
|
|
|
|
/// Test if this TBAAStructTagNode represents a type for objects
|
|
/// which are not modified (by any means) in the context where this
|
|
/// AliasAnalysis is relevant.
|
|
bool isTypeImmutable() const {
|
|
unsigned OpNo = isNewFormat() ? 4 : 3;
|
|
if (Node->getNumOperands() < OpNo + 1)
|
|
return false;
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
|
|
if (!CI)
|
|
return false;
|
|
return CI->getValue()[0];
|
|
}
|
|
};
|
|
|
|
/// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
|
|
/// qualified \c MDNods.
|
|
/// @{
|
|
using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
|
|
using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
|
|
/// @}
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a
|
|
/// higher-level interface by hiding the details of how alias analysis
|
|
/// information is encoded in its operands.
|
|
class TBAAStructTypeNode {
|
|
/// This node should be created with createTBAATypeNode().
|
|
const MDNode *Node = nullptr;
|
|
|
|
public:
|
|
TBAAStructTypeNode() = default;
|
|
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
|
|
|
|
/// Get the MDNode for this TBAAStructTypeNode.
|
|
const MDNode *getNode() const { return Node; }
|
|
|
|
/// isNewFormat - Return true iff the wrapped type node is in the new
|
|
/// size-aware format.
|
|
bool isNewFormat() const { return isNewFormatTypeNode(Node); }
|
|
|
|
bool operator==(const TBAAStructTypeNode &Other) const {
|
|
return getNode() == Other.getNode();
|
|
}
|
|
|
|
/// getId - Return type identifier.
|
|
Metadata *getId() const {
|
|
return Node->getOperand(isNewFormat() ? 2 : 0);
|
|
}
|
|
|
|
unsigned getNumFields() const {
|
|
unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
|
|
unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
|
|
return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
|
|
}
|
|
|
|
TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
|
|
unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
|
|
unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
|
|
unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
|
|
auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
|
|
return TBAAStructTypeNode(TypeNode);
|
|
}
|
|
|
|
/// Get this TBAAStructTypeNode's field in the type DAG with
|
|
/// given offset. Update the offset to be relative to the field type.
|
|
TBAAStructTypeNode getField(uint64_t &Offset) const {
|
|
bool NewFormat = isNewFormat();
|
|
if (NewFormat) {
|
|
// New-format root and scalar type nodes have no fields.
|
|
if (Node->getNumOperands() < 6)
|
|
return TBAAStructTypeNode();
|
|
} else {
|
|
// Parent can be omitted for the root node.
|
|
if (Node->getNumOperands() < 2)
|
|
return TBAAStructTypeNode();
|
|
|
|
// Fast path for a scalar type node and a struct type node with a single
|
|
// field.
|
|
if (Node->getNumOperands() <= 3) {
|
|
uint64_t Cur = Node->getNumOperands() == 2
|
|
? 0
|
|
: mdconst::extract<ConstantInt>(Node->getOperand(2))
|
|
->getZExtValue();
|
|
Offset -= Cur;
|
|
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
if (!P)
|
|
return TBAAStructTypeNode();
|
|
return TBAAStructTypeNode(P);
|
|
}
|
|
}
|
|
|
|
// Assume the offsets are in order. We return the previous field if
|
|
// the current offset is bigger than the given offset.
|
|
unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
|
|
unsigned NumOpsPerField = NewFormat ? 3 : 2;
|
|
unsigned TheIdx = 0;
|
|
for (unsigned Idx = FirstFieldOpNo; Idx < Node->getNumOperands();
|
|
Idx += NumOpsPerField) {
|
|
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
|
|
->getZExtValue();
|
|
if (Cur > Offset) {
|
|
assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
|
|
"TBAAStructTypeNode::getField should have an offset match!");
|
|
TheIdx = Idx - NumOpsPerField;
|
|
break;
|
|
}
|
|
}
|
|
// Move along the last field.
