// //Copyright (C) 2014 LunarG, Inc. // //All rights reserved. // //Redistribution and use in source and binary forms, with or without //modification, are permitted provided that the following conditions //are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //POSSIBILITY OF SUCH DAMAGE. // // Author: John Kessenich, LunarG // // // "Builder" is an interface to fully build SPIR-V IR. Allocate one of // these to build (a thread safe) internal SPIR-V representation (IR), // and then dump it as a binary stream according to the SPIR-V specification. // // A Builder has a 1:1 relationship with a SPIR-V module. // #pragma once #ifndef SpvBuilder_H #define SpvBuilder_H #include "spirv.hpp" #include "spvIR.h" #include #include #include namespace spv { class Builder { public: Builder(unsigned int userNumber); virtual ~Builder(); static const int maxMatrixSize = 4; void setSource(spv::SourceLanguage lang, int version) { source = lang; sourceVersion = version; } void addSourceExtension(const char* ext) { extensions.push_back(ext); } Id import(const char*); void setMemoryModel(spv::AddressingModel addr, spv::MemoryModel mem) { addressModel = addr; memoryModel = mem; } void addCapability(spv::Capability cap) { capabilities.push_back(cap); } // To get a new for anything needing a new one. Id getUniqueId() { return ++uniqueId; } // To get a set of new s, e.g., for a set of function parameters Id getUniqueIds(int numIds) { Id id = uniqueId + 1; uniqueId += numIds; return id; } // For creating new types (will return old type if the requested one was already made). Id makeVoidType(); Id makeBoolType(); Id makePointer(StorageClass, Id type); Id makeIntegerType(int width, bool hasSign); // generic Id makeIntType(int width) { return makeIntegerType(width, true); } Id makeUintType(int width) { return makeIntegerType(width, false); } Id makeFloatType(int width); Id makeStructType(std::vector& members, const char*); Id makeStructResultType(Id type0, Id type1); Id makeVectorType(Id component, int size); Id makeMatrixType(Id component, int cols, int rows); Id makeArrayType(Id element, unsigned size); Id makeRuntimeArray(Id element); Id makeFunctionType(Id returnType, std::vector& paramTypes); Id makeImageType(Id sampledType, Dim, bool depth, bool arrayed, bool ms, unsigned sampled, ImageFormat format); Id makeSamplerType(); Id makeSampledImageType(Id imageType); // For querying about types. Id getTypeId(Id resultId) const { return module.getTypeId(resultId); } Id getDerefTypeId(Id resultId) const; Op getOpCode(Id id) const { return module.getInstruction(id)->getOpCode(); } Op getTypeClass(Id typeId) const { return getOpCode(typeId); } Op getMostBasicTypeClass(Id typeId) const; int getNumComponents(Id resultId) const { return getNumTypeComponents(getTypeId(resultId)); } int getNumTypeComponents(Id typeId) const; Id getScalarTypeId(Id typeId) const; Id getContainedTypeId(Id typeId) const; Id getContainedTypeId(Id typeId, int) const; StorageClass getTypeStorageClass(Id typeId) const { return module.getStorageClass(typeId); } bool isPointer(Id resultId) const { return isPointerType(getTypeId(resultId)); } bool isScalar(Id resultId) const { return isScalarType(getTypeId(resultId)); } bool isVector(Id resultId) const { return isVectorType(getTypeId(resultId)); } bool isMatrix(Id resultId) const { return isMatrixType(getTypeId(resultId)); } bool isAggregate(Id resultId) const { return isAggregateType(getTypeId(resultId)); } bool isBoolType(Id typeId) const { return groupedTypes[OpTypeBool].size() > 0 && typeId == groupedTypes[OpTypeBool].back()->getResultId(); } bool isPointerType(Id typeId) const { return getTypeClass(typeId) == OpTypePointer; } bool isScalarType(Id typeId) const { return getTypeClass(typeId) == OpTypeFloat || getTypeClass(typeId) == OpTypeInt || getTypeClass(typeId) == OpTypeBool; } bool isVectorType(Id typeId) const { return getTypeClass(typeId) == OpTypeVector; } bool isMatrixType(Id typeId) const { return getTypeClass(typeId) == OpTypeMatrix; } bool isStructType(Id typeId) const { return getTypeClass(typeId) == OpTypeStruct; } bool isArrayType(Id typeId) const { return getTypeClass(typeId) == OpTypeArray; } bool isAggregateType(Id typeId) const { return isArrayType(typeId) || isStructType(typeId); } bool isImageType(Id typeId) const { return getTypeClass(typeId) == OpTypeImage; } bool isSamplerType(Id typeId) const { return getTypeClass(typeId) == OpTypeSampler; } bool isSampledImageType(Id typeId) const { return getTypeClass(typeId) == OpTypeSampledImage; } bool isConstantOpCode(Op opcode) const; bool isConstant(Id resultId) const { return isConstantOpCode(getOpCode(resultId)); } bool isConstantScalar(Id resultId) const { return getOpCode(resultId) == OpConstant; } unsigned int getConstantScalar(Id resultId) const { return module.getInstruction(resultId)->getImmediateOperand(0); } StorageClass getStorageClass(Id