mirror of
https://github.com/RPCS3/glslang.git
synced 2025-01-06 19:00:15 +00:00
d5aedc199f
Includes related trackLinkage() code removal and name improvements.
9112 lines
379 KiB
C++
Executable File
9112 lines
379 KiB
C++
Executable File
//
|
||
// Copyright (C) 2016 Google, Inc.
|
||
// Copyright (C) 2016 LunarG, Inc.
|
||
//
|
||
// All rights reserved.
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without
|
||
// modification, are permitted provided that the following conditions
|
||
// are met:
|
||
//
|
||
// Redistributions of source code must retain the above copyright
|
||
// notice, this list of conditions and the following disclaimer.
|
||
//
|
||
// Redistributions in binary form must reproduce the above
|
||
// copyright notice, this list of conditions and the following
|
||
// disclaimer in the documentation and/or other materials provided
|
||
// with the distribution.
|
||
//
|
||
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
||
// contributors may be used to endorse or promote products derived
|
||
// from this software without specific prior written permission.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
// POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
|
||
#include "hlslParseHelper.h"
|
||
#include "hlslScanContext.h"
|
||
#include "hlslGrammar.h"
|
||
#include "hlslAttributes.h"
|
||
|
||
#include "../glslang/MachineIndependent/Scan.h"
|
||
#include "../glslang/MachineIndependent/preprocessor/PpContext.h"
|
||
|
||
#include "../glslang/OSDependent/osinclude.h"
|
||
|
||
#include <algorithm>
|
||
#include <functional>
|
||
#include <cctype>
|
||
#include <array>
|
||
#include <set>
|
||
|
||
namespace glslang {
|
||
|
||
HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
|
||
int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
|
||
TInfoSink& infoSink,
|
||
const TString sourceEntryPointName,
|
||
bool forwardCompatible, EShMessages messages) :
|
||
TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
|
||
forwardCompatible, messages),
|
||
annotationNestingLevel(0),
|
||
inputPatch(nullptr),
|
||
nextInLocation(0), nextOutLocation(0),
|
||
sourceEntryPointName(sourceEntryPointName),
|
||
entryPointFunction(nullptr),
|
||
entryPointFunctionBody(nullptr),
|
||
gsStreamOutput(nullptr),
|
||
clipDistanceOutput(nullptr),
|
||
cullDistanceOutput(nullptr)
|
||
{
|
||
globalUniformDefaults.clear();
|
||
globalUniformDefaults.layoutMatrix = ElmRowMajor;
|
||
globalUniformDefaults.layoutPacking = ElpStd140;
|
||
|
||
globalBufferDefaults.clear();
|
||
globalBufferDefaults.layoutMatrix = ElmRowMajor;
|
||
globalBufferDefaults.layoutPacking = ElpStd430;
|
||
|
||
globalInputDefaults.clear();
|
||
globalOutputDefaults.clear();
|
||
|
||
clipSemanticNSize.fill(0);
|
||
cullSemanticNSize.fill(0);
|
||
|
||
// "Shaders in the transform
|
||
// feedback capturing mode have an initial global default of
|
||
// layout(xfb_buffer = 0) out;"
|
||
if (language == EShLangVertex ||
|
||
language == EShLangTessControl ||
|
||
language == EShLangTessEvaluation ||
|
||
language == EShLangGeometry)
|
||
globalOutputDefaults.layoutXfbBuffer = 0;
|
||
|
||
if (language == EShLangGeometry)
|
||
globalOutputDefaults.layoutStream = 0;
|
||
|
||
if (spvVersion.spv == 0 || spvVersion.vulkan == 0)
|
||
infoSink.info << "ERROR: HLSL currently only supported when requesting SPIR-V for Vulkan.\n";
|
||
}
|
||
|
||
HlslParseContext::~HlslParseContext()
|
||
{
|
||
}
|
||
|
||
void HlslParseContext::initializeExtensionBehavior()
|
||
{
|
||
TParseContextBase::initializeExtensionBehavior();
|
||
|
||
// HLSL allows #line by default.
|
||
extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
|
||
}
|
||
|
||
void HlslParseContext::setLimits(const TBuiltInResource& r)
|
||
{
|
||
resources = r;
|
||
intermediate.setLimits(resources);
|
||
}
|
||
|
||
//
|
||
// Parse an array of strings using the parser in HlslRules.
|
||
//
|
||
// Returns true for successful acceptance of the shader, false if any errors.
|
||
//
|
||
bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
|
||
{
|
||
currentScanner = &input;
|
||
ppContext.setInput(input, versionWillBeError);
|
||
|
||
HlslScanContext scanContext(*this, ppContext);
|
||
HlslGrammar grammar(scanContext, *this);
|
||
if (!grammar.parse()) {
|
||
// Print a message formated such that if you click on the message it will take you right to
|
||
// the line through most UIs.
|
||
const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
|
||
infoSink.info << sourceLoc.name << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
|
||
<< ", HLSL parsing failed.\n";
|
||
++numErrors;
|
||
return false;
|
||
}
|
||
|
||
finish();
|
||
|
||
return numErrors == 0;
|
||
}
|
||
|
||
//
|
||
// Return true if this l-value node should be converted in some manner.
|
||
// For instance: turning a load aggregate into a store in an l-value.
|
||
//
|
||
bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
|
||
{
|
||
if (node == nullptr || node->getAsTyped() == nullptr)
|
||
return false;
|
||
|
||
const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
|
||
const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
|
||
|
||
// If it's a swizzled/indexed aggregate, look at the left node instead.
|
||
if (lhsAsBinary != nullptr &&
|
||
(lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
|
||
lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
|
||
if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
|
||
return true;
|
||
|
||
// If it's a syntactic write to a sampler, we will use that to establish
|
||
// a compile-time alias.
|
||
if (node->getAsTyped()->getBasicType() == EbtSampler)
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
|
||
TTypeList* newTypeList)
|
||
{
|
||
newTypeList = nullptr;
|
||
correctUniform(memberType.getQualifier());
|
||
if (memberType.isStruct()) {
|
||
auto it = ioTypeMap.find(memberType.getStruct());
|
||
if (it != ioTypeMap.end() && it->second.uniform)
|
||
newTypeList = it->second.uniform;
|
||
}
|
||
TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
|
||
}
|
||
|
||
//
|
||
// Return a TLayoutFormat corresponding to the given texture type.
|
||
//
|
||
TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
|
||
{
|
||
const int components = txType.getVectorSize();
|
||
|
||
const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
|
||
if (intermediate.getNoStorageFormat())
|
||
return ElfNone;
|
||
|
||
return components == 1 ? v1 :
|
||
components == 2 ? v2 : v4;
|
||
};
|
||
|
||
switch (txType.getBasicType()) {
|
||
case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f);
|
||
case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i);
|
||
case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
|
||
default:
|
||
error(loc, "unknown basic type in image format", "", "");
|
||
return ElfNone;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Both test and if necessary, spit out an error, to see if the node is really
|
||
// an l-value that can be operated on this way.
|
||
//
|
||
// Returns true if there was an error.
|
||
//
|
||
bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
|
||
{
|
||
if (shouldConvertLValue(node)) {
|
||
// if we're writing to a texture, it must be an RW form.
|
||
|
||
TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
|
||
TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
|
||
|
||
if (!object->getType().getSampler().isImage()) {
|
||
error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Let the base class check errors
|
||
return TParseContextBase::lValueErrorCheck(loc, op, node);
|
||
}
|
||
|
||
//
|
||
// This function handles l-value conversions and verifications. It uses, but is not synonymous
|
||
// with lValueErrorCheck. That function accepts an l-value directly, while this one must be
|
||
// given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
|
||
// series of other image operations.
|
||
//
|
||
// Most things are passed through unmodified, except for error checking.
|
||
//
|
||
TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
|
||
{
|
||
if (node == nullptr)
|
||
return nullptr;
|
||
|
||
TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
|
||
TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
|
||
TIntermAggregate* sequence = nullptr;
|
||
|
||
TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() :
|
||
nodeAsBinary ? nodeAsBinary->getLeft() :
|
||
nullptr;
|
||
|
||
// Early bail out if there is no conversion to apply
|
||
if (!shouldConvertLValue(lhs)) {
|
||
if (lhs != nullptr)
|
||
if (lValueErrorCheck(loc, op, lhs))
|
||
return nullptr;
|
||
return node;
|
||
}
|
||
|
||
// *** If we get here, we're going to apply some conversion to an l-value.
|
||
|
||
// Spin off sampler aliasing
|
||
if (node->getAsTyped()->getBasicType() == EbtSampler)
|
||
return handleSamplerLvalue(loc, op, node);
|
||
|
||
// Helper to create a load.
|
||
const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
|
||
TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
|
||
loadOp->setLoc(loc);
|
||
loadOp->getSequence().push_back(object);
|
||
loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
|
||
loadOp->setType(derefType);
|
||
|
||
sequence = intermediate.growAggregate(sequence,
|
||
intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
|
||
loc);
|
||
};
|
||
|
||
// Helper to create a store.
|
||
const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
|
||
TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
|
||
storeOp->getSequence().push_back(object);
|
||
storeOp->getSequence().push_back(coord);
|
||
storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
|
||
storeOp->setLoc(loc);
|
||
storeOp->setType(TType(EbtVoid));
|
||
|
||
sequence = intermediate.growAggregate(sequence, storeOp);
|
||
};
|
||
|
||
// Helper to create an assign.
|
||
const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
|
||
sequence = intermediate.growAggregate(sequence,
|
||
intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
|
||
loc);
|
||
};
|
||
|
||
// Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
|
||
const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
|
||
// Add a trailing use of the temp, so the sequence returns the proper value.
|
||
sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
|
||
sequence->setOperator(EOpSequence);
|
||
sequence->setLoc(loc);
|
||
sequence->setType(derefType);
|
||
|
||
return sequence;
|
||
};
|
||
|
||
// Helper to add unary op
|
||
const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
|
||
sequence = intermediate.growAggregate(sequence,
|
||
intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
|
||
rhsTmp->getType()),
|
||
loc);
|
||
};
|
||
|
||
// Return true if swizzle or index writes all components of the given variable.
|
||
const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
|
||
if (swizzle == nullptr) // not a swizzle or index
|
||
return true;
|
||
|
||
// Track which components are being set.
|
||
std::array<bool, 4> compIsSet;
|
||
compIsSet.fill(false);
|
||
|
||
const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion();
|
||
const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate();
|
||
|
||
// This could be either a direct index, or a swizzle.
|
||
if (asConst) {
|
||
compIsSet[asConst->getConstArray()[0].getIConst()] = true;
|
||
} else if (asAggregate) {
|
||
const TIntermSequence& seq = asAggregate->getSequence();
|
||
for (int comp=0; comp<int(seq.size()); ++comp)
|
||
compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
|
||
} else {
|
||
assert(0);
|
||
}
|
||
|
||
// Return true if all components are being set by the index or swizzle
|
||
return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
|
||
[](bool isSet) { return isSet; } );
|
||
};
|
||
|
||
// Create swizzle matching input swizzle
|
||
const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
|
||
if (swizzle)
|
||
return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
|
||
else
|
||
return var;
|
||
};
|
||
|
||
TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode();
|
||
TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
|
||
bool lhsIsSwizzle = false;
|
||
|
||
// If it's a swizzled L-value, remember the swizzle, and use the LHS.
|
||
if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
|
||
lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
|
||
lhsIsSwizzle = true;
|
||
}
|
||
|
||
TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped();
|
||
|
||
const TSampler& texSampler = object->getType().getSampler();
|
||
|
||
const TType objDerefType(texSampler.type, EvqTemporary, texSampler.vectorSize);
|
||
|
||
if (nodeAsBinary) {
|
||
TIntermTyped* rhs = nodeAsBinary->getRight();
|
||
const TOperator assignOp = nodeAsBinary->getOp();
|
||
|
||
bool isModifyOp = false;
|
||
|
||
switch (assignOp) {
|
||
case EOpAddAssign:
|
||
case EOpSubAssign:
|
||
case EOpMulAssign:
|
||
case EOpVectorTimesMatrixAssign:
|
||
case EOpVectorTimesScalarAssign:
|
||
case EOpMatrixTimesScalarAssign:
|
||
case EOpMatrixTimesMatrixAssign:
|
||
case EOpDivAssign:
|
||
case EOpModAssign:
|
||
case EOpAndAssign:
|
||
case EOpInclusiveOrAssign:
|
||
case EOpExclusiveOrAssign:
|
||
case EOpLeftShiftAssign:
|
||
case EOpRightShiftAssign:
|
||
isModifyOp = true;
|
||
// fall through...
|
||
case EOpAssign:
|
||
{
|
||
// Since this is an lvalue, we'll convert an image load to a sequence like this
|
||
// (to still provide the value):
|
||
// OpSequence
|
||
// OpImageStore(object, lhs, rhs)
|
||
// rhs
|
||
// But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
|
||
// so we'll convert instead to this:
|
||
// OpSequence
|
||
// rhsTmp = rhs
|
||
// OpImageStore(object, coord, rhsTmp)
|
||
// rhsTmp
|
||
// If this is a read-modify-write op, like +=, we issue:
|
||
// OpSequence
|
||
// coordtmp = load's param1
|
||
// rhsTmp = OpImageLoad(object, coordTmp)
|
||
// rhsTmp op= rhs
|
||
// OpImageStore(object, coordTmp, rhsTmp)
|
||
// rhsTmp
|
||
//
|
||
// If the lvalue is swizzled, we apply that when writing the temp variable, like so:
|
||
// ...
|
||
// rhsTmp.some_swizzle = ...
|
||
// For partial writes, an error is generated.
|
||
|
||
TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
|
||
TIntermTyped* coordTmp = coord;
|
||
|
||
if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
|
||
rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
|
||
|
||
// Partial updates not yet supported
|
||
if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
|
||
error(loc, "unimplemented: partial image updates", "", "");
|
||
}
|
||
|
||
// Assign storeTemp = rhs
|
||
if (isModifyOp) {
|
||
// We have to make a temp var for the coordinate, to avoid evaluating it twice.
|
||
coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
|
||
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
|
||
makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
|
||
}
|
||
|
||
// rhsTmp op= rhs.
|
||
makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
|
||
}
|
||
|
||
makeStore(object, coordTmp, rhsTmp); // add a store
|
||
return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (nodeAsUnary) {
|
||
const TOperator assignOp = nodeAsUnary->getOp();
|
||
|
||
switch (assignOp) {
|
||
case EOpPreIncrement:
|
||
case EOpPreDecrement:
|
||
{
|
||
// We turn this into:
|
||
// OpSequence
|
||
// coordtmp = load's param1
|
||
// rhsTmp = OpImageLoad(object, coordTmp)
|
||
// rhsTmp op
|
||
// OpImageStore(object, coordTmp, rhsTmp)
|
||
// rhsTmp
|
||
|
||
TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
|
||
TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
|
||
|
||
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
|
||
makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
|
||
makeUnary(assignOp, rhsTmp); // op rhsTmp
|
||
makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp)
|
||
return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
|
||
}
|
||
|
||
case EOpPostIncrement:
|
||
case EOpPostDecrement:
|
||
{
|
||
// We turn this into:
|
||
// OpSequence
|
||
// coordtmp = load's param1
|
||
// rhsTmp1 = OpImageLoad(object, coordTmp)
|
||
// rhsTmp2 = rhsTmp1
|
||
// rhsTmp2 op
|
||
// OpImageStore(object, coordTmp, rhsTmp2)
|
||
// rhsTmp1 (pre-op value)
|
||
TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType);
|
||
TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
|
||
TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
|
||
|
||
makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
|
||
makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
|
||
makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1
|
||
makeUnary(assignOp, rhsTmp2); // rhsTmp op
|
||
makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2)
|
||
return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (lhs)
|
||
if (lValueErrorCheck(loc, op, lhs))
|
||
return nullptr;
|
||
|
||
return node;
|
||
}
|
||
|
||
// Deal with sampler aliasing: turning assignments into aliases
|
||
// Return a placeholder node for higher-level code that think assignments must
|
||
// generate code.