|
|
if (TheIdx == 0)
|
|
TheIdx = Node->getNumOperands() - NumOpsPerField;
|
|
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
|
|
->getZExtValue();
|
|
Offset -= Cur;
|
|
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
|
|
if (!P)
|
|
return TBAAStructTypeNode();
|
|
return TBAAStructTypeNode(P);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
|
|
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
|
|
/// format.
|
|
static bool isStructPathTBAA(const MDNode *MD) {
|
|
// Anonymous TBAA root starts with a MDNode and dragonegg uses it as
|
|
// a TBAA tag.
|
|
return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
|
|
}
|
|
|
|
AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// If accesses may alias, chain to the next AliasAnalysis.
|
|
if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// Otherwise return a definitive result.
|
|
return NoAlias;
|
|
}
|
|
|
|
bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
|
|
bool OrLocal) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
|
|
const MDNode *M = Loc.AATags.TBAA;
|
|
if (!M)
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
|
|
// If this is an "immutable" type, we can assume the pointer is pointing
|
|
// to constant memory.
|
|
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
|
|
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
|
|
return true;
|
|
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
}
|
|
|
|
FunctionModRefBehavior
|
|
TypeBasedAAResult::getModRefBehavior(const CallBase *Call) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefBehavior(Call);
|
|
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
// If this is an "immutable" type, we can assume the call doesn't write
|
|
// to memory.
|
|
if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
|
|
if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
|
|
(isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
|
|
Min = FMRB_OnlyReadsMemory;
|
|
|
|
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
|
|
}
|
|
|
|
FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
|
|
// Functions don't have metadata. Just chain to the next implementation.
|
|
return AAResultBase::getModRefBehavior(F);
|
|
}
|
|
|
|
ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
|
|
const MemoryLocation &Loc) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefInfo(Call, Loc);
|
|
|
|
if (const MDNode *L = Loc.AATags.TBAA)
|
|
if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
|
|
if (!Aliases(L, M))
|
|
return ModRefInfo::NoModRef;
|
|
|
|
return AAResultBase::getModRefInfo(Call, Loc);
|
|
}
|
|
|
|
ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
|
|
const CallBase *Call2) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefInfo(Call1, Call2);
|
|
|
|
if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
|
|
if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
|
|
if (!Aliases(M1, M2))
|
|
return ModRefInfo::NoModRef;
|
|
|
|
return AAResultBase::getModRefInfo(Call1, Call2);
|
|
}
|
|
|
|
bool MDNode::isTBAAVtableAccess() const {
|
|
if (!isStructPathTBAA(this)) {
|
|
if (getNumOperands() < 1)
|
|
return false;
|
|
if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
|
|
if (Tag1->getString() == "vtable pointer")
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// For struct-path aware TBAA, we use the access type of the tag.
|
|
TBAAStructTagNode Tag(this);
|
|
TBAAStructTypeNode AccessType(Tag.getAccessType());
|
|
if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
|
|
if (Id->getString() == "vtable pointer")
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool matchAccessTags(const MDNode *A, const MDNode *B,
|
|
const MDNode **GenericTag = nullptr);
|
|
|
|
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
|
|
const MDNode *GenericTag;
|
|
matchAccessTags(A, B, &GenericTag);
|
|
return const_cast<MDNode*>(GenericTag);
|
|
}
|
|
|
|
static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
if (A == B)
|
|
return A;
|
|
|
|
SmallSetVector<const MDNode *, 4> PathA;