resultId) const { return getTypeStorageClass(getTypeId(resultId)); } int getTypeNumColumns(Id typeId) const { assert(isMatrixType(typeId)); return getNumTypeComponents(typeId); } int getNumColumns(Id resultId) const { return getTypeNumColumns(getTypeId(resultId)); } int getTypeNumRows(Id typeId) const { assert(isMatrixType(typeId)); return getNumTypeComponents(getContainedTypeId(typeId)); } int getNumRows(Id resultId) const { return getTypeNumRows(getTypeId(resultId)); } Dim getTypeDimensionality(Id typeId) const { assert(isImageType(typeId)); return (Dim)module.getInstruction(typeId)->getImmediateOperand(1); } Id getImageType(Id resultId) const { Id typeId = getTypeId(resultId); assert(isImageType(typeId) || isSampledImageType(typeId)); return isSampledImageType(typeId) ? module.getInstruction(typeId)->getIdOperand(0) : typeId; } bool isArrayedImageType(Id typeId) const { assert(isImageType(typeId)); return module.getInstruction(typeId)->getImmediateOperand(3) != 0; } // For making new constants (will return old constant if the requested one was already made). Id makeBoolConstant(bool b, bool specConstant = false); Id makeIntConstant(int i, bool specConstant = false) { return makeIntConstant(makeIntType(32), (unsigned)i, specConstant); } Id makeUintConstant(unsigned u, bool specConstant = false) { return makeIntConstant(makeUintType(32), u, specConstant); } Id makeFloatConstant(float f, bool specConstant = false); Id makeDoubleConstant(double d, bool specConstant = false); // Turn the array of constants into a proper spv constant of the requested type. Id makeCompositeConstant(Id type, std::vector& comps); // Methods for adding information outside the CFG. Instruction* addEntryPoint(ExecutionModel, Function*, const char* name); void addExecutionMode(Function*, ExecutionMode mode, int value1 = -1, int value2 = -1, int value3 = -1); void addName(Id, const char* name); void addMemberName(Id, int member, const char* name); void addLine(Id target, Id fileName, int line, int column); void addDecoration(Id, Decoration, int num = -1); void addMemberDecoration(Id, unsigned int member, Decoration, int num = -1); // At the end of what block do the next create*() instructions go? void setBuildPoint(Block* bp) { buildPoint = bp; } Block* getBuildPoint() const { return buildPoint; } // Make the main function. Function* makeMain(); // Make a shader-style function, and create its entry block if entry is non-zero. // Return the function, pass back the entry. Function* makeFunctionEntry(Id returnType, const char* name, std::vector& paramTypes, Block **entry = 0); // Create a return. An 'implicit' return is one not appearing in the source // code. In the case of an implicit return, no post-return block is inserted. void makeReturn(bool implicit, Id retVal = 0); // Generate all the code needed to finish up a function. void leaveFunction(); // Create a discard. void makeDiscard(); // Create a global or function local or IO variable. Id createVariable(StorageClass, Id type, const char* name = 0); // Create an imtermediate with an undefined value. Id createUndefined(Id type); // Store into an Id and return the l-value void createStore(Id rValue, Id lValue); // Load from an Id and return it Id createLoad(Id lValue); // Create an OpAccessChain instruction Id createAccessChain(StorageClass, Id base, std::vector& offsets); // Create an OpArrayLength instruction Id createArrayLength(Id base, unsigned int member); // Create an OpCompositeExtract instruction Id createCompositeExtract(Id composite, Id typeId, unsigned index); Id createCompositeExtract(Id composite, Id typeId, std::vector& indexes); Id createCompositeInsert(Id object, Id composite, Id typeId, unsigned index); Id createCompositeInsert(Id object, Id composite, Id typeId, std::vector& indexes); Id createVectorExtractDynamic(Id vector, Id typeId, Id componentIndex); Id createVectorInsertDynamic(Id vector, Id typeId, Id component, Id componentIndex); void createNoResultOp(Op); void createNoResultOp(Op, Id operand); void createNoResultOp(Op, const std::vector& operands); void createControlBarrier(Scope execution, Scope memory, MemorySemanticsMask); void createMemoryBarrier(unsigned executionScope, unsigned memorySemantics); Id createUnaryOp(Op, Id typeId, Id operand); Id createBinOp(Op, Id typeId, Id operand1, Id operand2); Id createTriOp(Op, Id typeId, Id operand1, Id operand2, Id operand3); Id createOp(Op, Id typeId, const std::vector& operands); Id createFunctionCall(spv::Function*, std::vector&); // Take an rvalue (source) and a set of channels to extract from it to // make a new rvalue, which is returned. Id createRvalueSwizzle(Id typeId, Id source, std::vector& channels); // Take a copy of an lvalue (target) and a source of components, and set the // source components into the lvalue where the 'channels' say to put them. // An updated version of the target is