|
||
TIntermTyped* HlslParseContext::handleSamplerLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
|
||
{
|
||
// Can only alias an assignment: "s1 = s2"
|
||
TIntermBinary* binary = node->getAsBinaryNode();
|
||
if (binary == nullptr || node->getAsOperator()->getOp() != EOpAssign ||
|
||
binary->getLeft()->getAsSymbolNode() == nullptr ||
|
||
binary->getRight()->getAsSymbolNode() == nullptr) {
|
||
error(loc, "can't modify sampler", op, "");
|
||
return node;
|
||
}
|
||
|
||
if (controlFlowNestingLevel > 0)
|
||
warn(loc, "sampler or image aliased under control flow; consumption must be in same path", op, "");
|
||
|
||
TIntermTyped* set = setOpaqueLvalue(binary->getLeft(), binary->getRight());
|
||
if (set == nullptr)
|
||
warn(loc, "could not create alias for sampler", op, "");
|
||
else
|
||
node = set;
|
||
|
||
return node;
|
||
}
|
||
|
||
// Do an opaque assignment that needs to turn into an alias.
|
||
// Return nullptr if it can't be done, otherwise return a placeholder
|
||
// node for higher-level code that think assignments must generate code.
|
||
TIntermTyped* HlslParseContext::setOpaqueLvalue(TIntermTyped* leftTyped, TIntermTyped* rightTyped)
|
||
{
|
||
// Best is if we are aliasing a flattened struct member "S.s1 = s2",
|
||
// in which case we want to update the flattening information with the alias,
|
||
// making everything else work seamlessly.
|
||
TIntermSymbol* left = leftTyped->getAsSymbolNode();
|
||
TIntermSymbol* right = rightTyped->getAsSymbolNode();
|
||
for (auto fit = flattenMap.begin(); fit != flattenMap.end(); ++fit) {
|
||
for (auto mit = fit->second.members.begin(); mit != fit->second.members.end(); ++mit) {
|
||
if ((*mit)->getUniqueId() == left->getId()) {
|
||
// found it: update with alias to the existing variable, and don't emit any code
|
||
(*mit) = new TVariable(&right->getName(), right->getType());
|
||
(*mit)->setUniqueId(right->getId());
|
||
// replace node (rest of compiler expects either an error or code to generate)
|
||
// with pointless access
|
||
return right;
|
||
}
|
||
}
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
|
||
{
|
||
if (pragmaCallback)
|
||
pragmaCallback(loc.line, tokens);
|
||
|
||
if (tokens.size() == 0)
|
||
return;
|
||
}
|
||
|
||
//
|
||
// Look at a '.' matrix selector string and change it into components
|
||
// for a matrix. There are two types:
|
||
//
|
||
// _21 second row, first column (one based)
|
||
// _m21 third row, second column (zero based)
|
||
//
|
||
// Returns true if there is no error.
|
||
//
|
||
bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
|
||
TSwizzleSelectors<TMatrixSelector>& components)
|
||
{
|
||
int startPos[MaxSwizzleSelectors];
|
||
int numComps = 0;
|
||
TString compString = fields;
|
||
|
||
// Find where each component starts,
|
||
// recording the first character position after the '_'.
|
||
for (size_t c = 0; c < compString.size(); ++c) {
|
||
if (compString[c] == '_') {
|
||
if (numComps >= MaxSwizzleSelectors) {
|
||
error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
|
||
return false;
|
||
}
|
||
if (c > compString.size() - 3 ||
|
||
((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
|
||
error(loc, "matrix component swizzle missing", compString.c_str(), "");
|
||
return false;
|
||
}
|
||
startPos[numComps++] = (int)c + 1;
|
||
}
|
||
}
|
||
|
||
// Process each component
|
||
for (int i = 0; i < numComps; ++i) {
|
||
int pos = startPos[i];
|
||
int bias = -1;
|
||
if (compString[pos] == 'm' || compString[pos] == 'M') {
|
||
bias = 0;
|
||
++pos;
|
||
}
|
||
TMatrixSelector comp;
|
||
comp.coord1 = compString[pos+0] - '0' + bias;
|
||
comp.coord2 = compString[pos+1] - '0' + bias;
|
||
if (comp.coord1 < 0 || comp.coord1 >= cols) {
|
||
error(loc, "matrix row component out of range", compString.c_str(), "");
|
||
return false;
|
||
}
|
||
if (comp.coord2 < 0 || comp.coord2 >= rows) {
|
||
error(loc, "matrix column component out of range", compString.c_str(), "");
|
||
return false;
|
||
}
|
||
components.push_back(comp);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// If the 'comps' express a column of a matrix,
|
||
// return the column. Column means the first coords all match.
|
||
//
|
||
// Otherwise, return -1.
|
||
//
|
||
int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
|
||
{
|
||
int col = -1;
|
||
|
||
// right number of comps?
|
||
if (selector.size() != rows)
|
||
return -1;
|
||
|
||
// all comps in the same column?
|
||
// rows in order?
|
||
col = selector[0].coord1;
|
||
for (int i = 0; i < rows; ++i) {
|
||
if (col != selector[i].coord1)
|
||
return -1;
|
||
if (i != selector[i].coord2)
|
||
return -1;
|
||
}
|
||
|
||
return col;
|
||
}
|
||
|
||
//
|
||
// Handle seeing a variable identifier in the grammar.
|
||
//
|
||
TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
|
||
{
|
||
int thisDepth;
|
||
TSymbol* symbol = symbolTable.find(*string, thisDepth);
|
||
if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
|
||
error(loc, "expected symbol, not user-defined type", string->c_str(), "");
|
||
return nullptr;
|
||
}
|
||
|
||
// Error check for requiring specific extensions present.
|
||
if (symbol && symbol->getNumExtensions())
|
||
requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str());
|
||
|
||
const TVariable* variable = nullptr;
|
||
const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
|
||
TIntermTyped* node = nullptr;
|
||
if (anon) {
|
||
// It was a member of an anonymous container, which could be a 'this' structure.
|
||
|
||
// Create a subtree for its dereference.
|
||
if (thisDepth > 0) {
|
||
variable = getImplicitThis(thisDepth);
|
||
if (variable == nullptr)
|
||
error(loc, "cannot access member variables (static member function?)", "this", "");
|
||
}
|
||
if (variable == nullptr)
|
||
variable = anon->getAnonContainer().getAsVariable();
|
||
|
||
TIntermTyped* container = intermediate.addSymbol(*variable, loc);
|
||
TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
|
||
node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
|
||
|
||
node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
|
||
if (node->getType().hiddenMember())
|
||
error(loc, "member of nameless block was not redeclared", string->c_str(), "");
|
||
} else {
|
||
// Not a member of an anonymous container.
|
||
|
||
// The symbol table search was done in the lexical phase.
|
||
// See if it was a variable.
|
||
variable = symbol ? symbol->getAsVariable() : nullptr;
|
||
if (variable) {
|
||
if ((variable->getType().getBasicType() == EbtBlock ||
|
||
variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
|
||
error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
|
||
variable = nullptr;
|
||
}
|
||
} else {
|
||
if (symbol)
|
||
error(loc, "variable name expected", string->c_str(), "");
|
||
}
|
||
|
||
// Recovery, if it wasn't found or was not a variable.
|
||
if (variable == nullptr) {
|
||
error(loc, "unknown variable", string->c_str(), "");
|
||
variable = new TVariable(string, TType(EbtVoid));
|
||
}
|
||
|
||
if (variable->getType().getQualifier().isFrontEndConstant())
|
||
node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
|
||
else
|
||
node = intermediate.addSymbol(*variable, loc);
|
||
}
|
||
|
||
if (variable->getType().getQualifier().isIo())
|
||
intermediate.addIoAccessed(*string);
|
||
|
||
return node;
|
||
}
|
||
|
||
//
|
||
// Handle operator[] on any objects it applies to. Currently:
|
||
// Textures
|
||
// Buffers
|
||
//
|
||
TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
|
||
{
|
||
// handle r-value operator[] on textures and images. l-values will be processed later.
|
||
if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
|
||
const TSampler& sampler = base->getType().getSampler();
|
||
if (sampler.isImage() || sampler.isTexture()) {
|
||
if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
|
||
// The first operator[] to a .mips[] sequence is the mip level. We'll remember it.
|
||
mipsOperatorMipArg.back().mipLevel = index;
|
||
return base; // next [] index is to the same base.
|
||
} else {
|
||
TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
|
||
|
||
load->setType(TType(sampler.type, EvqTemporary, sampler.vectorSize));
|
||
load->setLoc(loc);
|
||
load->getSequence().push_back(base);
|
||
load->getSequence().push_back(index);
|
||
|
||
// Textures need a MIP. If we saw one go by, use it. Otherwise, use zero.
|
||
if (sampler.isTexture()) {
|
||
if (! mipsOperatorMipArg.empty()) {
|
||
load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
|
||
mipsOperatorMipArg.pop_back();
|
||
} else {
|
||
load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
|
||
}
|
||
}
|
||
|
||
return load;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Handle operator[] on structured buffers: this indexes into the array element of the buffer.
|
||
// indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
|
||
TIntermTyped* sbArray = indexStructBufferContent(loc, base);
|
||
if (sbArray != nullptr) {
|
||
if (sbArray == nullptr)
|
||
return nullptr;
|
||
|
||
// Now we'll apply the [] index to that array
|
||
const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
|
||
|
||
TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
|
||
const TType derefType(sbArray->getType(), 0);
|
||
element->setType(derefType);
|
||
return element;
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
//
|
||
// Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
|
||
TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
|
||
{
|
||
const TBasicType indexBasicType = index->getType().getBasicType();
|
||
const int vecSize = index->getType().getVectorSize();
|
||
|
||
// We can use int types directly as the index
|
||
if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
|
||
indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
|
||
return index;
|
||
|
||
// Cast index to unsigned integer if it isn't one.
|
||
return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
|
||
}
|
||
|
||
//
|
||
// Handle seeing a base[index] dereference in the grammar.
|
||
//
|
||
TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
|
||
{
|
||
index = makeIntegerIndex(index);
|
||
|
||
if (index == nullptr) {
|
||
error(loc, " unknown index type ", "", "");
|
||
return nullptr;
|
||
}
|
||
|
||
TIntermTyped* result = handleBracketOperator(loc, base, index);
|
||
|
||
if (result != nullptr)
|
||
return result; // it was handled as an operator[]
|
||
|
||
bool flattened = false;
|
||
int indexValue = 0;
|
||
if (index->getQualifier().storage == EvqConst) {
|
||
indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
|
||
checkIndex(loc, base->getType(), indexValue);
|
||
}
|
||
|
||
variableCheck(base);
|
||
if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
|
||
if (base->getAsSymbolNode())
|
||
error(loc, " left of '[' is not of type array, matrix, or vector ",
|
||
base->getAsSymbolNode()->getName().c_str(), "");
|
||
else
|
||
error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
|
||
} else if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
|
||
return intermediate.foldDereference(base, indexValue, loc);
|
||
else {
|
||
// at least one of base and index is variable...
|
||
|
||
if (base->getAsSymbolNode() && wasFlattened(base)) {
|
||
if (index->getQualifier().storage != EvqConst)
|
||
error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
|
||
|
||
result = flattenAccess(base, indexValue);
|
||
flattened = (result != base);
|
||
} else {
|
||
if (index->getQualifier().storage == EvqConst) {
|
||
if (base->getType().isImplicitlySizedArray())
|
||
updateImplicitArraySize(loc, base, indexValue);
|
||
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
|
||
} else {
|
||
result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (result == nullptr) {
|
||
// Insert dummy error-recovery result
|
||
result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
|
||
} else {
|
||
// If the array reference was flattened, it has the correct type. E.g, if it was
|
||
// a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
|
||
// In that case, we preserve the qualifiers.
|
||
if (!flattened) {
|
||
// Insert valid dereferenced result
|
||
TType newType(base->getType(), 0); // dereferenced type
|
||
if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
|
||
newType.getQualifier().storage = EvqConst;
|
||
else
|
||
newType.getQualifier().storage = EvqTemporary;
|
||
result->setType(newType);
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void HlslParseContext::checkIndex(const TSourceLoc& /*loc*/, const TType& /*type*/, int& /*index*/)
|
||
{
|
||
// HLSL todo: any rules for index fixups?
|
||
}
|
||
|
||
// Handle seeing a binary node with a math operation.
|
||
TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
|
||
TIntermTyped* left, TIntermTyped* right)
|
||
{
|
||
TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
|
||
if (result == nullptr)
|
||
binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
|
||
|
||
return result;
|
||
}
|
||
|
||
// Handle seeing a unary node with a math operation.
|
||
TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
|
||
TIntermTyped* childNode)
|
||
{
|
||
TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
|
||
|
||
if (result)
|
||
return result;
|
||
else
|
||
unaryOpError(loc, str, childNode->getCompleteString());
|
||
|
||
return childNode;
|
||
}
|
||
//
|
||
// Return true if the name is a struct buffer method
|
||
//
|
||
bool HlslParseContext::isStructBufferMethod(const TString& name) const
|
||
{
|
||
return
|
||
name == "GetDimensions" ||
|
||
name == "Load" ||
|
||
name == "Load2" ||
|
||
name == "Load3" ||
|
||
name == "Load4" ||
|
||
name == "Store" ||
|
||
name == "Store2" ||
|
||
name == "Store3" ||
|
||
name == "Store4" ||
|
||
name == "InterlockedAdd" ||
|
||
name == "InterlockedAnd" ||
|
||
name == "InterlockedCompareExchange" ||
|
||
name == "InterlockedCompareStore" ||
|
||
name == "InterlockedExchange" ||
|
||
name == "InterlockedMax" ||
|
||
name == "InterlockedMin" ||
|
||
name == "InterlockedOr" ||
|
||
name == "InterlockedXor" ||
|
||
name == "IncrementCounter" ||
|
||
name == "DecrementCounter" ||
|
||
name == "Append" ||
|
||
name == "Consume";
|
||
}
|
||
|
||
//
|
||
// Handle seeing a base.field dereference in the grammar, where 'field' is a
|
||
// swizzle or member variable.
|
||
//
|
||
TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
|
||
{
|
||
variableCheck(base);
|
||
|
||
if (base->isArray()) {
|
||
error(loc, "cannot apply to an array:", ".", field.c_str());
|
||
return base;
|
||
}
|
||
|
||
TIntermTyped* result = base;
|
||
|
||
if (base->getType().getBasicType() == EbtSampler) {
|
||
// Handle .mips[mipid][pos] operation on textures
|
||
const TSampler& sampler = base->getType().getSampler();
|
||
if (sampler.isTexture() && field == "mips") {
|
||
// Push a null to signify that we expect a mip level under operator[] next.
