#version 450 #extension GL_KHX_shader_explicit_arithmetic_types: enable #extension GL_KHX_shader_explicit_arithmetic_types_int8: require #extension GL_KHX_shader_explicit_arithmetic_types_int16: require #extension GL_KHX_shader_explicit_arithmetic_types_int32: require #extension GL_KHX_shader_explicit_arithmetic_types_int64: require #extension GL_KHX_shader_explicit_arithmetic_types_float16: require #extension GL_KHX_shader_explicit_arithmetic_types_float32: require #extension GL_KHX_shader_explicit_arithmetic_types_float64: require void main() { } // Single float literals void literal() { const float64_t f64c = 0.000001LF; const f64vec2 f64cv = f64vec2(-0.25lF, 0.03Lf); f64vec2 f64v; f64v.x = f64c; f64v += f64cv; } // Block memory layout struct S { float64_t x; f64vec2 y; f64vec3 z; }; layout(column_major, std140) uniform B1 { float64_t a; f64vec2 b; f64vec3 c; float64_t d[2]; f64mat2x3 e; f64mat2x3 f[2]; S g; S h[2]; }; // Specialization constant layout(constant_id = 100) const float16_t sf16 = 0.125hf; layout(constant_id = 101) const float32_t sf = 0.25; layout(constant_id = 102) const float64_t sd = 0.5lf; const float f16_to_f = float(sf16); const double f16_to_d = float(sf16); const float16_t f_to_f16 = float16_t(sf); const float16_t d_to_f16 = float16_t(sd); void operators() { float64_t f64; f64vec2 f64v; f64mat2x2 f64m; bool b; // Arithmetic f64v += f64v; f64v -= f64v; f64v *= f64v; f64v /= f64v; f64v++; f64v--; ++f64m; --f64m; f64v = -f64v; f64m = -f64m; f64 = f64v.x + f64v.y; f64 = f64v.x - f64v.y; f64 = f64v.x * f64v.y; f64 = f64v.x / f64v.y; // Relational b = (f64v.x != f64); b = (f64v.y == f64); b = (f64v.x > f64); b = (f64v.y < f64); b = (f64v.x >= f64); b = (f64v.y <= f64); // Vector/matrix operations f64v = f64v * f64; f64m = f64m * f64; f64v = f64m * f64v; f64v = f64v * f64m; f64m = f64m * f64m; } void typeCast() { bvec3 bv; f32vec3 f32v; f64vec3 f64v; i8vec3 i8v; u8vec3 u8v; i16vec3 i16v; u16vec3 u16v; i32vec3 i32v; u32vec3 u32v; i64vec3 i64v; u64vec3 u64v; f16vec3 f16v; f64v = f64vec3(bv); // bool -> float64 bv = bvec3(f64v); // float64 -> bool f64v = f64vec3(f16v); // float16 -> float64 f16v = f16vec3(f64v); // float64 -> float16 i8v = i8vec3(f64v); // float64 -> int8 i16v = i16vec3(f64v); // float64 -> int16 i32v = i32vec3(f64v); // float64 -> int32 i64v = i64vec3(f64v); // float64 -> int64 u8v = u8vec3(f64v); // float64 -> uint8 u16v = u16vec3(f64v); // float64 -> uint16 u32v = u32vec3(f64v); // float64 -> uint32 u64v = u64vec3(f64v); // float64 -> uint64 } void builtinAngleTrigFuncs() { f64vec4 f64v1, f64v2; f64v2 = radians(f64v1); f64v2 = degrees(f64v1); f64v2 = sin(f64v1); f64v2 = cos(f64v1); f64v2 = tan(f64v1); f64v2 = asin(f64v1); f64v2 = acos(f64v1); f64v2 = atan(f64v1, f64v2); f64v2 = atan(f64v1); f64v2 = sinh(f64v1); f64v2 = cosh(f64v1); f64v2 = tanh(f64v1); f64v2 = asinh(f64v1); f64v2 = acosh(f64v1); f64v2 = atanh(f64v1); } void builtinExpFuncs() { f64vec2 f64v1, f64v2; f64v2 = pow(f64v1, f64v2); f64v2 = exp(f64v1); f64v2 = log(f64v1); f64v2 = exp2(f64v1); f64v2 = log2(f64v1); f64v2 = sqrt(f64v1); f64v2 = inversesqrt(f64v1); } void builtinCommonFuncs() { f64vec3 f64v1, f64v2, f64v3; float64_t f64; bool b; bvec3 bv; ivec3 iv; f64v2 = abs(f64v1); f64v2 = sign(f64v1); f64v2 = floor(f64v1); f64v2 = trunc(f64v1); f64v2 = round(f64v1); f64v2 = roundEven(f64v1); f64v2 = ceil(f64v1); f64v2 = fract(f64v1); f64v2 = mod(f64v1, f64v2); f64v2 = mod(f64v1, f64); f64v3 = modf(f64v1, f64v2); f64v3 = min(f64v1, f64v2); f64v3 = min(f64v1, f64); f64v3 = max(f64v1, f64v2); f64v3 = max(f64v1, f64); f64v3 = clamp(f64v1, f64, f64v2.x); f64v3 = clamp(f64v1, f64v2, f64vec3(f64)); f64v3 = mix(f64v1, f64v2, f64); f64v3 = mix(f64v1, f64v2, f64v3); f64v3 = mix(f64v1, f64v2, bv); f64v3 = step(f64v1, f64v2); f64v3 = step(f64, f64v3); f64v3 = smoothstep(f64v1, f64v2, f64v3); f64v3 = smoothstep(f64, f64v1.x, f64v2); b = isnan(f64); bv = isinf(f64v1); f64v3 = fma(f64v1, f64v2, f64v3); f64v2 = frexp(f64v1, iv); f64v2 = ldexp(f64v1, iv); } void builtinGeometryFuncs() { float64_t f64; f64vec3 f64v1, f64v2, f64v3; f64 = length(f64v1); f64 = distance(f64v1, f64v2); f64 = dot(f64v1, f64v2); f64v3 = cross(f64v1, f64v2); f64v2 = normalize(f64v1); f64v3 = faceforward(f64v1, f64v2, f64v3); f64v3 = reflect(f64v1, f64v2); f64v3 = refract(f64v1, f64v2, f64); } void builtinMatrixFuncs() { f64mat2x3 f64m1, f64m2, f64m3; f64mat3x2 f64m4; f64mat3 f64m5; f64mat4 f64m6, f64m7; f64vec3 f64v1; f64vec2 f64v2; float64_t f64; f64m3 = matrixCompMult(f64m1, f64m2); f64m1 = outerProduct(f64v1, f64v2); f64m4 = transpose(f64m1); f64 = determinant(f64m5); f64m6 = inverse(f64m7); } void builtinVecRelFuncs() { f64vec3 f64v1, f64v2; bvec3 bv; bv = lessThan(f64v1, f64v2); bv = lessThanEqual(f64v1, f64v2); bv = greaterThan(f64v1, f64v2); bv = greaterThanEqual(f64v1, f64v2); bv = equal(f64v1, f64v2); bv = notEqual(f64v1, f64v2); } in flat f64vec3 if64v; void builtinFragProcFuncs() { f64vec3 f64v; // Derivative f64v.x = dFdx(if64v.x); f64v.y = dFdy(if64v.y); f64v.xy = dFdxFine(if64v.xy); f64v.xy = dFdyFine(if64v.xy); f64v = dFdxCoarse(if64v); f64v = dFdxCoarse(if64v); f64v.x = fwidth(if64v.x); f64v.xy = fwidthFine(if64v.xy); f64v = fwidthCoarse(if64v); // Interpolation f64v.x = interpolateAtCentroid(if64v.x); f64v.xy = interpolateAtSample(if64v.xy, 1); f64v = interpolateAtOffset(if64v, f64vec2(0.5f)); }