Non-functional: HLSL: clean up dead code for splitting.

Most of this was obsoleted by entry-point wrapping.
Some other is just unnecessary.
Also, includes some spelling/name improvements.

This is to help lay ground work for flattening user I/O.
This commit is contained in:
John Kessenich 2017-07-30 16:54:02 -06:00
parent 48dc58721e
commit 8bcdf2eaf5
2 changed files with 49 additions and 192 deletions

View File

@ -61,8 +61,6 @@ HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& int
forwardCompatible, messages),
annotationNestingLevel(0),
inputPatch(nullptr),
builtInIoIndex(nullptr),
builtInIoBase(nullptr),
nextInLocation(0), nextOutLocation(0),
sourceEntryPointName(sourceEntryPointName),
entryPointFunction(nullptr),
@ -842,15 +840,13 @@ TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc,
else {
// at least one of base and index is variable...
if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType()))) {
if (base->getAsSymbolNode() && wasFlattened(base)) {
if (index->getQualifier().storage != EvqConst)
error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
result = flattenAccess(base, indexValue);
flattened = (result != base);
} else {
splitAccessArray(loc, base, index);
if (index->getQualifier().storage == EvqConst) {
if (base->getType().isImplicitlySizedArray())
updateImplicitArraySize(loc, base, indexValue);
@ -1060,21 +1056,15 @@ TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TInt
}
}
if (fieldFound) {
if (base->getAsSymbolNode() && (wasFlattened(base) || shouldFlatten(base->getType()))) {
if (base->getAsSymbolNode() && wasFlattened(base)) {
result = flattenAccess(base, member);
} else {
// Update the base and member to access if this was a split structure.
result = splitAccessStruct(loc, base, member);
fields = base->getType().getStruct();
if (result == nullptr) {
if (base->getType().getQualifier().storage == EvqConst)
result = intermediate.foldDereference(base, member, loc);
else {
TIntermTyped* index = intermediate.addConstantUnion(member, loc);
result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
result->setType(*(*fields)[member].type);
}
if (base->getType().getQualifier().storage == EvqConst)
result = intermediate.foldDereference(base, member, loc);
else {
TIntermTyped* index = intermediate.addConstantUnion(member, loc);
result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
result->setType(*(*fields)[member].type);
}
}
} else
@ -1109,40 +1099,17 @@ bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, co
return false;
}
// Split the type of the given node into two structs:
// 1. interstage IO
// 2. everything else
// IO members are put into the ioStruct. The type is modified to remove them.
void HlslParseContext::split(TIntermTyped* node)
{
if (node == nullptr)
return;
TIntermSymbol* symNode = node->getAsSymbolNode();
if (symNode == nullptr)
return;
// Create a new variable:
TType& splitType = split(*symNode->getType().clone(), symNode->getName());
splitIoVars[symNode->getId()] = makeInternalVariable(symNode->getName(), splitType);
}
// Split the type of the given variable into two structs:
// Split a type into
// 1. a struct of non-I/O members
// 2. a collection of flattened I/O variables
void HlslParseContext::split(const TVariable& variable)
{
const TType& type = variable.getType();
TString name = variable.getName();
// Create a new variable:
TType& splitType = split(*type.clone(), name);
TType& splitType = split(*variable.getType().clone(), variable.getName());
splitIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
}
// Recursive implementation of split(const TVariable& variable).
// Recursive implementation of split().
// Returns reference to the modified type.