|
||
mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
|
||
// Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
|
||
} else {
|
||
if (field == "mips")
|
||
error(loc, "unexpected texture type for .mips[][] operator:",
|
||
base->getType().getCompleteString().c_str(), "");
|
||
else
|
||
error(loc, "unexpected operator on texture type:", field.c_str(),
|
||
base->getType().getCompleteString().c_str());
|
||
}
|
||
} else if (base->isVector() || base->isScalar()) {
|
||
TSwizzleSelectors<TVectorSelector> selectors;
|
||
parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
|
||
|
||
if (base->isScalar()) {
|
||
if (selectors.size() == 1)
|
||
return result;
|
||
else {
|
||
TType type(base->getBasicType(), EvqTemporary, selectors.size());
|
||
return addConstructor(loc, base, type);
|
||
}
|
||
}
|
||
if (base->getVectorSize() == 1) {
|
||
TType scalarType(base->getBasicType(), EvqTemporary, 1);
|
||
if (selectors.size() == 1)
|
||
return addConstructor(loc, base, scalarType);
|
||
else {
|
||
TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
|
||
return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
|
||
}
|
||
}
|
||
|
||
if (base->getType().getQualifier().isFrontEndConstant())
|
||
result = intermediate.foldSwizzle(base, selectors, loc);
|
||
else {
|
||
if (selectors.size() == 1) {
|
||
TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
|
||
result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
|
||
result->setType(TType(base->getBasicType(), EvqTemporary));
|
||
} else {
|
||
TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
|
||
result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
|
||
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
|
||
selectors.size()));
|
||
}
|
||
}
|
||
} else if (base->isMatrix()) {
|
||
TSwizzleSelectors<TMatrixSelector> selectors;
|
||
if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
|
||
return result;
|
||
|
||
if (selectors.size() == 1) {
|
||
// Representable by m[c][r]
|
||
if (base->getType().getQualifier().isFrontEndConstant()) {
|
||
result = intermediate.foldDereference(base, selectors[0].coord1, loc);
|
||
result = intermediate.foldDereference(result, selectors[0].coord2, loc);
|
||
} else {
|
||
result = intermediate.addIndex(EOpIndexDirect, base,
|
||
intermediate.addConstantUnion(selectors[0].coord1, loc),
|
||
loc);
|
||
TType dereferencedCol(base->getType(), 0);
|
||
result->setType(dereferencedCol);
|
||
result = intermediate.addIndex(EOpIndexDirect, result,
|
||
intermediate.addConstantUnion(selectors[0].coord2, loc),
|
||
loc);
|
||
TType dereferenced(dereferencedCol, 0);
|
||
result->setType(dereferenced);
|
||
}
|
||
} else {
|
||
int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
|
||
if (column >= 0) {
|
||
// Representable by m[c]
|
||
if (base->getType().getQualifier().isFrontEndConstant())
|
||
result = intermediate.foldDereference(base, column, loc);
|
||
else {
|
||
result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
|
||
loc);
|
||
TType dereferenced(base->getType(), 0);
|
||
result->setType(dereferenced);
|
||
}
|
||
} else {
|
||
// general case, not a column, not a single component
|
||
TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
|
||
result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
|
||
result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
|
||
selectors.size()));
|
||
}
|
||
}
|
||
} else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
|
||
const TTypeList* fields = base->getType().getStruct();
|
||
bool fieldFound = false;
|
||
int member;
|
||
for (member = 0; member < (int)fields->size(); ++member) {
|
||
if ((*fields)[member].type->getFieldName() == field) {
|
||
fieldFound = true;
|
||
break;
|
||
}
|
||
}
|
||
if (fieldFound) {
|
||
if (base->getAsSymbolNode() && wasFlattened(base)) {
|
||
result = flattenAccess(base, member);
|
||
} else {
|
||
if (base->getType().getQualifier().storage == EvqConst)
|
||
result = intermediate.foldDereference(base, member, loc);
|
||
else {
|
||
TIntermTyped* index = intermediate.addConstantUnion(member, loc);
|
||
result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
|
||
result->setType(*(*fields)[member].type);
|
||
}
|
||
}
|
||
} else
|
||
error(loc, "no such field in structure", field.c_str(), "");
|
||
} else
|
||
error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
|
||
|
||
return result;
|
||
}
|
||
|
||
//
|
||
// Return true if the field should be treated as a built-in method.
|
||
// Return false otherwise.
|
||
//
|
||
bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
|
||
{
|
||
if (base == nullptr)
|
||
return false;
|
||
|
||
variableCheck(base);
|
||
|
||
if (base->getType().getBasicType() == EbtSampler) {
|
||
return true;
|
||
} else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
|
||
return true;
|
||
} else if (field == "Append" ||
|
||
field == "RestartStrip") {
|
||
// We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
|
||
// the code is around in the shader source.
|
||
return true;
|
||
} else
|
||
return false;
|
||
}
|
||
|
||
// Split a type into
|
||
// 1. a struct of non-I/O members
|
||
// 2. a collection of flattened I/O variables
|
||
void HlslParseContext::split(const TVariable& variable)
|
||
{
|
||
// Create a new variable:
|
||
TType& splitType = split(*variable.getType().clone(), variable.getName());
|
||
splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
|
||
}
|
||
|
||
// Recursive implementation of split().
|
||
// Returns reference to the modified type.
|
||
TType& HlslParseContext::split(TType& type, TString name, const TType* outerStructType)
|
||
{
|
||
const TArraySizes* arraySizes = nullptr;
|
||
|
||
// At the outer-most scope, remember the struct type so we can examine its storage class
|
||
// at deeper levels.
|
||
if (outerStructType == nullptr)
|
||
outerStructType = &type;
|
||
|
||
if (type.isArray())
|
||
arraySizes = &type.getArraySizes();
|
||
|
||
// We can ignore arrayness: it's uninvolved.
|
||
if (type.isStruct()) {
|
||
TTypeList* userStructure = type.getWritableStruct();
|
||
for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
|
||
if (ioType->type->getQualifier().builtIn != EbvNone) {
|
||
// split out built-in interstage IO
|
||
const TType& memberType = *ioType->type;
|
||
TVariable* ioVar = makeInternalVariable(name + (name.empty() ? "" : "_") + memberType.getFieldName(),
|
||
memberType);
|
||
|
||
if (arraySizes)
|
||
ioVar->getWritableType().newArraySizes(*arraySizes);
|
||
|
||
fixBuiltInIoType(ioVar->getWritableType());
|
||
|
||
splitBuiltIns[tInterstageIoData(memberType, *outerStructType)] = ioVar;
|
||
if (!isClipOrCullDistance(ioVar->getType()))
|
||
trackLinkage(*ioVar);
|
||
|
||
// Merge qualifier from the user structure
|
||
mergeQualifiers(ioVar->getWritableType().getQualifier(), outerStructType->getQualifier());
|
||
|
||
// Erase the IO vars from the user structure.
|
||
ioType = userStructure->erase(ioType);
|
||
} else {
|
||
split(*ioType->type,
|
||
name + (name.empty() ? "" : "_") + ioType->type->getFieldName(),
|
||
outerStructType);
|
||
++ioType;
|
||
}
|
||
}
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
// Is this a uniform array or structure which should be flattened?
|
||
bool HlslParseContext::shouldFlatten(const TType& type) const
|
||
{
|
||
const TStorageQualifier qualifier = type.getQualifier().storage;
|
||
|
||
return (qualifier == EvqUniform && type.isArray() && intermediate.getFlattenUniformArrays()) ||
|
||
(type.isStruct() && type.containsOpaque());
|
||
}
|
||
|
||
// Top level variable flattening: construct data
|
||
void HlslParseContext::flatten(const TVariable& variable, bool linkage)
|
||
{
|
||
const TType& type = variable.getType();
|
||
|
||
auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
|
||
TFlattenData(type.getQualifier().layoutBinding,
|
||
type.getQualifier().layoutLocation)));
|
||
|
||
// the item is a map pair, so first->second is the TFlattenData itself.
|
||
flatten(variable, type, entry.first->second, "", linkage);
|
||
}
|
||
|
||
// Recursively flatten the given variable at the provided type, building the flattenData as we go.
|
||
//
|
||
// This is mutually recursive with flattenStruct and flattenArray.
|
||
// We are going to flatten an arbitrarily nested composite structure into a linear sequence of
|
||
// members, and later on, we want to turn a path through the tree structure into a final
|
||
// location in this linear sequence.
|
||
//
|
||
// If the tree was N-ary, that can be directly calculated. However, we are dealing with
|
||
// arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must
|
||
// build a data structure to allow the sequence of bracket and dot operators on arrays and
|
||
// structs to arrive at the proper member.
|
||
//
|
||
// To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
|
||
// The leaves are the indexes into the flattened member array.
|
||
// Each level will have the next location for the Nth item stored sequentially, so for instance:
|
||
//
|
||
// struct { float2 a[2]; int b; float4 c[3] };
|
||
//
|
||
// This will produce the following flattened tree:
|
||
// Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
|
||
// (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5}
|
||
//
|
||
// Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
|
||
// (0+2) = 8 --> (8+1) = 12 --> 12 = 4
|
||
//
|
||
// so the 4th flattened member in traversal order is ours.
|
||
//
|
||
int HlslParseContext::flatten(const TVariable& variable, const TType& type,
|
||
TFlattenData& flattenData, TString name, bool linkage)
|
||
{
|
||
// If something is an arrayed struct, the array flattener will recursively call flatten()
|
||
// to then flatten the struct, so this is an "if else": we don't do both.
|
||
if (type.isArray())
|
||
return flattenArray(variable, type, flattenData, name, linkage);
|
||
else if (type.isStruct())
|
||
return flattenStruct(variable, type, flattenData, name, linkage);
|
||
else {
|
||
assert(0); // should never happen
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
// Add a single flattened member to the flattened data being tracked for the composite
|
||
// Returns true for the final flattening level.
|
||
int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
|
||
const TString& memberName, bool linkage)
|
||
{
|
||
if (isFinalFlattening(type)) {
|
||
// This is as far as we flatten. Insert the variable.
|
||
TVariable* memberVariable = makeInternalVariable(memberName, type);
|
||
mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
|
||
|
||
if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
|
||
memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
|
||
|
||
if (memberVariable->getType().getQualifier().builtIn == EbvNone) {
|
||
// inherited locations must be auto bumped, not replicated
|
||
if (flattenData.nextLocation != TQualifier::layoutLocationEnd &&
|
||
memberVariable->getType().getQualifier().builtIn == EbvNone) {
|
||
memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
|
||
flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType());
|
||
nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
|
||
}
|
||
} else {
|
||
// inherited locations are nonsensical for built-ins
|
||
memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
|
||
}
|
||
|
||
flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
|
||
flattenData.members.push_back(memberVariable);
|
||
|
||
if (linkage)
|
||
trackLinkage(*memberVariable);
|
||
|
||
return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
|
||
} else {
|
||
// Further recursion required
|
||
return flatten(variable, type, flattenData, memberName, linkage);
|
||
}
|
||
}
|
||
|
||
// Figure out the mapping between an aggregate's top members and an
|
||
// equivalent set of individual variables.
|
||
//
|
||
// Assumes shouldFlatten() or equivalent was called first.
|
||
int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
|
||
TFlattenData& flattenData, TString name, bool linkage)
|
||
{
|
||
assert(type.isStruct());
|
||
|
||
auto members = *type.getStruct();
|
||
|
||
// Reserve space for this tree level.
|
||
int start = static_cast<int>(flattenData.offsets.size());
|
||
int pos = start;
|
||
flattenData.offsets.resize(int(pos + members.size()), -1);
|
||
|
||
for (int member = 0; member < (int)members.size(); ++member) {
|
||
TType& dereferencedType = *members[member].type;
|
||
const TString memberName = name + (name.empty() ? "" : ".") + dereferencedType.getFieldName();
|
||
|
||
const int mpos = addFlattenedMember(variable, dereferencedType, flattenData, memberName, linkage);
|
||
flattenData.offsets[pos++] = mpos;
|
||
}
|
||
|
||
return start;
|
||
}
|
||
|
||
// Figure out mapping between an array's members and an
|
||
// equivalent set of individual variables.
|
||
//
|
||
// Assumes shouldFlatten() or equivalent was called first.
|
||
int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
|
||
TFlattenData& flattenData, TString name, bool linkage)
|
||
{
|
||
assert(type.isArray() && !type.isImplicitlySizedArray());
|
||
|
||
const int size = type.getOuterArraySize();
|
||
const TType dereferencedType(type, 0);
|
||
|
||
if (name.empty())
|
||
name = variable.getName();
|
||
|
||
// Reserve space for this tree level.
|
||
int start = static_cast<int>(flattenData.offsets.size());
|
||
int pos = start;
|
||
flattenData.offsets.resize(int(pos + size), -1);
|
||
|
||
for (int element=0; element < size; ++element) {
|
||
char elementNumBuf[20]; // sufficient for MAXINT
|
||
snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
|
||
const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
|
||
name + elementNumBuf, linkage);
|
||
|
||
flattenData.offsets[pos++] = mpos;
|
||
}
|
||
|
||
return start;
|
||
}
|
||
|
||
// Return true if we have flattened this node.
|
||
bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
|
||
{
|
||
return node != nullptr && node->getAsSymbolNode() != nullptr &&
|
||
wasFlattened(node->getAsSymbolNode()->getId());
|
||
}
|
||
|
||
// Return true if we have split this structure
|
||
bool HlslParseContext::wasSplit(const TIntermTyped* node) const
|
||
{
|
||
return node != nullptr && node->getAsSymbolNode() != nullptr &&
|
||
wasSplit(node->getAsSymbolNode()->getId());
|
||
}
|
||
|
||
// Turn an access into an aggregate that was flattened to instead be
|
||
// an access to the individual variable the member was flattened to.
|
||
// Assumes wasFlattened() or equivalent was called first.
|
||
TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
|
||
{
|
||
const TType dereferencedType(base->getType(), member); // dereferenced type
|
||
const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
|
||
TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, dereferencedType, symbolNode.getFlattenSubset());
|
||
|
||
return flattened ? flattened : base;
|
||
}
|
||
TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, const TType& dereferencedType, int subset)
|
||
{
|
||
const auto flattenData = flattenMap.find(uniqueId);
|
||
|
||
if (flattenData == flattenMap.end())
|
||
return nullptr;
|
||
|
||
// Calculate new cumulative offset from the packed tree
|
||
int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
|
||
|
||
TIntermSymbol* subsetSymbol;
|
||
if (isFinalFlattening(dereferencedType)) {
|
||
// Finished flattening: create symbol for variable
|
||
member = flattenData->second.offsets[newSubset];
|
||
const TVariable* memberVariable = flattenData->second.members[member];
|
||
subsetSymbol = intermediate.addSymbol(*memberVariable);
|
||
subsetSymbol->setFlattenSubset(-1);
|
||
} else {
|
||
|
||
// If this is not the final flattening, accumulate the position and return
|
||
// an object of the partially dereferenced type.
|
||
subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
|
||
subsetSymbol->setFlattenSubset(newSubset);
|
||
}
|
||
|
||
return subsetSymbol;
|
||
}
|
||
|
||
// Find and return the split IO TVariable for id, or nullptr if none.
|
||
TVariable* HlslParseContext::getSplitNonIoVar(int id) const
|
||
{
|
||
const auto splitNonIoVar = splitNonIoVars.find(id);
|
||
if (splitNonIoVar == splitNonIoVars.end())
|
||
return nullptr;
|
||
|
||
return splitNonIoVar->second;
|
||
}
|
||
|
||
// Pass through to base class after remembering built-in mappings.
|
||
void HlslParseContext::trackLinkage(TSymbol& symbol)
|
||
{
|
||
TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
|
||
|
||
if (biType != EbvNone)
|
||
builtInTessLinkageSymbols[biType] = symbol.clone();
|
||
|
||
TParseContextBase::trackLinkage(symbol);
|
||
}
|
||
|
||
|
||
// Returns true if the built-in is a clip or cull distance variable.
