Added version check (version >= 150) for GL_(core/compatibility)_profile macros.
Added GL_core_profile standard macro check to "150.vert" test file.
Fixed version check for GL_core_profile macros, and removed bad token character from 150.vert test.
Updated 150.vert.out test base-result with google-test suite.
The non-LOD form of image size query is prohibited in certain cases:
see the OpImageQuerySize and OpImageQuerySizeLod sections of the SPIR-V
spec for details. Sometimes we were generating the non-LOD form when
we should have been using the LOD form. Sometimes the LOD form is required
even if the underlying HLSL query did not supply a MIP level itself,
in which case level 0 is now queried.
This change propagates the storage qualifier from the buffer object to its contained
array type so that isStructBufferType() realizes it is one. That propagation was
happening before only for global variable declarations, so compilation defects would
result if the use of a function parameter happened before a global declaration.
This fixes that case, whether or not there ever is a global declaration, and
regardless of the relative order.
This changes the hlsl.structbuffer.fn.frag test to exercise the alternate order.
There are no differences to generated SPIR-V for the cases which successfully compiled before.
The f16tof32 opcode was indexing a vector with a float 0, rather
than an int 0. It may have made no functional difference due to the
identical bit pattern, but code looking at the type could be
confused.
This PR adds the ability to pass structuredbuffer types by reference
as function parameters.
It also changes the representation of structuredbuffers from anonymous
blocks with named members, to named blocks with pseudonymous members.
That should not be an externally visible change.
New command line option --shift-ssbo-binding mirrors --shift-ubo-binding, etc.
New reflection query getLocalSize(int dim) queries local size, e.g, CS threads.
This is a partial implemention of structurebuffers supporting:
* structured buffer types of:
* StructuredBuffer
* RWStructuredBuffer
* ByteAddressBuffer
* RWByteAddressBuffer
* Atomic operations on RWByteAddressBuffer
* Load/Load[234], Store/Store[234], GetDimensions methods (where allowed by type)
* globallycoherent flag
But NOT yet supporting:
* AppendStructuredBuffer / ConsumeStructuredBuffer types
* IncrementCounter/DecrementCounter methods
Please note: the stride returned by GetDimensions is as calculated by glslang for std430,
and may not match other environments in all cases.
This obsoletes WIP PR #704, which was built on the pre entry point wrapping master. New version
here uses entry point wrapping.
This is a limited implementation of tessellation shaders. In particular, the following are not functional,
and will be added as separate stages to reduce the size of each PR.
* patchconstantfunctions accepting per-control-point input values, such as
const OutputPatch <hs_out_t, 3> cpv are not implemented.
* patchconstantfunctions whose signature requires an aggregate input type such as
a structure containing builtin variables. Code to synthesize such calls is not
yet present.
These restrictions will be relaxed as soon as possible. Simple cases can compile now: see for example
Test/hulsl.hull.1.tesc - e.g, writing to inner and outer tessellation factors.
PCF invocation is synthesized as an entry point epilogue protected behind a barrier and a test on
invocation ID == 0. If there is an existing invocation ID variable it will be used, otherwise one is
added to the linkage. The PCF and the shader EP interfaces are unioned and builtins appearing in
the PCF but not the EP are also added to the linkage and synthesized as shader inputs.
Parameter matching to (eventually arbitrary) PCF signatures is by builtin variable type. Any user
variables in the PCF signature will result in an error. Overloaded PCF functions will also result in
an error.
[domain()], [partitioning()], [outputtopology()], [outputcontrolpoints()], and [patchconstantfunction()]
attributes to the shader entry point are in place, with the exception of the Pow2 partitioning mode.
This removes pervertex output blocks, in favor of using only
loose variables. The pervertex blocks are not required and were
only partly implemented, and were adding some complication.
This change goes with wrap-entry-point.
Structs are split to remove builtin members to create valid SPIR-V. In this
process, an outer structure array dimension may be propegated onto the
now-removed builtin variables. For example, a mystruct[3].position ->
position[3]. The copy between the split and unsplit forms would handle
this in some cases, but not if the array dimension was at different levels
of aggregate.
It now does this, but may not handle arbitrary composite types. Unclear if
that has any semantic meaning for builtins though.