Files
archived-rpcs3/rpcs3/Emu/Memory/vm_reservation.h
2025-12-16 10:41:21 +02:00

324 lines
7.7 KiB
C++

#pragma once
#include "vm.h"
#include "vm_locking.h"
#include "util/atomic.hpp"
#include "util/tsc.hpp"
#include <functional>
#ifdef _MSC_VER
extern "C"
{
u32 _xbegin();
void _xend();
}
#endif
namespace vm
{
enum : u64
{
rsrv_lock_mask = 127,
rsrv_unique_lock = 64,
rsrv_putunc_flag = 32,
};
// Get reservation status for further atomic update: last update timestamp
inline atomic_t<u64>& reservation_acquire(u32 addr)
{
// Access reservation info: stamp and the lock bit
return *reinterpret_cast<atomic_t<u64>*>(g_reservations + (addr & 0xff80) / 2);
}
// Update reservation status
void reservation_update(u32 addr);
std::pair<bool, u64> try_reservation_update(u32 addr);
struct alignas(8) reservation_waiter_t
{
u32 wait_flag = 0;
u32 waiters_count = 0;
};
static inline atomic_t<reservation_waiter_t, 128>* reservation_notifier(u32 raddr, u64 rtime)
{
constexpr u32 wait_vars_for_each = 32;
constexpr u32 unique_address_bit_mask = 0b1111;
constexpr u32 unique_rtime_bit_mask = 0b1;
extern std::array<atomic_t<reservation_waiter_t, 128>, wait_vars_for_each * (unique_address_bit_mask + 1) * (unique_rtime_bit_mask + 1)> g_resrv_waiters_count;
// Storage efficient method to distinguish different nearby addresses (which are likely)
const usz index = std::min<usz>(std::popcount(raddr & -2048), 31) * (1 << 5) + ((rtime / 128) & unique_rtime_bit_mask) * (1 << 4) + ((raddr / 128) & unique_address_bit_mask);
return &g_resrv_waiters_count[index];
}
// Returns waiter count
static inline u32 reservation_notifier_count(u32 raddr, u64 rtime)
{
reservation_waiter_t v = reservation_notifier(raddr, rtime)->load();
return v.wait_flag % 2 == 1 ? v.waiters_count : 0;
}
static inline void reservation_notifier_end_wait(atomic_t<reservation_waiter_t, 128>& waiter)
{
waiter.atomic_op([](reservation_waiter_t& value)
{
if (value.waiters_count == 1 && value.wait_flag % 2 == 1)
{
// Make wait_flag even (disabling notification on last waiter)
value.wait_flag++;
}
value.waiters_count--;
});
}
static inline std::pair<atomic_t<reservation_waiter_t, 128>*, u32> reservation_notifier_begin_wait(u32 raddr, u64 rtime)
{
atomic_t<reservation_waiter_t, 128>& waiter = *reservation_notifier(raddr, rtime);
u32 wait_flag = 0;
waiter.atomic_op([&](reservation_waiter_t& value)
{
if (value.wait_flag % 2 == 0)
{
// Make wait_flag odd (for notification deduplication detection)
value.wait_flag++;
}
wait_flag = value.wait_flag;
value.waiters_count++;
});
if ((reservation_acquire(raddr) & -128) != rtime)
{
reservation_notifier_end_wait(waiter);
return {};
}
return { &waiter, wait_flag };
}
atomic_t<u32>* reservation_notifier_notify(u32 raddr, u64 rtime, bool postpone = false);
u64 reservation_lock_internal(u32, atomic_t<u64>&);
void reservation_shared_lock_internal(atomic_t<u64>&);
inline bool reservation_try_lock(atomic_t<u64>& res, u64 rtime)
{
if (res.compare_and_swap_test(rtime, rtime | rsrv_unique_lock)) [[likely]]
{
return true;
}
return false;
}
inline std::pair<atomic_t<u64>&, u64> reservation_lock(u32 addr)
{
auto res = &vm::reservation_acquire(addr);
auto rtime = res->load();
if (rtime & 127 || !reservation_try_lock(*res, rtime)) [[unlikely]]
{
static atomic_t<u64> no_lock{};
rtime = reservation_lock_internal(addr, *res);
if (rtime == umax)
{
res = &no_lock;
}
}
return {*res, rtime};
}
// TODO: remove and make it external
void reservation_op_internal(u32 addr, std::function<bool()> func);
template <bool Ack = false, typename CPU, typename T, typename AT = u32, typename F>
inline SAFE_BUFFERS(auto) reservation_op(CPU& /*cpu*/, _ptr_base<T, AT> ptr, F op)
{