|
||
bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
|
||
{
|
||
return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
|
||
}
|
||
|
||
// Some types require fixed array sizes in SPIR-V, but can be scalars or
|
||
// arrays of sizes SPIR-V doesn't allow. For example, tessellation factors.
|
||
// This creates the right size. A conversion is performed when the internal
|
||
// type is copied to or from the external type. This corrects the externally
|
||
// facing input or output type to abide downstream semantics.
|
||
void HlslParseContext::fixBuiltInIoType(TType& type)
|
||
{
|
||
int requiredArraySize = 0;
|
||
|
||
switch (type.getQualifier().builtIn) {
|
||
case EbvTessLevelOuter: requiredArraySize = 4; break;
|
||
case EbvTessLevelInner: requiredArraySize = 2; break;
|
||
|
||
case EbvTessCoord:
|
||
{
|
||
// tesscoord is always a vec3 for the IO variable, no matter the shader's
|
||
// declared vector size.
|
||
TType tessCoordType(type.getBasicType(), type.getQualifier().storage, 3);
|
||
|
||
tessCoordType.getQualifier() = type.getQualifier();
|
||
type.shallowCopy(tessCoordType);
|
||
|
||
break;
|
||
}
|
||
default:
|
||
if (isClipOrCullDistance(type)) {
|
||
if (type.getQualifier().builtIn == EbvClipDistance) {
|
||
clipSemanticNSize[type.getQualifier().layoutLocation] = type.getVectorSize();
|
||
} else {
|
||
cullSemanticNSize[type.getQualifier().layoutLocation] = type.getVectorSize();
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
// Alter or set array size as needed.
|
||
if (requiredArraySize > 0) {
|
||
if (type.isArray()) {
|
||
// Already an array. Fix the size.
|
||
type.changeOuterArraySize(requiredArraySize);
|
||
} else {
|
||
// it wasn't an array, but needs to be.
|
||
TArraySizes arraySizes;
|
||
arraySizes.addInnerSize(requiredArraySize);
|
||
type.newArraySizes(arraySizes);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Variables that correspond to the user-interface in and out of a stage
|
||
// (not the built-in interface) are
|
||
// - assigned locations
|
||
// - registered as a linkage node (part of the stage's external interface).
|
||
// Assumes it is called in the order in which locations should be assigned.
|
||
void HlslParseContext::assignToInterface(TVariable& variable)
|
||
{
|
||
const auto assignLocation = [&](TVariable& variable) {
|
||
TType& type = variable.getWritableType();
|
||
if (!type.isStruct() || type.getStruct()->size() > 0) {
|
||
TQualifier& qualifier = type.getQualifier();
|
||
if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
|
||
if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
|
||
// Strip off the outer array dimension for those having an extra one.
|
||
int size;
|
||
if (type.isArray() && qualifier.isArrayedIo(language)) {
|
||
TType elementType(type, 0);
|
||
size = intermediate.computeTypeLocationSize(elementType);
|
||
} else
|
||
size = intermediate.computeTypeLocationSize(type);
|
||
|
||
if (qualifier.storage == EvqVaryingIn) {
|
||
variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
|
||
nextInLocation += size;
|
||
} else {
|
||
variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
|
||
nextOutLocation += size;
|
||
}
|
||
}
|
||
trackLinkage(variable);
|
||
}
|
||
}
|
||
};
|
||
|
||
if (wasFlattened(variable.getUniqueId())) {
|
||
auto& memberList = flattenMap[variable.getUniqueId()].members;
|
||
for (auto member = memberList.begin(); member != memberList.end(); ++member)
|
||
assignLocation(**member);
|
||
} else if (wasSplit(variable.getUniqueId())) {
|
||
TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
|
||
assignLocation(*splitIoVar);
|
||
} else {
|
||
assignLocation(variable);
|
||
}
|
||
}
|
||
|
||
//
|
||
// Handle seeing a function declarator in the grammar. This is the precursor
|
||
// to recognizing a function prototype or function definition.
|
||
//
|
||
void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
|
||
{
|
||
//
|
||
// Multiple declarations of the same function name are allowed.
|
||
//
|
||
// If this is a definition, the definition production code will check for redefinitions
|
||
// (we don't know at this point if it's a definition or not).
|
||
//
|
||
bool builtIn;
|
||
TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
|
||
const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
|
||
|
||
if (prototype) {
|
||
// All built-in functions are defined, even though they don't have a body.
|
||
// Count their prototype as a definition instead.
|
||
if (symbolTable.atBuiltInLevel())
|
||
function.setDefined();
|
||
else {
|
||
if (prevDec && ! builtIn)
|
||
symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
|
||
function.setPrototyped();
|
||
}
|
||
}
|
||
|
||
// This insert won't actually insert it if it's a duplicate signature, but it will still check for
|
||
// other forms of name collisions.
|
||
if (! symbolTable.insert(function))
|
||
error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
|
||
}
|
||
|
||
// For struct buffers with counters, we must pass the counter buffer as hidden parameter.
|
||
// This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
|
||
// Otherwise, it's a no-op
|
||
void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
|
||
TIntermAggregate*& paramNodes)
|
||
{
|
||
if (! hasStructBuffCounter(*param.type))
|
||
return;
|
||
|
||
const TString counterBlockName(getStructBuffCounterName(*param.name));
|
||
|
||
TType counterType;
|
||
counterBufferType(loc, counterType);
|
||
TVariable *variable = makeInternalVariable(counterBlockName, counterType);
|
||
|
||
if (! symbolTable.insert(*variable))
|
||
error(loc, "redefinition", variable->getName().c_str(), "");
|
||
|
||
paramNodes = intermediate.growAggregate(paramNodes,
|
||
intermediate.addSymbol(*variable, loc),
|
||
loc);
|
||
}
|
||
|
||
//
|
||
// Handle seeing the function prototype in front of a function definition in the grammar.
|
||
// The body is handled after this function returns.
|
||
//
|
||
// Returns an aggregate of parameter-symbol nodes.
|
||
//
|
||
TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
|
||
const TAttributeMap& attributes,
|
||
TIntermNode*& entryPointTree)
|
||
{
|
||
currentCaller = function.getMangledName();
|
||
TSymbol* symbol = symbolTable.find(function.getMangledName());
|
||
TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
|
||
|
||
if (prevDec == nullptr)
|
||
error(loc, "can't find function", function.getName().c_str(), "");
|
||
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
|
||
// as it would have just been put in the symbol table. Otherwise, we're looking up
|
||
// an earlier occurrence.
|
||
|
||
if (prevDec && prevDec->isDefined()) {
|
||
// Then this function already has a body.
|
||
error(loc, "function already has a body", function.getName().c_str(), "");
|
||
}
|
||
if (prevDec && ! prevDec->isDefined()) {
|
||
prevDec->setDefined();
|
||
|
||
// Remember the return type for later checking for RETURN statements.
|
||
currentFunctionType = &(prevDec->getType());
|
||
} else
|
||
currentFunctionType = new TType(EbtVoid);
|
||
functionReturnsValue = false;
|
||
|
||
// Entry points need different I/O and other handling, transform it so the
|
||
// rest of this function doesn't care.
|
||
entryPointTree = transformEntryPoint(loc, function, attributes);
|
||
|
||
//
|
||
// New symbol table scope for body of function plus its arguments
|
||
//
|
||
pushScope();
|
||
|
||
//
|
||
// Insert parameters into the symbol table.
|
||
// If the parameter has no name, it's not an error, just don't insert it
|
||
// (could be used for unused args).
|
||
//
|
||
// Also, accumulate the list of parameters into the AST, so lower level code
|
||
// knows where to find parameters.
|
||
//
|
||
TIntermAggregate* paramNodes = new TIntermAggregate;
|
||
for (int i = 0; i < function.getParamCount(); i++) {
|
||
TParameter& param = function[i];
|
||
if (param.name != nullptr) {
|
||
TVariable *variable = new TVariable(param.name, *param.type);
|
||
|
||
if (i == 0 && function.hasImplicitThis()) {
|
||
// Anonymous 'this' members are already in a symbol-table level,
|
||
// and we need to know what function parameter to map them to.
|
||
symbolTable.makeInternalVariable(*variable);
|
||
pushImplicitThis(variable);
|
||
}
|
||
|
||
// Insert the parameters with name in the symbol table.
|
||
if (! symbolTable.insert(*variable))
|
||
error(loc, "redefinition", variable->getName().c_str(), "");
|
||
|
||
// Add parameters to the AST list.
|
||
if (shouldFlatten(variable->getType())) {
|
||
// Expand the AST parameter nodes (but not the name mangling or symbol table view)
|
||
// for structures that need to be flattened.
|
||
flatten(*variable, false);
|
||
const TTypeList* structure = variable->getType().getStruct();
|
||
for (int mem = 0; mem < (int)structure->size(); ++mem) {
|
||
paramNodes = intermediate.growAggregate(paramNodes,
|
||
flattenAccess(variable->getUniqueId(), mem,
|
||
*(*structure)[mem].type),
|
||
loc);
|
||
}
|
||
} else {
|
||
// Add the parameter to the AST
|
||
paramNodes = intermediate.growAggregate(paramNodes,
|
||
intermediate.addSymbol(*variable, loc),
|
||
loc);
|
||
}
|
||
|
||
// Add hidden AST parameter for struct buffer counters, if needed.
|
||
addStructBufferHiddenCounterParam(loc, param, paramNodes);
|
||
} else
|
||
paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
|
||
}
|
||
if (function.hasIllegalImplicitThis())
|
||
pushImplicitThis(nullptr);
|
||
|
||
intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
|
||
loopNestingLevel = 0;
|
||
controlFlowNestingLevel = 0;
|
||
postEntryPointReturn = false;
|
||
|
||
return paramNodes;
|
||
}
|
||
|
||
|
||
// Handle all [attrib] attribute for the shader entry point
|
||
void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributeMap& attributes)
|
||
{
|
||
// Handle entry-point function attributes
|
||
const TIntermAggregate* numThreads = attributes[EatNumThreads];
|
||
if (numThreads != nullptr) {
|
||
const TIntermSequence& sequence = numThreads->getSequence();
|
||
|
||
for (int lid = 0; lid < int(sequence.size()); ++lid)
|
||
intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
|
||
}
|
||
|
||
// MaxVertexCount
|
||
const TIntermAggregate* maxVertexCount = attributes[EatMaxVertexCount];
|
||
if (maxVertexCount != nullptr) {
|
||
if (! intermediate.setVertices(maxVertexCount->getSequence()[0]->getAsConstantUnion()->
|
||
getConstArray()[0].getIConst())) {
|
||
error(loc, "cannot change previously set maxvertexcount attribute", "", "");
|
||
}
|
||
}
|
||
|
||
// Handle [patchconstantfunction("...")]
|
||
const TIntermAggregate* pcfAttr = attributes[EatPatchConstantFunc];
|
||
if (pcfAttr != nullptr) {
|
||
const TConstUnion& pcfName = pcfAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
|
||
|
||
if (pcfName.getType() != EbtString) {
|
||
error(loc, "invalid patch constant function", "", "");
|
||
} else {
|
||
patchConstantFunctionName = *pcfName.getSConst();
|
||
}
|
||
}
|
||
|
||
// Handle [domain("...")]
|
||
const TIntermAggregate* domainAttr = attributes[EatDomain];
|
||
if (domainAttr != nullptr) {
|
||
const TConstUnion& domainType = domainAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
|
||
if (domainType.getType() != EbtString) {
|
||
error(loc, "invalid domain", "", "");
|
||
} else {
|
||
TString domainStr = *domainType.getSConst();
|
||
std::transform(domainStr.begin(), domainStr.end(), domainStr.begin(), ::tolower);
|
||
|
||
TLayoutGeometry domain = ElgNone;
|
||
|
||
if (domainStr == "tri") {
|
||
domain = ElgTriangles;
|
||
} else if (domainStr == "quad") {
|
||
domain = ElgQuads;
|
||
} else if (domainStr == "isoline") {
|
||
domain = ElgIsolines;
|
||
} else {
|
||
error(loc, "unsupported domain type", domainStr.c_str(), "");
|
||
}
|
||
|
||
if (language == EShLangTessEvaluation) {
|
||
if (! intermediate.setInputPrimitive(domain))
|
||
error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
|
||
} else {
|
||
if (! intermediate.setOutputPrimitive(domain))
|
||
error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
|
||
}
|
||
}
|
||
}
|
||
|
||
// Handle [outputtopology("...")]
|
||
const TIntermAggregate* topologyAttr = attributes[EatOutputTopology];
|
||
if (topologyAttr != nullptr) {
|
||
const TConstUnion& topoType = topologyAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
|
||
if (topoType.getType() != EbtString) {
|
||
error(loc, "invalid outputtopology", "", "");
|
||
} else {
|
||
TString topologyStr = *topoType.getSConst();
|
||
std::transform(topologyStr.begin(), topologyStr.end(), topologyStr.begin(), ::tolower);
|
||
|
||
TVertexOrder vertexOrder = EvoNone;
|
||
TLayoutGeometry primitive = ElgNone;
|
||
|
||
if (topologyStr == "point") {
|
||
intermediate.setPointMode();
|
||
} else if (topologyStr == "line") {
|
||
primitive = ElgIsolines;
|
||
} else if (topologyStr == "triangle_cw") {
|
||
vertexOrder = EvoCw;
|
||
primitive = ElgTriangles;
|
||
} else if (topologyStr == "triangle_ccw") {
|
||
vertexOrder = EvoCcw;
|
||
primitive = ElgTriangles;
|
||
} else {
|
||
error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
|
||
}
|
||
|
||
if (vertexOrder != EvoNone) {
|
||
if (! intermediate.setVertexOrder(vertexOrder)) {
|
||
error(loc, "cannot change previously set outputtopology",
|
||
TQualifier::getVertexOrderString(vertexOrder), "");
|
||
}
|
||
}
|
||
if (primitive != ElgNone)
|
||
intermediate.setOutputPrimitive(primitive);
|
||
}
|
||
}
|
||
|
||
// Handle [partitioning("...")]
|
||
const TIntermAggregate* partitionAttr = attributes[EatPartitioning];
|
||
if (partitionAttr != nullptr) {
|
||
const TConstUnion& partType = partitionAttr->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
|
||
if (partType.getType() != EbtString) {
|
||
error(loc, "invalid partitioning", "", "");
|
||
} else {
|
||
TString partitionStr = *partType.getSConst();
|
||
std::transform(partitionStr.begin(), partitionStr.end(), partitionStr.begin(), ::tolower);
|
||
|
||
TVertexSpacing partitioning = EvsNone;
|
||
|
||
if (partitionStr == "integer") {
|
||
partitioning = EvsEqual;
|
||
} else if (partitionStr == "fractional_even") {
|
||
partitioning = EvsFractionalEven;
|
||
} else if (partitionStr == "fractional_odd") {
|
||
partitioning = EvsFractionalOdd;
|
||
//} else if (partition == "pow2") { // TODO: currently nothing to map this to.
|
||
} else {
|
||
error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
|
||
}
|
||
|
||
if (! intermediate.setVertexSpacing(partitioning))
|
||
error(loc, "cannot change previously set partitioning",
|
||
TQualifier::getVertexSpacingString(partitioning), "");
|
||
}
|
||
}
|
||
|
||
// Handle [outputcontrolpoints("...")]