returned. // (No true lvalue or stores are used.) Id createLvalueSwizzle(Id typeId, Id target, Id source, std::vector& channels); // If the value passed in is an instruction and the precision is not EMpNone, // it gets tagged with the requested precision. void setPrecision(Id /* value */, Decoration /* precision */) { // TODO } // Can smear a scalar to a vector for the following forms: // - promoteScalar(scalar, vector) // smear scalar to width of vector // - promoteScalar(vector, scalar) // smear scalar to width of vector // - promoteScalar(pointer, scalar) // smear scalar to width of what pointer points to // - promoteScalar(scalar, scalar) // do nothing // Other forms are not allowed. // // Note: One of the arguments will change, with the result coming back that way rather than // through the return value. void promoteScalar(Decoration precision, Id& left, Id& right); // make a value by smearing the scalar to fill the type Id smearScalar(Decoration precision, Id scalarVal, Id); // Create a call to a built-in function. Id createBuiltinCall(Decoration precision, Id resultType, Id builtins, int entryPoint, std::vector& args); // List of parameters used to create a texture operation struct TextureParameters { Id sampler; Id coords; Id bias; Id lod; Id Dref; Id offset; Id offsets; Id gradX; Id gradY; Id sample; Id comp; }; // Select the correct texture operation based on all inputs, and emit the correct instruction Id createTextureCall(Decoration precision, Id resultType, bool fetch, bool proj, bool gather, const TextureParameters&); // Emit the OpTextureQuery* instruction that was passed in. // Figure out the right return value and type, and return it. Id createTextureQueryCall(Op, const TextureParameters&); Id createSamplePositionCall(Decoration precision, Id, Id); Id createBitFieldExtractCall(Decoration precision, Id, Id, Id, bool isSigned); Id createBitFieldInsertCall(Decoration precision, Id, Id, Id, Id); // Reduction comparision for composites: For equal and not-equal resulting in a scalar. Id createCompare(Decoration precision, Id, Id, bool /* true if for equal, fales if for not-equal */); // OpCompositeConstruct Id createCompositeConstruct(Id typeId, std::vector& constituents); // vector or scalar constructor Id createConstructor(Decoration precision, const std::vector& sources, Id resultTypeId); // matrix constructor Id createMatrixConstructor(Decoration precision, const std::vector& sources, Id constructee); // Helper to use for building nested control flow with if-then-else. class If { public: If(Id condition, Builder& builder); ~If() {} void makeBeginElse(); void makeEndIf(); private: If(const If&); If& operator=(If&); Builder& builder; Id condition; Function* function; Block* headerBlock; Block* thenBlock; Block* elseBlock; Block* mergeBlock; }; // Make a switch statement. A switch has 'numSegments' of pieces of code, not containing // any case/default labels, all separated by one or more case/default labels. Each possible // case value v is a jump to the caseValues[v] segment. The defaultSegment is also in this // number space. How to compute the value is given by 'condition', as in switch(condition). // // The SPIR-V Builder will maintain the stack of post-switch merge blocks for nested switches. // // Use a defaultSegment < 0 if there is no default segment (to branch to post switch). // // Returns the right set of basic blocks to start each code segment with, so that the caller's // recursion stack can hold the memory for it. // void makeSwitch(Id condition, int numSegments, std::vector& caseValues, std::vector& valueToSegment, int defaultSegment, std::vector& segmentBB); // return argument // Add a branch to the innermost switch's merge block. void addSwitchBreak(); // Move to the next code segment, passing in the return argument in makeSwitch() void nextSwitchSegment(std::vector& segmentBB, int segment); // Finish off the innermost switch. void endSwitch(std::vector& segmentBB); struct LoopBlocks { Block &body, &merge, &continue_target; }; // Start a new loop and prepare the builder to generate code for it. Until // closeLoop() is called for this loop, createLoopContinue() and // createLoopExit() will target its corresponding blocks. LoopBlocks& makeNewLoop(); // Create a new block in the function containing the build point. Memory is // owned by the function object. Block& makeNewBlock(); // Add a branch to the continue_target of the current (innermost) loop. void createLoopContinue(); // Add an exit (e.g. "break") from the innermost loop that we're currently // in. void createLoopExit(); // Close the innermost loop that you're in void closeLoop(); // // Access chain design for an R-Value vs. L-Value: // // There is a single access chain the builder is building at // any particular time. Such a chain can be used to either to a load or // a store, when desired. // // Expressions can be