TType& HlslParseContext::split(TType& type, TString name, const TType* outerStructType)
{
@ -1160,13 +1127,13 @@ TType& HlslParseContext::split(TType& type, TString name, const TType* outerStru
if (type.isStruct()) {
TTypeList* userStructure = type.getWritableStruct();
// Get iterator to (now at end) set of builtin interstage IO members
// Get iterator to (now at end) set of built-in interstage IO members
const auto firstIo = std::stable_partition(userStructure->begin(), userStructure->end(),
[this](const TTypeLoc& t) {
return !t.type->isBuiltInInterstageIO(language);
});
// Move those to the builtin IO. However, we also propagate arrayness (just one level is handled
// Move those to the built-in IO. However, we also propagate arrayness (just one level is handled
// now) to this variable.
for (auto ioType = firstIo; ioType != userStructure->end(); ++ioType) {
const TType& memberType = *ioType->type;
@ -1374,18 +1341,16 @@ bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
bool HlslParseContext::wasSplit(const TIntermTyped* node) const
{
return node != nullptr && node->getAsSymbolNode() != nullptr &&
wasSplit(node->getAsSymbolNode()->getId());
wasSplit(node->getAsSymbolNode()->getId());
}
// Turn an access into an aggregate that was flattened to instead be
// an access to the individual variable the member was flattened to.
// Assumes shouldFlatten() or equivalent was called first.
// Also assumes that initFlattening() and finalizeFlattening() bracket the usage.
// Assumes wasFlattened() or equivalent was called first.
TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
{
const TType dereferencedType(base->getType(), member); // dereferenced type
const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, dereferencedType, symbolNode.getFlattenSubset());
return flattened ? flattened : base;
@ -1422,112 +1387,13 @@ TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, const TT
TVariable* HlslParseContext::getSplitIoVar(int id) const
{
const auto splitIoVar = splitIoVars.find(id);
if (splitIoVar == splitIoVars.end())
return nullptr;
return splitIoVar->second;
}
// Find and return the split IO TVariable for variable, or nullptr if none.
TVariable* HlslParseContext::getSplitIoVar(const TVariable* var) const
{
if (var == nullptr)
return nullptr;
return getSplitIoVar(var->getUniqueId());
}
// Find and return the split IO TVariable for symbol in this node, or nullptr if none.
TVariable* HlslParseContext::getSplitIoVar(const TIntermTyped* node) const
{
if (node == nullptr)
return nullptr;
const TIntermSymbol* symbolNode = node->getAsSymbolNode();
if (symbolNode == nullptr)
return nullptr;
return getSplitIoVar(symbolNode->getId());
}
// Remember the index used to dereference into this structure, in case it has to be moved to a
// split-off builtin IO member.
void HlslParseContext::splitAccessArray(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
{
const TVariable* splitIoVar = getSplitIoVar(base);
// Not a split structure
if (splitIoVar == nullptr)
return;
if (builtInIoBase) {
error(loc, "only one array dimension supported for builtIn IO variable", "", "");
return;
}
builtInIoBase = base;
builtInIoIndex = index;
}
// Turn an access into an struct that was split to instead be an
// access to either the modified structure, or a direct reference to
// one of the split member variables.
TIntermTyped* HlslParseContext::splitAccessStruct(const TSourceLoc& loc, TIntermTyped*& base, int& member)
{
// nothing to do
if (base == nullptr)
return nullptr;
// We have a pending bracket reference to an outer struct that we may want to move to an inner member.
if (builtInIoBase)
base = builtInIoBase;
const TVariable* splitIoVar = getSplitIoVar(base);
if (splitIoVar == nullptr)
return nullptr;
const TTypeList& members = *base->getType().getStruct();
const TType& memberType = *members[member].type;
if (memberType.isBuiltInInterstageIO(language)) {
// It's one of the interstage IO variables we split off.
TIntermTyped* builtIn = intermediate.addSymbol(*interstageBuiltInIo[tInterstageIoData(memberType,
base->getType())], loc);
// If there's an array reference to an outer split struct, we re-apply it here.
if (builtInIoIndex != nullptr) {
if (builtInIoIndex->getQualifier().storage == EvqConst)
builtIn = intermediate.addIndex(EOpIndexDirect, builtIn, builtInIoIndex, loc);
else
builtIn = intermediate.addIndex(EOpIndexIndirect, builtIn, builtInIoIndex, loc);
builtIn->setType(memberType);
builtInIoIndex = nullptr;
builtInIoBase = nullptr;
}
return builtIn;
} else {
// It's not an IO variable. Find the equivalent index into the new variable.
base = intermediate.addSymbol(*splitIoVar, loc);
int newMember = 0;
for (int m=0; m<member; ++m)
if (!members[m].type->isBuiltInInterstageIO(language))
++newMember;
member = newMember;
return nullptr;
}
}
// Pass through to base class after remembering builtin mappings.