|
||
const TIntermAggregate* outputControlPoints = attributes[EatOutputControlPoints];
|
||
if (outputControlPoints != nullptr) {
|
||
const TConstUnion& ctrlPointConst =
|
||
outputControlPoints->getSequence()[0]->getAsConstantUnion()->getConstArray()[0];
|
||
if (ctrlPointConst.getType() != EbtInt) {
|
||
error(loc, "invalid outputcontrolpoints", "", "");
|
||
} else {
|
||
const int ctrlPoints = ctrlPointConst.getIConst();
|
||
if (! intermediate.setVertices(ctrlPoints)) {
|
||
error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
//
|
||
// Do all special handling for the entry point, including wrapping
|
||
// the shader's entry point with the official entry point that will call it.
|
||
//
|
||
// The following:
|
||
//
|
||
// retType shaderEntryPoint(args...) // shader declared entry point
|
||
// { body }
|
||
//
|
||
// Becomes
|
||
//
|
||
// out retType ret;
|
||
// in iargs<that are input>...;
|
||
// out oargs<that are output> ...;
|
||
//
|
||
// void shaderEntryPoint() // synthesized, but official, entry point
|
||
// {
|
||
// args<that are input> = iargs...;
|
||
// ret = @shaderEntryPoint(args...);
|
||
// oargs = args<that are output>...;
|
||
// }
|
||
// retType @shaderEntryPoint(args...)
|
||
// { body }
|
||
//
|
||
// The symbol table will still map the original entry point name to the
|
||
// the modified function and its new name:
|
||
//
|
||
// symbol table: shaderEntryPoint -> @shaderEntryPoint
|
||
//
|
||
// Returns nullptr if no entry-point tree was built, otherwise, returns
|
||
// a subtree that creates the entry point.
|
||
//
|
||
TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
|
||
const TAttributeMap& attributes)
|
||
{
|
||
// Return true if this is a tessellation patch constant function input to a domain shader.
|
||
const auto isDsPcfInput = [this](const TType& type) {
|
||
return language == EShLangTessEvaluation &&
|
||
type.contains([](const TType* t) {
|
||
return t->getQualifier().builtIn == EbvTessLevelOuter ||
|
||
t->getQualifier().builtIn == EbvTessLevelInner;
|
||
});
|
||
};
|
||
|
||
// if we aren't in the entry point, fix the IO as such and exit
|
||
if (userFunction.getName().compare(intermediate.getEntryPointName().c_str()) != 0) {
|
||
remapNonEntryPointIO(userFunction);
|
||
return nullptr;
|
||
}
|
||
|
||
entryPointFunction = &userFunction; // needed in finish()
|
||
|
||
// Handle entry point attributes
|
||
handleEntryPointAttributes(loc, attributes);
|
||
|
||
// entry point logic...
|
||
|
||
// Move parameters and return value to shader in/out
|
||
TVariable* entryPointOutput; // gets created in remapEntryPointIO
|
||
TVector<TVariable*> inputs;
|
||
TVector<TVariable*> outputs;
|
||
remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
|
||
|
||
// Further this return/in/out transform by flattening, splitting, and assigning locations
|
||
const auto makeVariableInOut = [&](TVariable& variable) {
|
||
if (variable.getType().isStruct()) {
|
||
const TStorageQualifier qualifier = variable.getType().getQualifier().storage;
|
||
// struct inputs to the vertex stage and outputs from the fragment stage must be flattened
|
||
if ((language == EShLangVertex && qualifier == EvqVaryingIn) ||
|
||
(language == EShLangFragment && qualifier == EvqVaryingOut))
|
||
flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */);
|
||
// Structs containing built-ins must be split
|
||
else if (variable.getType().containsBuiltIn())
|
||
split(variable);
|
||
else if (!variable.getType().getQualifier().isArrayedIo(language))
|
||
flatten(variable, false);
|
||
//else
|
||
// TODO: unify split and flatten, so all paths can create flattened I/O
|
||
}
|
||
|
||
// For clip and cull distance, multiple output variables potentially get merged
|
||
// into one in assignClipCullDistance. That code in assignClipCullDistance
|
||
// handles the interface logic, so we avoid it here in that case.
|
||
if (!isClipOrCullDistance(variable.getType()))
|
||
assignToInterface(variable);
|
||
};
|
||
if (entryPointOutput != nullptr)
|
||
makeVariableInOut(*entryPointOutput);
|
||
for (auto it = inputs.begin(); it != inputs.end(); ++it)
|
||
if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below)
|
||
makeVariableInOut(*(*it));
|
||
for (auto it = outputs.begin(); it != outputs.end(); ++it)
|
||
makeVariableInOut(*(*it));
|
||
|
||
// In the domain shader, PCF input must be at the end of the linkage. That's because in the
|
||
// hull shader there is no ordering: the output comes from the separate PCF, which does not
|
||
// participate in the argument list. That is always put at the end of the HS linkage, so the
|
||
// input side of the DS must match. The argument may be in any position in the DS argument list
|
||
// however, so this ensures the linkage is built in the correct order regardless of argument order.
|
||
if (language == EShLangTessEvaluation) {
|
||
for (auto it = inputs.begin(); it != inputs.end(); ++it)
|
||
if (isDsPcfInput((*it)->getType()))
|
||
makeVariableInOut(*(*it));
|
||
}
|
||
|
||
// Synthesize the call
|
||
|
||
pushScope(); // matches the one in handleFunctionBody()
|
||
|
||
// new signature
|
||
TType voidType(EbtVoid);
|
||
TFunction synthEntryPoint(&userFunction.getName(), voidType);
|
||
TIntermAggregate* synthParams = new TIntermAggregate();
|
||
intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
|
||
intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
|
||
intermediate.incrementEntryPointCount();
|
||
TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
|
||
|
||
// change original name
|
||
userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table
|
||
|
||
// Copy inputs (shader-in -> calling arg), while building up the call node
|
||
TVector<TVariable*> argVars;
|
||
TIntermAggregate* synthBody = new TIntermAggregate();
|
||
auto inputIt = inputs.begin();
|
||
TIntermTyped* callingArgs = nullptr;
|
||
|
||
for (int i = 0; i < userFunction.getParamCount(); i++) {
|
||
TParameter& param = userFunction[i];
|
||
argVars.push_back(makeInternalVariable(*param.name, *param.type));
|
||
argVars.back()->getWritableType().getQualifier().makeTemporary();
|
||
TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
|
||
handleFunctionArgument(&callee, callingArgs, arg);
|
||
if (param.type->getQualifier().isParamInput()) {
|
||
intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
|
||
intermediate.addSymbol(**inputIt)));
|
||
inputIt++;
|
||
}
|
||
}
|
||
|
||
// Call
|
||
currentCaller = synthEntryPoint.getMangledName();
|
||
TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
|
||
currentCaller = userFunction.getMangledName();
|
||
|
||
// Return value
|
||
if (entryPointOutput) {
|
||
TIntermTyped* returnAssign;
|
||
|
||
// For hull shaders, the wrapped entry point return value is written to
|
||
// an array element as indexed by invocation ID, which we might have to make up.
|
||
// This is required to match SPIR-V semantics.
|
||
if (language == EShLangTessControl) {
|
||
TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
|
||
|
||
// If there is no user declared invocation ID, we must make one.
|
||
if (invocationIdSym == nullptr) {
|
||
TType invocationIdType(EbtUint, EvqIn, 1);
|
||
TString* invocationIdName = NewPoolTString("InvocationId");
|
||
invocationIdType.getQualifier().builtIn = EbvInvocationId;
|
||
|
||
TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
|
||
|
||
globalQualifierFix(loc, variable->getWritableType().getQualifier());
|
||
trackLinkage(*variable);
|
||
|
||
invocationIdSym = intermediate.addSymbol(*variable);
|
||
}
|
||
|
||
TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
|
||
invocationIdSym, loc);
|
||
element->setType(callReturn->getType());
|
||
|
||
returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
|
||
} else {
|
||
returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
|
||
}
|
||
intermediate.growAggregate(synthBody, returnAssign);
|
||
} else
|
||
intermediate.growAggregate(synthBody, callReturn);
|
||
|
||
// Output copies
|
||
auto outputIt = outputs.begin();
|
||
for (int i = 0; i < userFunction.getParamCount(); i++) {
|
||
TParameter& param = userFunction[i];
|
||
|
||
// GS outputs are via emit, so we do not copy them here.
|
||
if (param.type->getQualifier().isParamOutput()) {
|
||
if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
|
||
// GS output stream does not assign outputs here: it's the Append() method
|
||
// which writes to the output, probably multiple times separated by Emit.
|
||
// We merely remember the output to use, here.
|
||
gsStreamOutput = *outputIt;
|
||
} else {
|
||
intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
|
||
intermediate.addSymbol(**outputIt),
|
||
intermediate.addSymbol(*argVars[i])));
|
||
}
|
||
|
||
outputIt++;
|
||
}
|
||
}
|
||
|
||
// Put the pieces together to form a full function subtree
|
||
// for the synthesized entry point.
|
||
synthBody->setOperator(EOpSequence);
|
||
TIntermNode* synthFunctionDef = synthParams;
|
||
handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
|
||
|
||
entryPointFunctionBody = synthBody;
|
||
|
||
return synthFunctionDef;
|
||
}
|
||
|
||
void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
|
||
TIntermNode*& node)
|
||
{
|
||
node = intermediate.growAggregate(node, functionBody);
|
||
intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
|
||
node->getAsAggregate()->setName(function.getMangledName().c_str());
|
||
|
||
popScope();
|
||
if (function.hasImplicitThis())
|
||
popImplicitThis();
|
||
|
||
if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
|
||
error(loc, "function does not return a value:", "", function.getName().c_str());
|
||
}
|
||
|
||
// AST I/O is done through shader globals declared in the 'in' or 'out'
|
||
// storage class. An HLSL entry point has a return value, input parameters
|
||
// and output parameters. These need to get remapped to the AST I/O.
|
||
void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
|
||
TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
|
||
{
|
||
// We might have in input structure type with no decorations that caused it
|
||
// to look like an input type, yet it has (e.g.) interpolation types that
|
||
// must be modified that turn it into an input type.
|
||
// Hence, a missing ioTypeMap for 'input' might need to be synthesized.
|
||
const auto synthesizeEditedInput = [this](TType& type) {
|
||
// True if a type needs to be 'flat'
|
||
const auto needsFlat = [](const TType& type) {
|
||
return type.containsBasicType(EbtInt) ||
|
||
type.containsBasicType(EbtUint) ||
|
||
type.containsBasicType(EbtInt64) ||
|
||
type.containsBasicType(EbtUint64) ||
|
||
type.containsBasicType(EbtBool) ||
|
||
type.containsBasicType(EbtDouble);
|
||
};
|
||
|
||
if (language == EShLangFragment && needsFlat(type)) {
|
||
if (type.isStruct()) {
|
||
TTypeList* finalList = nullptr;
|
||
auto it = ioTypeMap.find(type.getStruct());
|
||
if (it == ioTypeMap.end() || it->second.input == nullptr) {
|
||
// Getting here means we have no input struct, but we need one.
|
||
auto list = new TTypeList;
|
||
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
|
||
TType* newType = new TType;
|
||
newType->shallowCopy(*member->type);
|
||
TTypeLoc typeLoc = { newType, member->loc };
|
||
list->push_back(typeLoc);
|
||
}
|
||
// install the new input type
|
||
if (it == ioTypeMap.end()) {
|
||
tIoKinds newLists = { list, nullptr, nullptr };
|
||
ioTypeMap[type.getStruct()] = newLists;
|
||
} else
|
||
it->second.input = list;
|
||
finalList = list;
|
||
} else
|
||
finalList = it->second.input;
|
||
// edit for 'flat'
|
||
for (auto member = finalList->begin(); member != finalList->end(); ++member) {
|
||
if (needsFlat(*member->type)) {
|
||
member->type->getQualifier().clearInterpolation();
|
||
member->type->getQualifier().flat = true;
|
||
}
|
||
}
|
||
} else {
|
||
type.getQualifier().clearInterpolation();
|
||
type.getQualifier().flat = true;
|
||
}
|
||
}
|
||
};
|
||
|
||
// Do the actual work to make a type be a shader input or output variable,
|
||
// and clear the original to be non-IO (for use as a normal function parameter/return).
|
||
const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
|
||
TVariable* ioVariable = makeInternalVariable(name, type);
|
||
clearUniformInputOutput(type.getQualifier());
|
||
if (type.isStruct()) {
|
||
auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
|
||
if (newLists != ioTypeMap.end()) {
|
||
if (storage == EvqVaryingIn && newLists->second.input)
|
||
ioVariable->getWritableType().setStruct(newLists->second.input);
|
||
else if (storage == EvqVaryingOut && newLists->second.output)
|
||
ioVariable->getWritableType().setStruct(newLists->second.output);
|
||
}
|
||
}
|
||
if (storage == EvqVaryingIn) {
|
||
correctInput(ioVariable->getWritableType().getQualifier());
|
||
if (language == EShLangTessEvaluation)
|
||
if (!ioVariable->getType().isArray())
|
||
ioVariable->getWritableType().getQualifier().patch = true;
|
||
} else {
|
||
correctOutput(ioVariable->getWritableType().getQualifier());
|
||
}
|
||
ioVariable->getWritableType().getQualifier().storage = storage;
|
||
|
||
fixBuiltInIoType(ioVariable->getWritableType());
|
||
|
||
return ioVariable;
|
||
};
|
||
|
||
// return value is actually a shader-scoped output (out)
|
||
if (function.getType().getBasicType() == EbtVoid) {
|
||
returnValue = nullptr;
|
||
} else {
|
||
if (language == EShLangTessControl) {
|
||
// tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
|
||
// array in SPIR-V semantics. We'll write to it indexed by invocation ID.
|
||
|
||
returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
|
||
|
||
TType outputType;
|
||
outputType.shallowCopy(function.getType());
|
||
|
||
// vertices has necessarily already been set when handling entry point attributes.
|
||
TArraySizes arraySizes;
|
||
arraySizes.addInnerSize(intermediate.getVertices());
|
||
outputType.newArraySizes(arraySizes);
|
||
|
||
clearUniformInputOutput(function.getWritableType().getQualifier());
|
||
returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
|
||
} else {
|
||
returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
|
||
}
|
||
}
|
||
|
||
// parameters are actually shader-scoped inputs and outputs (in or out)
|
||
for (int i = 0; i < function.getParamCount(); i++) {
|
||
TType& paramType = *function[i].type;
|
||
if (paramType.getQualifier().isParamInput()) {
|
||
synthesizeEditedInput(paramType);
|
||
TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
|
||
inputs.push_back(argAsGlobal);
|
||
|
||
if (function[i].getDeclaredBuiltIn() == EbvInputPatch)
|
||
inputPatch = argAsGlobal;
|
||
}
|
||
if (paramType.getQualifier().isParamOutput()) {
|
||
TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
|
||
outputs.push_back(argAsGlobal);
|
||
}
|
||
}
|
||
}
|
||
|
||
// An HLSL function that looks like an entry point, but is not,
|
||
// declares entry point IO built-ins, but these have to be undone.
|
||
void HlslParseContext::remapNonEntryPointIO(TFunction& function)
|
||
{
|
||
// return value
|
||
if (function.getType().getBasicType() != EbtVoid)
|
||
clearUniformInputOutput(function.getWritableType().getQualifier());
|
||
|
||
// parameters.
|
||
// References to structuredbuffer types are left unmodified
|
||
for (int i = 0; i < function.getParamCount(); i++)
|
||
if (!isReference(*function[i].type))
|
||
clearUniformInputOutput(function[i].type->getQualifier());
|
||
}
|
||
|
||
// Handle function returns, including type conversions to the function return type
|
||
// if necessary.