r-values, l-values, or both, or only r-values: // a[b.c].d = .... // l-value // ... = a[b.c].d; // r-value, that also looks like an l-value // ++a[b.c].d; // r-value and l-value // (x + y)[2]; // r-value only, can't possibly be l-value // // Computing an r-value means generating code. Hence, // r-values should only be computed when they are needed, not speculatively. // // Computing an l-value means saving away information for later use in the compiler, // no code is generated until the l-value is later dereferenced. It is okay // to speculatively generate an l-value, just not okay to speculatively dereference it. // // The base of the access chain (the left-most variable or expression // from which everything is based) can be set either as an l-value // or as an r-value. Most efficient would be to set an l-value if one // is available. If an expression was evaluated, the resulting r-value // can be set as the chain base. // // The users of this single access chain can save and restore if they // want to nest or manage multiple chains. // struct AccessChain { Id base; // for l-values, pointer to the base object, for r-values, the base object std::vector indexChain; Id instr; // cache the instruction that generates this access chain std::vector swizzle; // each std::vector element selects the next GLSL component number Id component; // a dynamic component index, can coexist with a swizzle, done after the swizzle, NoResult if not present Id preSwizzleBaseType; // dereferenced type, before swizzle or component is applied; NoType unless a swizzle or component is present bool isRValue; // true if 'base' is an r-value, otherwise, base is an l-value }; // // the SPIR-V builder maintains a single active chain that // the following methods operated on // // for external save and restore AccessChain getAccessChain() { return accessChain; } void setAccessChain(AccessChain newChain) { accessChain = newChain; } // clear accessChain void clearAccessChain(); // set new base as an l-value base void setAccessChainLValue(Id lValue) { assert(isPointer(lValue)); accessChain.base = lValue; } // set new base value as an r-value void setAccessChainRValue(Id rValue) { accessChain.isRValue = true; accessChain.base = rValue; } // push offset onto the end of the chain void accessChainPush(Id offset) { accessChain.indexChain.push_back(offset); } // push new swizzle onto the end of any existing swizzle, merging into a single swizzle void accessChainPushSwizzle(std::vector& swizzle, Id preSwizzleBaseType); // push a variable component selection onto the access chain; supporting only one, so unsided void accessChainPushComponent(Id component, Id preSwizzleBaseType) { accessChain.component = component; if (accessChain.preSwizzleBaseType == NoType) accessChain.preSwizzleBaseType = preSwizzleBaseType; } // use accessChain and swizzle to store value void accessChainStore(Id rvalue); // use accessChain and swizzle to load an r-value Id accessChainLoad(Id ResultType); // get the direct pointer for an l-value Id accessChainGetLValue(); void dump(std::vector&) const; void createBranch(Block* block); void createConditionalBranch(Id condition, Block* thenBlock, Block* elseBlock); void createLoopMerge(Block* mergeBlock, Block* continueBlock, unsigned int control); protected: Id makeIntConstant(Id typeId, unsigned value, bool specConstant); Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned value) const; Id findScalarConstant(Op typeClass, Op opcode, Id typeId, unsigned v1, unsigned v2) const; Id findCompositeConstant(Op typeClass, std::vector& comps) const; Id collapseAccessChain(); void transferAccessChainSwizzle(bool dynamic); void simplifyAccessChainSwizzle(); void createAndSetNoPredecessorBlock(const char*); void createSelectionMerge(Block* mergeBlock, unsigned int control); void dumpInstructions(std::vector&, const std::vector&) const; SourceLanguage source; int sourceVersion; std::vector extensions; AddressingModel addressModel; MemoryModel memoryModel; std::vector capabilities; int builderNumber; Module module; Block* buildPoint; Id uniqueId; Function* mainFunction; AccessChain accessChain; // special blocks of instructions for output std::vector imports; std::vector entryPoints; std::vector executionModes; std::vector names; std::vector lines; std::vector decorations; std::vector constantsTypesGlobals; std::vector externals; // not output, internally used for quick & dirty canonical (unique) creation std::vector groupedConstants[OpConstant]; // all types appear before OpConstant std::vector groupedTypes[OpConstant]; // stack of switches std::stack switchMerges; // Our loop stack. std::stack loops; }; // end Builder class // Use for non-fatal notes about what's not complete void TbdFunctionality(const char*); // Use for fatal missing functionality void MissingFunctionality(const char*); }; // end spv namespace #endif // SpvBuilder_H