// Pass through to base class after remembering built-in mappings.
void HlslParseContext::trackLinkage(TSymbol& symbol)
{
TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
@ -1539,7 +1405,7 @@ void HlslParseContext::trackLinkage(TSymbol& symbol)
}
// Returns true if the builtin is a clip or cull distance variable.
// Returns true if the built-in is a clip or cull distance variable.
bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
{
return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
@ -1632,7 +1498,7 @@ void HlslParseContext::assignToInterface(TVariable& variable)
for (auto member = memberList.begin(); member != memberList.end(); ++member)
assignLocation(**member);
} else if (wasSplit(variable.getUniqueId())) {
TVariable* splitIoVar = getSplitIoVar(&variable);
TVariable* splitIoVar = getSplitIoVar(variable.getUniqueId());
assignLocation(*splitIoVar);
} else {
assignLocation(variable);
@ -2044,7 +1910,7 @@ TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunct
if ((language == EShLangVertex && qualifier == EvqVaryingIn) ||
(language == EShLangFragment && qualifier == EvqVaryingOut))
flatten(loc, variable);
// Mixture of IO and non-IO must be split
// Structs contain interstage IO must be split
else if (variable.getType().containsBuiltInInterstageIO(language))
split(variable);
}
@ -2547,8 +2413,8 @@ TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc
// expected to then not exist for opaque types, because they will turn into aliases.
//
// Return a node that contains the non-aliased assignments that must continue to exist.
TIntermAggregate* HlslParseContext::flattenedInit(const TSourceLoc& loc, TIntermSymbol* symbol,
const TIntermAggregate& initializer)
TIntermAggregate* HlslParseContext::executeFlattenedInitializer(const TSourceLoc& loc, TIntermSymbol* symbol,
const TIntermAggregate& initializer)
{
TIntermAggregate* initList = nullptr;
// synthesize an access to each member, and then an assignment to it
@ -2652,7 +2518,7 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
int memberIdx = 0;
// When dealing with split arrayed structures of builtins, the arrayness is moved to the extracted builtin
// When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
// variables, which is awkward when copying between split and unsplit structures. This variable tracks
// array indirections so they can be percolated from outer structs to inner variables.
std::vector <int> arrayElement;
@ -2677,12 +2543,12 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
const TType derefType(node->getType(), member);
if (split && derefType.isBuiltInInterstageIO(language)) {
// copy from interstage IO builtin if needed
// copy from interstage IO built-in if needed
subTree = intermediate.addSymbol(*interstageBuiltInIo.find(
HlslParseContext::tInterstageIoData(derefType, outer->getType()))->second);
// Arrayness of builtIn symbols isn't handled by the normal recursion:
// it's been extracted and moved to the builtin.
// it's been extracted and moved to the built-in.
if (subTree->getType().isArray() && !arrayElement.empty()) {
const TType splitDerefType(subTree->getType(), arrayElement.back());
subTree = intermediate.addIndex(EOpIndexDirect, subTree,
@ -2770,10 +2636,10 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
: subRight;
if (isClipOrCullDistance(subSplitLeft->getType())) {
// Clip and cull distance builtin assignment is complex in its own right, and is handled in
// Clip and cull distance built-in assignment is complex in its own right, and is handled in
// a separate function dedicated to that task. See comment above assignClipCullDistance;
// Since all clip/cull semantics boil down to the same builtin type, we need to get the
// Since all clip/cull semantics boil down to the same built-in type, we need to get the
// semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
const TType derefType(left->getType(), member);
const int semanticId = derefType.getQualifier().layoutLocation;
@ -2815,12 +2681,12 @@ TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op
TIntermTyped* splitRight = right;
// If either left or right was a split structure, we must read or write it, but still have to
// parallel-recurse through the unsplit structure to identify the builtin IO vars.