|
||
TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
|
||
{
|
||
functionReturnsValue = true;
|
||
|
||
if (currentFunctionType->getBasicType() == EbtVoid) {
|
||
error(loc, "void function cannot return a value", "return", "");
|
||
return intermediate.addBranch(EOpReturn, loc);
|
||
} else if (*currentFunctionType != value->getType()) {
|
||
value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
|
||
if (value && *currentFunctionType != value->getType())
|
||
value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
|
||
if (value == nullptr) {
|
||
error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
|
||
return value;
|
||
}
|
||
}
|
||
|
||
return intermediate.addBranch(EOpReturn, value, loc);
|
||
}
|
||
|
||
void HlslParseContext::handleFunctionArgument(TFunction* function,
|
||
TIntermTyped*& arguments, TIntermTyped* newArg)
|
||
{
|
||
TParameter param = { 0, new TType, nullptr };
|
||
param.type->shallowCopy(newArg->getType());
|
||
|
||
function->addParameter(param);
|
||
if (arguments)
|
||
arguments = intermediate.growAggregate(arguments, newArg);
|
||
else
|
||
arguments = newArg;
|
||
}
|
||
|
||
// Clip and cull distance require special handling due to a semantic mismatch. In HLSL,
|
||
// these can be float scalar, float vector, or arrays of float scalar or float vector.
|
||
// In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components
|
||
// (e.g, both x and y components of a float2) out into the destination float array.
|
||
//
|
||
// The values are assigned to sequential members of the output array. The inner dimension
|
||
// is vector components. The outer dimension is array elements.
|
||
TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
|
||
TIntermTyped* left, TIntermTyped* right)
|
||
{
|
||
TVariable** clipCullVar = nullptr;
|
||
|
||
const TBuiltInVariable builtInType = left->getQualifier().builtIn;
|
||
|
||
// array sizes, or 1 if it's not an array:
|
||
const int rhsArraySize = (right->getType().isArray() ? right->getType().getOuterArraySize() : 1);
|
||
// vector sizes:
|
||
const int rhsVectorSize = right->getType().getVectorSize();
|
||
|
||
decltype(clipSemanticNSize)* semanticNSize = nullptr;
|
||
|
||
// Refer to either the clip or the cull distance, depending on semantic.
|
||
switch (builtInType) {
|
||
case EbvClipDistance:
|
||
clipCullVar = &clipDistanceOutput;
|
||
semanticNSize = &clipSemanticNSize;
|
||
break;
|
||
case EbvCullDistance:
|
||
clipCullVar = &cullDistanceOutput;
|
||
semanticNSize = &cullSemanticNSize;
|
||
break;
|
||
|
||
// called invalidly: we expected a clip or a cull distance.
|
||
// static compile time problem: should not happen.
|
||
default: assert(0); return nullptr;
|
||
}
|
||
|
||
// This is the offset in the destination array of a given semantic's data
|
||
std::array<int, maxClipCullRegs> semanticOffset;
|
||
|
||
// Calculate offset of variable of semantic N in destination array
|
||
int arrayLoc = 0;
|
||
int vecItems = 0;
|
||
|
||
for (int x = 0; x < maxClipCullRegs; ++x) {
|
||
// See if we overflowed the vec4 packing
|
||
if ((vecItems + (*semanticNSize)[x]) > 4) {
|
||
arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
|
||
vecItems = 0;
|
||
}
|
||
|
||
semanticOffset[x] = arrayLoc;
|
||
vecItems += (*semanticNSize)[x];
|
||
arrayLoc += (*semanticNSize)[x];
|
||
}
|
||
|
||
|
||
// If we haven't created the output already, create it now.
|
||
if (*clipCullVar == nullptr) {
|
||
// ClipDistance and CullDistance are handled specially in the entry point output
|
||
// copy algorithm, because they may need to be unpacked from components of vectors
|
||
// (or a scalar) into a float array. Here, we make the array the right size and type,
|
||
// which depends on the incoming data, which has several potential dimensions:
|
||
// Semantic ID
|
||
// vector size
|
||
// array size
|
||
// Of those, semantic ID and array size cannot appear simultaneously.
|
||
|
||
const int requiredArraySize = arrayLoc * rhsArraySize;
|
||
|
||
TType clipCullType(EbtFloat, left->getType().getQualifier().storage, 1);
|
||
clipCullType.getQualifier() = left->getType().getQualifier();
|
||
|
||
// Create required array dimension
|
||
TArraySizes arraySizes;
|
||
arraySizes.addInnerSize(requiredArraySize);
|
||
clipCullType.newArraySizes(arraySizes);
|
||
|
||
// Obtain symbol name: we'll use that for the symbol we introduce.
|
||
TIntermSymbol* sym = left->getAsSymbolNode();
|
||
assert(sym != nullptr);
|
||
|
||
// We are moving the semantic ID from the layout location, so it is no longer needed or
|
||
// desired there.
|
||
clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
|
||
|
||
// Create variable and track its linkage
|
||
*clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
|
||
|
||
trackLinkage(**clipCullVar);
|
||
}
|
||
|
||
// Create symbol for the clip or cull variable.
|
||
left = intermediate.addSymbol(**clipCullVar);
|
||
|
||
// array sizes, or 1 if it's not an array:
|
||
const int lhsArraySize = (left->getType().isArray() ? left->getType().getOuterArraySize() : 1);
|
||
// vector sizes:
|
||
const int lhsVectorSize = left->getType().getVectorSize();
|
||
|
||
// left has got to be an array of scalar floats, per SPIR-V semantics.
|
||
// fixBuiltInIoType() should have handled that upstream.
|
||
assert(left->getType().isArray());
|
||
assert(left->getType().getVectorSize() == 1);
|
||
assert(left->getType().getBasicType() == EbtFloat);
|
||
|
||
// We may be creating multiple sub-assignments. This is an aggregate to hold them.
|
||
// TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
|
||
TIntermAggregate* assignList = nullptr;
|
||
|
||
// If the types are homomorphic, use a simple assign. No need to mess about with
|
||
// individual components.
|
||
if (left->getType().isArray() == right->getType().isArray() &&
|
||
lhsArraySize == rhsArraySize &&
|
||
lhsVectorSize == rhsVectorSize) {
|
||
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc));
|
||
assignList->setOperator(EOpSequence);
|
||
return assignList;
|
||
}
|
||
|
||
// We are going to copy each component of the right (per array element if indicated) to sequential
|
||
// array elements of the left. This tracks the lhs element we're writing to as we go along.
|
||
// We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
|
||
int lhsArrayPos = semanticOffset[semanticId];
|
||
|
||
// Loop through every component of every element of the RHS, and copy to LHS elements in turn.
|
||
for (int rhsArrayPos = 0; rhsArrayPos < rhsArraySize; ++rhsArrayPos) {
|
||
for (int rhsComponent = 0; rhsComponent < rhsVectorSize; ++rhsComponent) {
|
||
// LHS array member to write to:
|
||
TIntermTyped* lhsMember = intermediate.addIndex(EOpIndexDirect, left,
|
||
intermediate.addConstantUnion(lhsArrayPos++, loc), loc);
|
||
|
||
TIntermTyped* rhsMember = right;
|
||
|
||
// If right is an array, extract the element of interest
|
||
if (right->getType().isArray()) {
|
||
const TType derefType(rhsMember->getType(), 0);
|
||
rhsMember = intermediate.addIndex(EOpIndexDirect, rhsMember,
|
||
intermediate.addConstantUnion(rhsArrayPos, loc), loc);
|
||
rhsMember->setType(derefType);
|
||
}
|
||
|
||
// If right is a vector, extract the component of interest.
|
||
if (right->getType().isVector()) {
|
||
const TType derefType(rhsMember->getType(), 0);
|
||
rhsMember = intermediate.addIndex(EOpIndexDirect, rhsMember,
|
||
intermediate.addConstantUnion(rhsComponent, loc), loc);
|
||
rhsMember->setType(derefType);
|
||
}
|
||
|
||
// Assign: to the proper lhs member.
|
||
assignList = intermediate.growAggregate(assignList,
|
||
intermediate.addAssign(op, lhsMember, rhsMember, loc));
|
||
}
|
||
}
|
||
|
||
assert(assignList != nullptr);
|
||
assignList->setOperator(EOpSequence);
|
||
|
||
return assignList;
|
||
}
|
||
|
||
// For a declaration with an initializer, where the initialized symbol is flattened,
|
||
// and possibly contains opaque values, such that the initializer should never exist
|
||
// as emitted code, because even creating the initializer would write opaques.
|
||
//
|
||
// Decompose this into individual member-wise assignments, which themselves are
|
||
// expected to then not exist for opaque types, because they will turn into aliases.
|
||
//
|
||
// Return a node that contains the non-aliased assignments that must continue to exist.
|
||
TIntermAggregate* HlslParseContext::executeFlattenedInitializer(const TSourceLoc& loc, TIntermSymbol* symbol,
|
||
const TIntermAggregate& initializer)
|
||
{
|
||
TIntermAggregate* initList = nullptr;
|
||
// synthesize an access to each member, and then an assignment to it
|
||
const TTypeList& typeList = *symbol->getType().getStruct();
|
||
for (int member = 0; member < (int)typeList.size(); ++member) {
|
||
TIntermTyped* memberInitializer = initializer.getSequence()[member]->getAsTyped();
|
||
TIntermTyped* flattenedMember = flattenAccess(symbol, member);
|
||
if (flattenedMember->getType().containsOpaque())
|
||
setOpaqueLvalue(flattenedMember, memberInitializer);
|
||
else
|
||
initList = intermediate.growAggregate(initList, handleAssign(loc, EOpAssign, flattenedMember,
|
||
memberInitializer));
|
||
}
|
||
|
||
if (initList)
|
||
initList->setOperator(EOpSequence);
|
||
return initList;
|
||
}
|
||
|
||
// Some simple source assignments need to be flattened to a sequence
|
||
// of AST assignments. Catch these and flatten, otherwise, pass through
|
||
// to intermediate.addAssign().
|
||
//
|
||
// Also, assignment to matrix swizzles requires multiple component assignments,
|
||
// intercept those as well.
|
||
TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
|
||
TIntermTyped* right)
|
||
{
|
||
if (left == nullptr || right == nullptr)
|
||
return nullptr;
|
||
|
||
if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
|
||
return handleAssignToMatrixSwizzle(loc, op, left, right);
|
||
|
||
const bool isSplitLeft = wasSplit(left);
|
||
const bool isSplitRight = wasSplit(right);
|
||
|
||
const bool isFlattenLeft = wasFlattened(left);
|
||
const bool isFlattenRight = wasFlattened(right);
|
||
|
||
// OK to do a single assign if both are split, or both are unsplit. But if one is and the other
|
||
// isn't, we fall back to a member-wise copy.
|
||
if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
|
||
// Clip and cull distance requires more processing. See comment above assignClipCullDistance.
|
||
if (isClipOrCullDistance(left->getType())) {
|
||
const int semanticId = left->getType().getQualifier().layoutLocation;
|
||
return assignClipCullDistance(loc, op, semanticId, left, right);
|
||
}
|
||
|
||
return intermediate.addAssign(op, left, right, loc);
|
||
}
|
||
|
||
TIntermAggregate* assignList = nullptr;
|
||
const TVector<TVariable*>* leftVariables = nullptr;
|
||
const TVector<TVariable*>* rightVariables = nullptr;
|
||
|
||
// A temporary to store the right node's value, so we don't keep indirecting into it
|
||
// if it's not a simple symbol.
|
||
TVariable* rhsTempVar = nullptr;
|
||
|
||
// If the RHS is a simple symbol node, we'll copy it for each member.
|
||
TIntermSymbol* cloneSymNode = nullptr;
|
||
|
||
int memberCount = 0;
|
||
|
||
// Track how many items there are to copy.
|
||
if (left->getType().isStruct())
|
||
memberCount = (int)left->getType().getStruct()->size();
|
||
if (left->getType().isArray())
|
||
memberCount = left->getType().getCumulativeArraySize();
|
||
|
||
if (isFlattenLeft)
|
||
leftVariables = &flattenMap.find(left->getAsSymbolNode()->getId())->second.members;
|
||
|
||
if (isFlattenRight) {
|
||
rightVariables = &flattenMap.find(right->getAsSymbolNode()->getId())->second.members;
|
||
} else {
|
||
// The RHS is not flattened. There are several cases:
|
||
// 1. 1 item to copy: Use the RHS directly.
|
||
// 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
|
||
// 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
|
||
|
||
if (memberCount <= 1) {
|
||
// case 1: we'll use the symbol directly below. Nothing to do.
|
||
} else {
|
||
if (right->getAsSymbolNode() != nullptr) {
|
||
// case 2: we'll copy the symbol per iteration below.
|
||
cloneSymNode = right->getAsSymbolNode();
|
||
} else {
|
||
// case 3: assign to a temp, and indirect into that.
|
||
rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
|
||
rhsTempVar->getWritableType().getQualifier().makeTemporary();
|
||
TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
|
||
|
||
// Add this to the aggregate being built.
|
||
assignList = intermediate.growAggregate(assignList,
|
||
intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
|
||
}
|
||
}
|
||
}
|
||
|
||
int memberIdx = 0;
|
||
|
||
// When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
|
||
// variables, which is awkward when copying between split and unsplit structures. This variable tracks
|
||
// array indirections so they can be percolated from outer structs to inner variables.
|
||
std::vector <int> arrayElement;
|
||
|
||
// We track the outer-most aggregate, so that we can use its storage class later.
|
||
const TIntermTyped* outerLeft = left;
|
||
const TIntermTyped* outerRight = right;
|
||
|
||
const auto getMember = [&](bool isLeft, TIntermTyped* node, int member, TIntermTyped* splitNode, int splitMember)
|
||
-> TIntermTyped * {
|
||
const bool flattened = isLeft ? isFlattenLeft : isFlattenRight;
|
||
const bool split = isLeft ? isSplitLeft : isSplitRight;
|
||
|
||
TIntermTyped* subTree;
|
||
const TType derefType(node->getType(), member);
|
||
if (split && derefType.isBuiltIn()) {
|
||
// copy from interstage IO built-in if needed
|
||
const TIntermTyped* outer = isLeft ? outerLeft : outerRight;
|
||
subTree = intermediate.addSymbol(*splitBuiltIns.find(
|
||
HlslParseContext::tInterstageIoData(derefType, outer->getType()))->second);
|
||
|
||
// Arrayness of builtIn symbols isn't handled by the normal recursion:
|
||
// it's been extracted and moved to the built-in.
|
||
if (subTree->getType().isArray() && !arrayElement.empty()) {
|
||
const TType splitDerefType(subTree->getType(), arrayElement.back());
|
||
subTree = intermediate.addIndex(EOpIndexDirect, subTree,
|
||
intermediate.addConstantUnion(arrayElement.back(), loc), loc);
|
||
subTree->setType(splitDerefType);
|
||
}
|
||
} else if (flattened && isFinalFlattening(derefType)) {
|
||
const TVector<TVariable*>& flatVariables = isLeft ? *leftVariables : *rightVariables;
|
||
subTree = intermediate.addSymbol(*flatVariables[memberIdx++]);
|
||
} else {
|
||
// Index operator if it's an aggregate, else EOpNull
|
||
const TOperator accessOp = node->getType().isArray() ? EOpIndexDirect
|
||
: node->getType().isStruct() ? EOpIndexDirectStruct
|
||
: EOpNull;
|
||
if (accessOp == EOpNull) {
|
||
subTree = splitNode;
|
||
} else {
|
||
subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
|
||
loc);
|
||
const TType splitDerefType(splitNode->getType(), splitMember);
|
||
subTree->setType(splitDerefType);
|
||
}
|
||
}
|
||
|
||
return subTree;
|
||
};
|
||
|
||
// Use the proper RHS node: a new symbol from a TVariable, copy
|
||
// of an TIntermSymbol node, or sometimes the right node directly.