|
|
TBAANode TA(A);
|
|
while (TA.getNode()) {
|
|
if (PathA.count(TA.getNode()))
|
|
report_fatal_error("Cycle found in TBAA metadata.");
|
|
PathA.insert(TA.getNode());
|
|
TA = TA.getParent();
|
|
}
|
|
|
|
SmallSetVector<const MDNode *, 4> PathB;
|
|
TBAANode TB(B);
|
|
while (TB.getNode()) {
|
|
if (PathB.count(TB.getNode()))
|
|
report_fatal_error("Cycle found in TBAA metadata.");
|
|
PathB.insert(TB.getNode());
|
|
TB = TB.getParent();
|
|
}
|
|
|
|
int IA = PathA.size() - 1;
|
|
int IB = PathB.size() - 1;
|
|
|
|
const MDNode *Ret = nullptr;
|
|
while (IA >= 0 && IB >= 0) {
|
|
if (PathA[IA] == PathB[IB])
|
|
Ret = PathA[IA];
|
|
else
|
|
break;
|
|
--IA;
|
|
--IB;
|
|
}
|
|
|
|
return Ret;
|
|
}
|
|
|
|
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
|
|
if (Merge)
|
|
N.TBAA =
|
|
MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
|
|
else
|
|
N.TBAA = getMetadata(LLVMContext::MD_tbaa);
|
|
|
|
if (Merge)
|
|
N.Scope = MDNode::getMostGenericAliasScope(
|
|
N.Scope, getMetadata(LLVMContext::MD_alias_scope));
|
|
else
|
|
N.Scope = getMetadata(LLVMContext::MD_alias_scope);
|
|
|
|
if (Merge)
|
|
N.NoAlias =
|
|
MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
|
|
else
|
|
N.NoAlias = getMetadata(LLVMContext::MD_noalias);
|
|
}
|
|
|
|
static const MDNode *createAccessTag(const MDNode *AccessType) {
|
|
// If there is no access type or the access type is the root node, then
|
|
// we don't have any useful access tag to return.
|
|
if (!AccessType || AccessType->getNumOperands() < 2)
|
|
return nullptr;
|
|
|
|
Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
|
|
auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
|
|
|
|
if (TBAAStructTypeNode(AccessType).isNewFormat()) {
|
|
// TODO: Take access ranges into account when matching access tags and
|
|
// fix this code to generate actual access sizes for generic tags.
|
|
uint64_t AccessSize = UINT64_MAX;
|
|
auto *SizeNode =
|
|
ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
|
|
Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
|
|
const_cast<MDNode*>(AccessType),
|
|
OffsetNode, SizeNode};
|
|
return MDNode::get(AccessType->getContext(), Ops);
|
|
}
|
|
|
|
Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
|
|
const_cast<MDNode*>(AccessType),
|
|
OffsetNode};
|
|
return MDNode::get(AccessType->getContext(), Ops);
|
|
}
|
|
|
|
static bool hasField(TBAAStructTypeNode BaseType,
|
|
TBAAStructTypeNode FieldType) {
|
|
for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
|
|
TBAAStructTypeNode T = BaseType.getFieldType(I);
|
|
if (T == FieldType || hasField(T, FieldType))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return true if for two given accesses, one of the accessed objects may be a
|
|
/// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
|
|
/// describe the accesses to the base object and the subobject respectively.
|
|
/// \p CommonType must be the metadata node describing the common type of the
|
|
/// accessed objects. On return, \p MayAlias is set to true iff these accesses
|
|
/// may alias and \p Generic, if not null, points to the most generic access
|
|
/// tag for the given two.
|
|
static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
|
|
TBAAStructTagNode SubobjectTag,
|
|
const MDNode *CommonType,
|
|
const MDNode **GenericTag,
|
|
bool &MayAlias) {
|
|
// If the base object is of the least common type, then this may be an access
|
|
// to its subobject.
|
|
if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
|
|
BaseTag.getAccessType() == CommonType) {
|
|
if (GenericTag)
|
|
*GenericTag = createAccessTag(CommonType);
|
|
MayAlias = true;
|
|
return true;
|
|
}
|
|
|
|
// If the access to the base object is through a field of the subobject's
|
|
// type, then this may be an access to that field. To check for that we start
|
|
// from the base type, follow the edge with the correct offset in the type DAG
|
|
// and adjust the offset until we reach the field type or until we reach the
|
|
// access type.