// parallel-recurse through the unsplit structure to identify the built-in IO vars.
if (isSplitLeft)
splitLeft = intermediate.addSymbol(*getSplitIoVar(left), loc);
splitLeft = intermediate.addSymbol(*getSplitIoVar(left->getAsSymbolNode()->getId()), loc);
if (isSplitRight)
splitRight = intermediate.addSymbol(*getSplitIoVar(right), loc);
splitRight = intermediate.addSymbol(*getSplitIoVar(right->getAsSymbolNode()->getId()), loc);
// This makes the whole assignment, recursing through subtypes as needed.
traverse(left, right, splitLeft, splitRight);
@ -5030,7 +4896,7 @@ void HlslParseContext::addInputArgumentConversions(const TFunction& function, TI
else
error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
} else {
if (wasFlattened(arg) || wasSplit(arg)) {
if (wasFlattened(arg)) {
// If both formal and calling arg are to be flattened, leave that to argument
// expansion, not conversion.
if (!shouldFlatten(*function[param].type)) {
@ -7166,7 +7032,7 @@ const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction
return nullptr;
}
// For builtins, we can convert across the arguments. This will happen in several steps:
// For built-ins, we can convert across the arguments. This will happen in several steps:
// Step 1: If there's an exact match, use it.
// Step 2a: Otherwise, get the operator from the best match and promote arguments:
// Step 2b: reconstruct the TFunction based on the new arg types
@ -7619,7 +7485,7 @@ TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TInterm
// handleAssign() will emit the initializer.
TIntermNode* initNode = nullptr;
if (flattened && intermSymbol->getType().containsOpaque())
return flattenedInit(loc, intermSymbol, *initializer->getAsAggregate());
return executeFlattenedInitializer(loc, intermSymbol, *initializer->getAsAggregate());
else {
initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
if (initNode == nullptr)
@ -9047,7 +8913,7 @@ void HlslParseContext::addPatchConstantInvocation()
return;
}
// Look for builtin variables in a function's parameter list.
// Look for built-in variables in a function's parameter list.
const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
for (int p=0; p<function.getParamCount(); ++p) {
TStorageQualifier storage = function[p].type->getQualifier().storage;
@ -9063,7 +8929,7 @@ void HlslParseContext::addPatchConstantInvocation()
};
// If we synthesize a builtin interface variable, we must add it to the linkage.
// If we synthesize a built-in interface variable, we must add it to the linkage.
const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
if (name == nullptr) {
error(loc, "unable to locate patch function parameter name", "", "");
@ -9094,11 +8960,11 @@ void HlslParseContext::addPatchConstantInvocation()
// We will perform these steps. Each is in a scoped block for separation: they could
// become separate functions to make addPatchConstantInvocation shorter.
//
// 1. Union the interfaces, and create builtins for anything present in the PCF and
// declared as a builtin variable that isn't present in the entry point's signature.
// 1. Union the interfaces, and create built-ins for anything present in the PCF and
// declared as a built-in variable that isn't present in the entry point's signature.
//
// 2. Synthesizes a call to the patchconstfunction using builtin variables from either main,
// or the ones we created. Matching is based on builtin type. We may use synthesized
// 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
// or the ones we created. Matching is based on built-in type. We may use synthesized
// variables from (1) above.
//
// 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
@ -9122,8 +8988,8 @@ void HlslParseContext::addPatchConstantInvocation()
// ================ Step 1A: Union Interfaces ================
// Our patch constant function.