// Atomic operation will be performed on aligned 128 bytes of data, so the data size and alignment must comply
static_assert(sizeof(T) <= 128 && alignof(T) == sizeof(T), "vm::reservation_op: unsupported type");
static_assert(std::is_trivially_copyable_v<T>, "vm::reservation_op: not triv copyable (optimization)");
// Use "super" pointer to prevent access violation handling during atomic op
const auto sptr = vm::get_super_ptr<T>(static_cast<u32>(ptr.addr()));
// Prefetch some data
//_m_prefetchw(sptr);
//_m_prefetchw(reinterpret_cast<char*>(sptr) + 64);
// Use 128-byte aligned addr
const u32 addr = static_cast<u32>(ptr.addr()) & -128;
auto& res = vm::reservation_acquire(addr);
//_m_prefetchw(&res);
// Lock reservation and perform heavyweight lock
reservation_shared_lock_internal(res);
u64 old_time = umax;
if constexpr (std::is_void_v<std::invoke_result_t<F, T&>>)
{
{
vm::writer_lock lock(addr);
std::invoke(op, *sptr);
old_time = res.fetch_add(127);
}
if constexpr (Ack)
reservation_notifier_notify(addr, old_time);
return;
}
else
{
auto result = std::invoke_result_t<F, T&>();
{
vm::writer_lock lock(addr);
if ((result = std::invoke(op, *sptr)))
{
old_time = res.fetch_add(127);
}
else
{
old_time = res.fetch_sub(1);
}
}
if (Ack && result)
reservation_notifier_notify(addr, old_time);
return result;
}
}
// For internal usage
[[noreturn]] void reservation_escape_internal();
// Read memory value in pseudo-atomic manner
template <typename CPU, typename T, typename AT = u32, typename F>
inline SAFE_BUFFERS(auto) peek_op(CPU&& cpu, _ptr_base<T, AT> ptr, F op)
{
// Atomic operation will be performed on aligned 128 bytes of data, so the data size and alignment must comply
static_assert(sizeof(T) <= 128 && alignof(T) == sizeof(T), "vm::peek_op: unsupported type");
// Use 128-byte aligned addr
const u32 addr = static_cast<u32>(ptr.addr()) & -128;
while (true)
{
if constexpr (std::is_class_v<std::remove_cvref_t<CPU>>)
{
if (cpu.test_stopped())
{
reservation_escape_internal();
}
}
const u64 rtime = vm::reservation_acquire(addr);
if (rtime & 127)
{
continue;
}
// Observe data non-atomically and make sure no reservation updates were made
if constexpr (std::is_void_v<std::invoke_result_t<F, const T&>>)
{
std::invoke(op, *ptr);
if (rtime == vm::reservation_acquire(addr))
{
return;
}
}
else
{
auto res = std::invoke(op, *ptr);
if (rtime == vm::reservation_acquire(addr))
{
return res;
}
}
}
}
template <bool Ack = false, typename T, typename F>
inline SAFE_BUFFERS(auto) light_op(T& data, F op)
{
// Optimized real ptr -> vm ptr conversion, simply UB if out of range
const u32 addr = static_cast<u32>(reinterpret_cast<const u8*>(&data) - g_base_addr);
// Use "super" pointer to prevent access violation handling during atomic op
const auto sptr = vm::get_super_ptr<T>(addr);
// "Lock" reservation
auto& res = vm::reservation_acquire(addr);
auto [_old, _ok] = res.fetch_op([&](u64& r)
{
if (r & vm::rsrv_unique_lock)
{
return false;
}
r += 1;
return true;
});
if (!_ok) [[unlikely]]
{
vm::reservation_shared_lock_internal(res);
}
if constexpr (std::is_void_v<std::invoke_result_t<F, T&>>)
{
std::invoke(op, *sptr);
res += 127;
if constexpr (Ack)
{
res.notify_all();
}
}
else
{
auto result = std::invoke(op, *sptr);
res += 127;
if constexpr (Ack)
{
res.notify_all();
}
return result;
}
}
template <bool Ack = false, typename T, typename F>
inline SAFE_BUFFERS(auto) atomic_op(T& data, F op)
{
return light_op<Ack, T>(data, [&](T& data)
{
return data.atomic_op(op);
});
}
template <bool Ack = false, typename T, typename F>
inline SAFE_BUFFERS(auto) fetch_op(T& data, F op)
{
return light_op<Ack, T>(data, [&](T& data)
{
return data.fetch_op(op);
});
}
} // namespace vm