|
|
bool NewFormat = BaseTag.isNewFormat();
|
|
TBAAStructTypeNode BaseType(BaseTag.getBaseType());
|
|
uint64_t OffsetInBase = BaseTag.getOffset();
|
|
|
|
for (;;) {
|
|
// In the old format there is no distinction between fields and parent
|
|
// types, so in this case we consider all nodes up to the root.
|
|
if (!BaseType.getNode()) {
|
|
assert(!NewFormat && "Did not see access type in access path!");
|
|
break;
|
|
}
|
|
|
|
if (BaseType.getNode() == SubobjectTag.getBaseType()) {
|
|
bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
|
|
if (GenericTag) {
|
|
*GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
|
|
createAccessTag(CommonType);
|
|
}
|
|
MayAlias = SameMemberAccess;
|
|
return true;
|
|
}
|
|
|
|
// With new-format nodes we stop at the access type.
|
|
if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
|
|
break;
|
|
|
|
// Follow the edge with the correct offset. Offset will be adjusted to
|
|
// be relative to the field type.
|
|
BaseType = BaseType.getField(OffsetInBase);
|
|
}
|
|
|
|
// If the base object has a direct or indirect field of the subobject's type,
|
|
// then this may be an access to that field. We need this to check now that
|
|
// we support aggregates as access types.
|
|
if (NewFormat) {
|
|
// TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
|
|
TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
|
|
if (hasField(BaseType, FieldType)) {
|
|
if (GenericTag)
|
|
*GenericTag = createAccessTag(CommonType);
|
|
MayAlias = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// matchTags - Return true if the given couple of accesses are allowed to
|
|
/// overlap. If \arg GenericTag is not null, then on return it points to the
|
|
/// most generic access descriptor for the given two.
|
|
static bool matchAccessTags(const MDNode *A, const MDNode *B,
|
|
const MDNode **GenericTag) {
|
|
if (A == B) {
|
|
if (GenericTag)
|
|
*GenericTag = A;
|
|
return true;
|
|
}
|
|
|
|
// Accesses with no TBAA information may alias with any other accesses.
|
|
if (!A || !B) {
|
|
if (GenericTag)
|
|
*GenericTag = nullptr;
|
|
return true;
|
|
}
|
|
|
|
// Verify that both input nodes are struct-path aware. Auto-upgrade should
|
|
// have taken care of this.
|
|
assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
|
|
assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
|
|
|
|
TBAAStructTagNode TagA(A), TagB(B);
|
|
const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
|
|
TagB.getAccessType());
|
|
|
|
// If the final access types have different roots, they're part of different
|
|
// potentially unrelated type systems, so we must be conservative.
|
|
if (!CommonType) {
|
|
if (GenericTag)
|
|
*GenericTag = nullptr;
|
|
return true;
|
|
}
|
|
|
|
// If one of the accessed objects may be a subobject of the other, then such
|
|
// accesses may alias.
|
|
bool MayAlias;
|
|
if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
|
|
CommonType, GenericTag, MayAlias) ||
|
|
mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
|
|
CommonType, GenericTag, MayAlias))
|
|
return MayAlias;
|
|
|
|
// Otherwise, we've proved there's no alias.
|
|
if (GenericTag)
|
|
*GenericTag = createAccessTag(CommonType);
|
|
return false;
|
|
}
|
|
|
|
/// Aliases - Test whether the access represented by tag A may alias the
|
|
/// access represented by tag B.
|
|
bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
|
|
return matchAccessTags(A, B);
|
|
}
|
|
|
|
AnalysisKey TypeBasedAA::Key;
|
|
|
|
TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
|
|
return TypeBasedAAResult();
|
|
}
|
|
|
|
char TypeBasedAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
|
|
false, true)
|
|
|
|
ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
|
|
return new TypeBasedAAWrapperPass();
|
|
}
|
|
|
|
TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
|
|
initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
|
|
Result.reset(new TypeBasedAAResult());
|
|
return false;
|
|
}
|
|
|
|
bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
|
|
Result.reset();
|
|
return false;
|
|
}
|
|
|
|
void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|