{
std::set<tInterstageIoData> pcfBuiltIns; // patch constant function builtins
std::set<tInterstageIoData> epfBuiltIns; // entry point function builtins
std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins
std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins
assert(entryPointFunction);
assert(entryPointFunctionBody);
@ -9131,7 +8997,7 @@ void HlslParseContext::addPatchConstantInvocation()
findBuiltIns(patchConstantFunction, pcfBuiltIns);
findBuiltIns(*entryPointFunction, epfBuiltIns);
// Find the set of builtins in the PCF that are not present in the entry point.
// Find the set of built-ins in the PCF that are not present in the entry point.
std::set<tInterstageIoData> notInEntryPoint;
notInEntryPoint = pcfBuiltIns;
@ -9161,8 +9027,8 @@ void HlslParseContext::addPatchConstantInvocation()
if (storage == EvqConstReadOnly) // treated identically to input
storage = EvqIn;
// Presently, the only non-builtin we support is InputPatch, which is treated as
// a pseudo-builtin.
// Presently, the only non-built-in we support is InputPatch, which is treated as
// a pseudo-built-in.
if (biType == EbvInputPatch) {
builtInLinkageSymbols[biType] = inputPatch;
} else if (biType == EbvOutputPatch) {
@ -9207,13 +9073,13 @@ void HlslParseContext::addPatchConstantInvocation()
}
inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
} else {
// find which builtin it is
// find which built-in it is
const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
inputArg = findLinkageSymbol(biType);
if (inputArg == nullptr) {
error(loc, "unable to find patch constant function builtin variable", "", "");
error(loc, "unable to find patch constant function built-in variable", "", "");
return;
}
}
@ -9328,7 +9194,7 @@ void HlslParseContext::addPatchConstantInvocation()
if (newLists != ioTypeMap.end())
outType.setStruct(newLists->second.output);
// Substitute the top level type's builtin type
// Substitute the top level type's built-in type
if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();

View File

@ -89,7 +89,7 @@ public:
void remapNonEntryPointIO(TFunction& function);
TIntermNode* handleReturnValue(const TSourceLoc&, TIntermTyped*);
void handleFunctionArgument(TFunction*, TIntermTyped*& arguments, TIntermTyped* newArg);
TIntermAggregate* flattenedInit(const TSourceLoc&, TIntermSymbol*, const TIntermAggregate&);
TIntermAggregate* executeFlattenedInitializer(const TSourceLoc&, TIntermSymbol*, const TIntermAggregate&);
TIntermTyped* handleAssign(const TSourceLoc&, TOperator, TIntermTyped* left, TIntermTyped* right);
TIntermTyped* handleAssignToMatrixSwizzle(const TSourceLoc&, TOperator, TIntermTyped* left, TIntermTyped* right);
TIntermTyped* handleFunctionCall(const TSourceLoc&, TFunction*, TIntermTyped*);
@ -253,10 +253,7 @@ protected:
bool isFinalFlattening(const TType& type) const { return !(type.isStruct() || type.isArray()); }
// Structure splitting (splits interstage built-in types into its own struct)
TIntermTyped* splitAccessStruct(const TSourceLoc& loc, TIntermTyped*& base, int& member);
void splitAccessArray(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index);
TType& split(TType& type, TString name, const TType* outerStructType = nullptr);
void split(TIntermTyped*);
void split(const TVariable&);
bool wasSplit(const TIntermTyped* node) const;
bool wasSplit(int id) const { return splitIoVars.find(id) != splitIoVars.end(); }
@ -416,12 +413,6 @@ protected:
TMap<tInterstageIoData, TVariable*> interstageBuiltInIo; // individual builtin interstage IO vars, indexed by builtin type.
TVariable* inputPatch;
// We have to move array references to structs containing builtin interstage IO to the split variables.
// This is only handled for one level. This stores the index, because we'll need it in the future, since
// unlike normal array references, here the index happens before we discover what it applies to.
TIntermTyped* builtInIoIndex;
TIntermTyped* builtInIoBase;
unsigned int nextInLocation;
unsigned int nextOutLocation;