|
||
right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) :
|
||
cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
|
||
right;
|
||
|
||
// Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
|
||
// whole thing. So, we'll resort to an explicit type via std::function.
|
||
const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight)>
|
||
traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight) -> void {
|
||
// If we get here, we are assigning to or from a whole array or struct that must be
|
||
// flattened, so have to do member-by-member assignment:
|
||
|
||
if (left->getType().isArray() || right->getType().isArray()) {
|
||
const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1;
|
||
const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
|
||
|
||
// The arrays may not be the same size, e.g, if the size has been forced for EbvTessLevelInner or Outer.
|
||
const int elementsToCopy = std::min(elementsL, elementsR);
|
||
|
||
// array case
|
||
for (int element = 0; element < elementsToCopy; ++element) {
|
||
arrayElement.push_back(element);
|
||
|
||
// Add a new AST symbol node if we have a temp variable holding a complex RHS.
|
||
TIntermTyped* subLeft = getMember(true, left, element, left, element);
|
||
TIntermTyped* subRight = getMember(false, right, element, right, element);
|
||
|
||
TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left, element, splitLeft, element)
|
||
: subLeft;
|
||
TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right, element, splitRight, element)
|
||
: subRight;
|
||
|
||
traverse(subLeft, subRight, subSplitLeft, subSplitRight);
|
||
|
||
arrayElement.pop_back();
|
||
}
|
||
} else if (left->getType().isStruct()) {
|
||
// struct case
|
||
const auto& membersL = *left->getType().getStruct();
|
||
const auto& membersR = *right->getType().getStruct();
|
||
|
||
// These track the members in the split structures corresponding to the same in the unsplit structures,
|
||
// which we traverse in parallel.
|
||
int memberL = 0;
|
||
int memberR = 0;
|
||
|
||
// Handle empty structure assignment
|
||
if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
|
||
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
|
||
|
||
for (int member = 0; member < int(membersL.size()); ++member) {
|
||
const TType& typeL = *membersL[member].type;
|
||
const TType& typeR = *membersR[member].type;
|
||
|
||
TIntermTyped* subLeft = getMember(true, left, member, left, member);
|
||
TIntermTyped* subRight = getMember(false, right, member, right, member);
|
||
|
||
// If there is no splitting, use the same values to avoid inefficiency.
|
||
TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left, member, splitLeft, memberL)
|
||
: subLeft;
|
||
TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right, member, splitRight, memberR)
|
||
: subRight;
|
||
|
||
if (isClipOrCullDistance(subSplitLeft->getType())) {
|
||
// Clip and cull distance built-in assignment is complex in its own right, and is handled in
|
||
// a separate function dedicated to that task. See comment above assignClipCullDistance;
|
||
|
||
// Since all clip/cull semantics boil down to the same built-in type, we need to get the
|
||
// semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
|
||
const TType derefType(left->getType(), member);
|
||
const int semanticId = derefType.getQualifier().layoutLocation;
|
||
|
||
TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
|
||
subSplitLeft, subSplitRight);
|
||
|
||
assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
|
||
|
||
} else if (!isFlattenLeft && !isFlattenRight &&
|
||
!typeL.containsBuiltIn() &&
|
||
!typeR.containsBuiltIn()) {
|
||
// If this is the final flattening (no nested types below to flatten)
|
||
// we'll copy the member, else recurse into the type hierarchy.
|
||
// However, if splitting the struct, that means we can copy a whole
|
||
// subtree here IFF it does not itself contain any interstage built-in
|
||
// IO variables, so we only have to recurse into it if there's something
|
||
// for splitting to do. That can save a lot of AST verbosity for
|
||
// a bunch of memberwise copies.
|
||
|
||
assignList = intermediate.growAggregate(assignList,
|
||
intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
|
||
loc);
|
||
} else {
|
||
traverse(subLeft, subRight, subSplitLeft, subSplitRight);
|
||
}
|
||
|
||
memberL += (typeL.isBuiltIn() ? 0 : 1);
|
||
memberR += (typeR.isBuiltIn() ? 0 : 1);
|
||
}
|
||
} else {
|
||
// Member copy
|
||
assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
|
||
}
|
||
|
||
};
|
||
|
||
TIntermTyped* splitLeft = left;
|
||
TIntermTyped* splitRight = right;
|
||
|
||
// If either left or right was a split structure, we must read or write it, but still have to
|
||
// parallel-recurse through the unsplit structure to identify the built-in IO vars.
|
||
if (isSplitLeft)
|
||
splitLeft = intermediate.addSymbol(*getSplitNonIoVar(left->getAsSymbolNode()->getId()), loc);
|
||
|
||
if (isSplitRight)
|
||
splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
|
||
|
||
// This makes the whole assignment, recursing through subtypes as needed.
|
||
traverse(left, right, splitLeft, splitRight);
|
||
|
||
assert(assignList != nullptr);
|
||
assignList->setOperator(EOpSequence);
|
||
|
||
return assignList;
|
||
}
|
||
|
||
// An assignment to matrix swizzle must be decomposed into individual assignments.
|
||
// These must be selected component-wise from the RHS and stored component-wise
|
||
// into the LHS.
|
||
TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
|
||
TIntermTyped* right)
|
||
{
|
||
assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
|
||
|
||
if (op != EOpAssign)
|
||
error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
|
||
|
||
// isolate the matrix and swizzle nodes
|
||
TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
|
||
const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
|
||
|
||
// if the RHS isn't already a simple vector, let's store into one
|
||
TIntermSymbol* vector = right->getAsSymbolNode();
|
||
TIntermTyped* vectorAssign = nullptr;
|
||
if (vector == nullptr) {
|
||
// create a new intermediate vector variable to assign to
|
||
TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
|
||
vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
|
||
|
||
// assign the right to the new vector
|
||
vectorAssign = handleAssign(loc, op, vector, right);
|
||
}
|
||
|
||
// Assign the vector components to the matrix components.
|
||
// Store this as a sequence, so a single aggregate node represents this
|
||
// entire operation.
|
||
TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
|
||
TType columnType(matrix->getType(), 0);
|
||
TType componentType(columnType, 0);
|
||
TType indexType(EbtInt);
|
||
for (int i = 0; i < (int)swizzle.size(); i += 2) {
|
||
// the right component, single index into the RHS vector
|
||
TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
|
||
intermediate.addConstantUnion(i/2, loc), loc);
|
||
|
||
// the left component, double index into the LHS matrix
|
||
TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
|
||
intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
|
||
indexType, loc),
|
||
loc);
|
||
leftComp->setType(columnType);
|
||
leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
|
||
intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
|
||
indexType, loc),
|
||
loc);
|
||
leftComp->setType(componentType);
|
||
|
||
// Add the assignment to the aggregate
|
||
result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
|
||
}
|
||
|
||
result->setOp(EOpSequence);
|
||
|
||
return result;
|
||
}
|
||
|
||
//
|
||
// HLSL atomic operations have slightly different arguments than
|
||
// GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic.
|
||
// This provides the post-decomposition equivalent opcode.
|
||
//
|
||
TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
|
||
{
|
||
switch (op) {
|
||
case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd;
|
||
case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd;
|
||
case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
|
||
case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax;
|
||
case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin;
|
||
case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr;
|
||
case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor;
|
||
case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
|
||
case EOpInterlockedCompareStore: // TODO: ...
|
||
default:
|
||
error(loc, "unknown atomic operation", "unknown op", "");
|
||
return EOpNull;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Create a combined sampler/texture from separate sampler and texture.
|
||
//
|
||
TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
|
||
TIntermTyped* argSampler)
|
||
{
|
||
TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
|
||
|
||
txcombine->getSequence().push_back(argTex);
|
||
txcombine->getSequence().push_back(argSampler);
|
||
|
||
TSampler samplerType = argTex->getType().getSampler();
|
||
samplerType.combined = true;
|
||
samplerType.shadow = argSampler->getType().getSampler().shadow;
|
||
|
||
txcombine->setType(TType(samplerType, EvqTemporary));
|
||
txcombine->setLoc(loc);
|
||
|
||
return txcombine;
|
||
}
|
||
|
||
// Return true if this a buffer type that has an associated counter buffer.
|
||
bool HlslParseContext::hasStructBuffCounter(const TType& type) const
|
||
{
|
||
switch (type.getQualifier().declaredBuiltIn) {
|
||
case EbvAppendConsume: // fall through...
|
||
case EbvRWStructuredBuffer: // ...
|
||
return true;
|
||
default:
|
||
return false; // the other structuredbuffer types do not have a counter.
|
||
}
|
||
}
|
||
|
||
void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
|
||
{
|
||
// Counter type
|
||
TType* counterType = new TType(EbtInt, EvqBuffer);
|
||
counterType->setFieldName("@count");
|
||
|
||
TTypeList* blockStruct = new TTypeList;
|
||
TTypeLoc member = { counterType, loc };
|
||
blockStruct->push_back(member);
|
||
|
||
TType blockType(blockStruct, "", counterType->getQualifier());
|
||
blockType.getQualifier().storage = EvqBuffer;
|
||
|
||
type.shallowCopy(blockType);
|
||
shareStructBufferType(type);
|
||
}
|
||
|
||
// knowledge of how to construct block name, in one place instead of N places.
|
||
TString HlslParseContext::getStructBuffCounterName(const TString& blockName) const
|
||
{
|
||
return blockName + "@count";
|
||
}
|
||
|
||
// declare counter for a structured buffer type
|
||
void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
|
||
{
|
||
// Bail out if not a struct buffer
|
||
if (! isStructBufferType(bufferType))
|
||
return;
|
||
|
||
if (! hasStructBuffCounter(bufferType))
|
||
return;
|
||
|
||
TType blockType;
|
||
counterBufferType(loc, blockType);
|
||
|
||
TString* blockName = new TString(getStructBuffCounterName(name));
|
||
|
||
// Counter buffer does not have its own counter buffer. TODO: there should be a better way to track this.
|
||
structBufferCounter[*blockName] = false;
|
||
|
||
shareStructBufferType(blockType);
|
||
declareBlock(loc, blockType, blockName);
|
||
}
|
||
|
||
// return the counter that goes with a given structuredbuffer
|
||
TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
|
||
{
|
||
// Bail out if not a struct buffer
|
||
if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
|
||
return nullptr;
|
||
|
||
const TString counterBlockName(getStructBuffCounterName(buffer->getAsSymbolNode()->getName()));
|
||
|
||
// Mark the counter as being used
|
||
structBufferCounter[counterBlockName] = true;
|
||
|
||
TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure
|
||
TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
|
||
|
||
TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
|
||
counterMember->setType(TType(EbtInt));
|
||
return counterMember;
|
||
}
|
||
|
||
|
||
//
|
||
// Decompose structure buffer methods into AST
|
||
//
|
||
void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
|
||
{
|
||
if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
|
||
return;
|
||
|
||
const TOperator op = node->getAsOperator()->getOp();
|
||
TIntermAggregate* argAggregate = arguments->getAsAggregate();
|
||
|
||
// Buffer is the object upon which method is called, so always arg 0
|
||
TIntermTyped* bufferObj = nullptr;
|
||
|
||
// The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
|
||
if (argAggregate) {
|
||
if (argAggregate->getSequence().empty())
|
||
return;
|
||
bufferObj = argAggregate->getSequence()[0]->getAsTyped();
|
||
} else {
|
||
bufferObj = arguments->getAsSymbolNode();
|
||
}
|
||
|
||
if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
|
||
return;
|
||
|
||
// Some methods require a hidden internal counter, obtained via getStructBufferCounter().
|
||
// This lambda adds something to it and returns the old value.
|
||
const auto incDecCounter = [&](int incval) -> TIntermTyped* {
|
||
TIntermTyped* incrementValue = intermediate.addConstantUnion(incval, loc, true);
|
||
TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
|
||
|
||
if (counter == nullptr)
|
||
return nullptr;
|
||
|
||
TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
|
||
counterIncrement->setType(TType(EbtUint, EvqTemporary));
|
||
counterIncrement->setLoc(loc);
|
||
counterIncrement->getSequence().push_back(counter);
|
||
counterIncrement->getSequence().push_back(incrementValue);
|
||
|
||
return counterIncrement;
|
||
};
|
||
|
||
// Index to obtain the runtime sized array out of the buffer.
|
||
TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
|
||
if (argArray == nullptr)
|
||
return; // It might not be a struct buffer method.
|
||
|
||
switch (op) {
|
||
case EOpMethodLoad:
|
||
{
|
||
TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
|
||
|
||
const TType& bufferType = bufferObj->getType();
|
||
|
||
const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
|
||
|
||
// Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
|
||
// buffer then, but that's what it calls itself.
|
||
const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer ||
|
||
builtInType == EbvRWByteAddressBuffer);
|
||
|
||
|
||
if (isByteAddressBuffer)
|
||
argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
|
||
intermediate.addConstantUnion(2, loc, true),
|
||
loc, TType(EbtInt));
|
||
|
||
// Index into the array to find the item being loaded.
|
||
const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
|
||
|
||
node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
|
||
|
||
const TType derefType(argArray->getType(), 0);
|
||
node->setType(derefType);
|
||
}
|
||
|
||
break;
|
||
|
||
case EOpMethodLoad2:
|
||
case EOpMethodLoad3:
|
||
case EOpMethodLoad4:
|
||
{
|
||
TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
|
||
|
||
TOperator constructOp = EOpNull;
|
||
int size = 0;
|
||
|
||
switch (op) {
|
||
case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
|
||
case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
|
||
case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
|
||
default: assert(0);
|
||
}
|
||
|
||
TIntermTyped* body = nullptr;
|
||
|
||
// First, we'll store the address in a variable to avoid multiple shifts
|
||
// (we must convert the byte address to an item address)
|
||
TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
|
||
intermediate.addConstantUnion(2, loc, true),
|
||
loc, TType(EbtInt));
|
||
|
||
TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
|
||
TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
|
||
|
||
body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
|
||
|
||
TIntermTyped* vec = nullptr;
|
||
|
||
// These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
|
||
// address conversion.
|
||
for (int idx=0; idx<size; ++idx) {
|
||
TIntermTyped* offsetIdx = byteAddrIdxVar;
|
||
|
||
// add index offset
|
||
if (idx != 0)
|
||
offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
|
||
intermediate.addConstantUnion(idx, loc, true),
|
||
loc, TType(EbtInt));
|
||
|
||
const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
|
||
: EOpIndexIndirect;
|
||
|
||
vec = intermediate.growAggregate(vec, intermediate.addIndex(idxOp, argArray, offsetIdx, loc));
|
||
}
|
||
|
||
vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
|
||
vec->getAsAggregate()->setOperator(constructOp);
|
||
|
||
body = intermediate.growAggregate(body, vec);
|
||
body->setType(vec->getType());
|
||
body->getAsAggregate()->setOperator(EOpSequence);
|
||
|
||
node = body;
|
||
}
|
||
|
||
break;
|
||
|
||
case EOpMethodStore:
|
||
case EOpMethodStore2:
|
||
case EOpMethodStore3:
|
||
case EOpMethodStore4:
|
||
{
|
||
TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
|
||
TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value
|
||
|
||
// Index into the array to find the item being loaded.
|
||
// Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
|
||
// buffer then, but that's what it calls itself.
|
||
|
||
int size = 0;
|
||
|
||
switch (op) {
|
||
case EOpMethodStore: size = 1; break;
|
||
case EOpMethodStore2: size = 2; break;
|
||
case EOpMethodStore3: size = 3; break;
|
||
case EOpMethodStore4: size = 4; break;
|
||
default: assert(0);
|
||
}
|
||
|
||
TIntermAggregate* body = nullptr;
|
||
|
||
// First, we'll store the address in a variable to avoid multiple shifts
|
||
// (we must convert the byte address to an item address)
|
||
TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
|
||
intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
|
||
|
||
TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
|
||
TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
|
||
|
||
body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
|
||
|
||
for (int idx=0; idx<size; ++idx) {
|
||
TIntermTyped* offsetIdx = byteAddrIdxVar;
|
||
TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
|
||
|
||
// add index offset
|
||
if (idx != 0)
|
||
offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
|
||
|
||
const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
|
||
: EOpIndexIndirect;
|
||
|
||
TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
|
||
TIntermTyped* rValue = (size == 1) ? argValue :
|
||
intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
|
||
|
||
TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
|
||
|
||
body = intermediate.growAggregate(body, assign);
|
||
}
|
||
|
||
body->setOperator(EOpSequence);
|
||
node = body;
|
||
}
|
||
|
||
break;
|
||
|
||
case EOpMethodGetDimensions:
|
||
{
|
||
const int numArgs = (int)argAggregate->getSequence().size();
|
||
TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items
|
||
TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride
|
||
|
||
TIntermAggregate* body = nullptr;
|
||
|
||
// Length output:
|
||
if (argArray->getType().isRuntimeSizedArray()) {
|
||
TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
|
||
argNumItems->getType());
|
||
TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
|
||
body = intermediate.growAggregate(body, assign, loc);
|
||
} else {
|
||
const int length = argArray->getType().getOuterArraySize();
|
||
TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
|
||
intermediate.addConstantUnion(length, loc, true), loc);
|
||
body = intermediate.growAggregate(body, assign, loc);
|
||
}
|
||
|
||
// Stride output:
|
||
if (argStride != nullptr) {
|
||
int size;
|
||
int stride;
|
||
intermediate.getBaseAlignment(argArray->getType(), size, stride, false,
|
||
argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
|
||
|
||
TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
|
||
intermediate.addConstantUnion(stride, loc, true), loc);
|
||
|
||
body = intermediate.growAggregate(body, assign);
|
||
}
|
||
|
||
body->setOperator(EOpSequence);
|
||
node = body;
|
||
}
|
||
|
||
break;
|
||
|
||
case EOpInterlockedAdd:
|
||
case EOpInterlockedAnd:
|
||
case EOpInterlockedExchange:
|
||
case EOpInterlockedMax:
|
||
case EOpInterlockedMin:
|
||
case EOpInterlockedOr:
|
||
case EOpInterlockedXor:
|
||
case EOpInterlockedCompareExchange:
|
||
case EOpInterlockedCompareStore:
|
||
{
|
||
// We'll replace the first argument with the block dereference, and let
|
||
// downstream decomposition handle the rest.
|
||
|
||
TIntermSequence& sequence = argAggregate->getSequence();
|
||
|
||
TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index
|
||
argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
|
||
loc, TType(EbtInt));
|
||
|
||
const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
|
||
TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
|
||
|
||
const TType derefType(argArray->getType(), 0);
|
||
element->setType(derefType);
|
||
|
||
// Replace the numeric byte offset parameter with array reference.
|
||
sequence[1] = element;
|
||
sequence.erase(sequence.begin(), sequence.begin()+1);
|
||
}
|
||
break;
|
||
|
||
case EOpMethodIncrementCounter:
|
||
{
|
||
node = incDecCounter(1);
|
||
break;
|
||
}
|
||
|
||
case EOpMethodDecrementCounter:
|
||
{
|
||
TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
|
||
node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
|
||
preIncValue->getType());
|
||
break;
|
||
}
|
||
|
||
case EOpMethodAppend:
|
||
{
|
||
TIntermTyped* oldCounter = incDecCounter(1);
|
||
|
||
TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
|
||
TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
|
||
|
||
const TType derefType(argArray->getType(), 0);
|
||
lValue->setType(derefType);
|
||
|
||
node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodConsume:
|
||
{
|
||
TIntermTyped* oldCounter = incDecCounter(-1);
|
||
|
||
TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
|
||
intermediate.addConstantUnion(-1, loc, true), loc,
|
||
oldCounter->getType());
|
||
|
||
node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
|
||
|
||
const TType derefType(argArray->getType(), 0);
|
||
node->setType(derefType);
|
||
|
||
break;
|
||
}
|
||
|
||
default:
|
||
break; // most pass through unchanged
|
||
}
|
||
}
|
||
|
||
// Create array of standard sample positions for given sample count.
|
||
// TODO: remove when a real method to query sample pos exists in SPIR-V.
|
||
TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
|
||
{
|
||
struct tSamplePos { float x, y; };
|
||
|
||
static const tSamplePos pos1[] = {
|
||
{ 0.0/16.0, 0.0/16.0 },
|
||
};
|
||
|
||
// standard sample positions for 2, 4, 8, and 16 samples.
|
||
static const tSamplePos pos2[] = {
|
||
{ 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
|
||
};
|
||
|
||
static const tSamplePos pos4[] = {
|
||
{-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 },
|
||
};
|
||
|
||
static const tSamplePos pos8[] = {
|
||
{ 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
|
||
{-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
|
||
};
|
||
|
||
static const tSamplePos pos16[] = {
|
||
{ 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
|
||
{-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
|
||
{-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 },
|
||
{-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
|
||
};
|
||
|
||
const tSamplePos* sampleLoc = nullptr;
|
||
int numSamples = count;
|
||
|
||
switch (count) {
|
||
case 2: sampleLoc = pos2; break;
|
||
case 4: sampleLoc = pos4; break;
|
||
case 8: sampleLoc = pos8; break;
|
||
case 16: sampleLoc = pos16; break;
|
||
default:
|
||
sampleLoc = pos1;
|
||
numSamples = 1;
|
||
}
|
||
|
||
TConstUnionArray* values = new TConstUnionArray(numSamples*2);
|
||
|
||
for (int pos=0; pos<count; ++pos) {
|
||
TConstUnion x, y;
|
||
x.setDConst(sampleLoc[pos].x);
|
||
y.setDConst(sampleLoc[pos].y);
|
||
|
||
(*values)[pos*2+0] = x;
|
||
(*values)[pos*2+1] = y;
|
||
}
|
||
|
||
TType retType(EbtFloat, EvqConst, 2);
|
||
|
||
if (numSamples != 1) {
|
||
TArraySizes arraySizes;
|
||
arraySizes.addInnerSize(numSamples);
|
||
retType.newArraySizes(arraySizes);
|
||
}
|
||
|
||
return new TIntermConstantUnion(*values, retType);
|
||
}
|
||
|
||
//
|
||
// Decompose DX9 and DX10 sample intrinsics & object methods into AST
|
||
//
|
||
void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
|
||
{
|
||
if (node == nullptr || !node->getAsOperator())
|
||
return;
|
||
|
||
const auto clampReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
|
||
// Sampler return must always be a vec4, but we can construct a shorter vector
|
||
result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
|
||
|
||
if (sampler.vectorSize < (unsigned)node->getVectorSize()) {
|
||
// Too many components. Construct shorter vector from it.
|
||
const TType clampedType(result->getType().getBasicType(), EvqTemporary, sampler.vectorSize);
|
||
|
||
const TOperator op = intermediate.mapTypeToConstructorOp(clampedType);
|
||
|
||
result = constructBuiltIn(clampedType, op, result, loc, false);
|
||
}
|
||
|
||
result->setLoc(loc);
|
||
return result;
|
||
};
|
||
|
||
const TOperator op = node->getAsOperator()->getOp();
|
||
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
|
||
|
||
// Bail out if not a sampler method.
|
||
// Note though this is odd to do before checking the op, because the op
|
||
// could be something that takes the arguments, and the function in question
|
||
// takes the result of the op. So, this is not the final word.
|
||
if (arguments != nullptr) {
|
||
if (argAggregate == nullptr) {
|
||
if (arguments->getAsTyped()->getBasicType() != EbtSampler)
|
||
return;
|
||
} else {
|
||
if (argAggregate->getSequence().size() == 0 ||
|
||
argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
|
||
return;
|
||
}
|
||
}
|
||
|
||
switch (op) {
|
||
// **** DX9 intrinsics: ****
|
||
case EOpTexture:
|
||
{
|
||
// Texture with ddx & ddy is really gradient form in HLSL
|
||
if (argAggregate->getSequence().size() == 4)
|
||
node->getAsAggregate()->setOperator(EOpTextureGrad);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpTextureBias:
|
||
{
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord
|
||
|
||
// HLSL puts bias in W component of coordinate. We extract it and add it to
|
||
// the argument list, instead
|
||
TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
|
||
TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
|
||
|
||
TOperator constructOp = EOpNull;
|
||
const TSampler& sampler = arg0->getType().getSampler();
|
||
|
||
switch (sampler.dim) {
|
||
case Esd1D: constructOp = EOpConstructFloat; break; // 1D
|
||
case Esd2D: constructOp = EOpConstructVec2; break; // 2D
|
||
case Esd3D: constructOp = EOpConstructVec3; break; // 3D
|
||
case EsdCube: constructOp = EOpConstructVec3; break; // also 3D
|
||
default: break;
|
||
}
|
||
|
||
TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
|
||
constructCoord->getSequence().push_back(arg1);
|
||
constructCoord->setLoc(loc);
|
||
|
||
// The input vector should never be less than 2, since there's always a bias.
|
||
// The max is for safety, and should be a no-op.
|
||
constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
|
||
|
||
TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
|
||
tex->getSequence().push_back(arg0); // sampler
|
||
tex->getSequence().push_back(constructCoord); // coordinate
|
||
tex->getSequence().push_back(bias); // bias
|
||
|
||
node = clampReturn(tex, sampler);
|
||
|
||
break;
|
||
}
|
||
|
||
// **** DX10 methods: ****
|
||
case EOpMethodSample: // fall through
|
||
case EOpMethodSampleBias: // ...
|
||
{
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
|
||
TIntermTyped* argBias = nullptr;
|
||
TIntermTyped* argOffset = nullptr;
|
||
const TSampler& sampler = argTex->getType().getSampler();
|
||
|
||
int nextArg = 3;
|
||
|
||
if (op == EOpMethodSampleBias) // SampleBias has a bias arg
|
||
argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
|
||
|
||
TOperator textureOp = EOpTexture;
|
||
|
||
if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
|
||
textureOp = EOpTextureOffset;
|
||
argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
|
||
}
|
||
|
||
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
|
||
|
||
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
|
||
txsample->getSequence().push_back(txcombine);
|
||
txsample->getSequence().push_back(argCoord);
|
||
|
||
if (argBias != nullptr)
|
||
txsample->getSequence().push_back(argBias);
|
||
|
||
if (argOffset != nullptr)
|
||
txsample->getSequence().push_back(argOffset);
|
||
|
||
node = clampReturn(txsample, sampler);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodSampleGrad: // ...
|
||
{
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
|
||
TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped();
|
||
TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped();
|
||
TIntermTyped* argOffset = nullptr;
|
||
const TSampler& sampler = argTex->getType().getSampler();
|
||
|
||
TOperator textureOp = EOpTextureGrad;
|
||
|
||
if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
|
||
textureOp = EOpTextureGradOffset;
|
||
argOffset = argAggregate->getSequence()[5]->getAsTyped();
|
||
}
|
||
|
||
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
|
||
|
||
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
|
||
txsample->getSequence().push_back(txcombine);
|
||
txsample->getSequence().push_back(argCoord);
|
||
txsample->getSequence().push_back(argDDX);
|
||
txsample->getSequence().push_back(argDDY);
|
||
|
||
if (argOffset != nullptr)
|
||
txsample->getSequence().push_back(argOffset);
|
||
|
||
node = clampReturn(txsample, sampler);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodGetDimensions:
|
||
{
|
||
// AST returns a vector of results, which we break apart component-wise into
|
||
// separate values to assign to the HLSL method's outputs, ala:
|
||
// tx . GetDimensions(width, height);
|
||
// float2 sizeQueryTemp = EOpTextureQuerySize
|
||
// width = sizeQueryTemp.X;
|
||
// height = sizeQueryTemp.Y;
|
||
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
const TType& texType = argTex->getType();
|
||
|
||
assert(texType.getBasicType() == EbtSampler);
|
||
|
||
const TSampler& sampler = texType.getSampler();
|
||
const TSamplerDim dim = sampler.dim;
|
||
const bool isImage = sampler.isImage();
|
||
const bool isMs = sampler.isMultiSample();
|
||
const int numArgs = (int)argAggregate->getSequence().size();
|
||
|
||
int numDims = 0;
|
||
|
||
switch (dim) {
|
||
case Esd1D: numDims = 1; break; // W
|
||
case Esd2D: numDims = 2; break; // W, H
|
||
case Esd3D: numDims = 3; break; // W, H, D
|
||
case EsdCube: numDims = 2; break; // W, H (cube)
|
||
case EsdBuffer: numDims = 1; break; // W (buffers)
|
||
case EsdRect: numDims = 2; break; // W, H (rect)
|
||
default:
|
||
assert(0 && "unhandled texture dimension");
|
||
}
|
||
|
||
// Arrayed adds another dimension for the number of array elements
|
||
if (sampler.isArrayed())
|
||
++numDims;
|
||
|
||
// Establish whether the method itself is querying mip levels. This can be false even
|
||
// if the underlying query requires a MIP level, due to the available HLSL method overloads.
|
||
const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
|
||
|
||
// Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
|
||
// True if:
|
||
// 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
|
||
// or,
|
||
// 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
|
||
const bool mipRequired =
|
||
((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
|
||
mipQuery; // 2...
|
||
|
||
// AST assumes integer return. Will be converted to float if required.
|
||
TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
|
||
sizeQuery->getSequence().push_back(argTex);
|
||
|
||
// If we're building an LOD query, add the LOD.
|
||
if (mipRequired) {
|
||
// If the base HLSL query had no MIP level given, use level 0.
|
||
TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
|
||
intermediate.addConstantUnion(0, loc, true);
|
||
sizeQuery->getSequence().push_back(queryLod);
|
||
}
|
||
|
||
sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
|
||
sizeQuery->setLoc(loc);
|
||
|
||
// Return value from size query
|
||
TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
|
||
tempArg->getWritableType().getQualifier().makeTemporary();
|
||
TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
|
||
intermediate.addSymbol(*tempArg, loc),
|
||
sizeQuery, loc);
|
||
|
||
// Compound statement for assigning outputs
|
||
TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
|
||
// Index of first output parameter
|
||
const int outParamBase = mipQuery ? 2 : 1;
|
||
|
||
for (int compNum = 0; compNum < numDims; ++compNum) {
|
||
TIntermTyped* indexedOut = nullptr;
|
||
TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
|
||
|
||
if (numDims > 1) {
|
||
TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
|
||
indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
|
||
indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
|
||
indexedOut->setLoc(loc);
|
||
} else {
|
||
indexedOut = sizeQueryReturn;
|
||
}
|
||
|
||
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
|
||
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
|
||
|
||
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
|
||
}
|
||
|
||
// handle mip level parameter
|
||
if (mipQuery) {
|
||
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
|
||
|
||
TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
|
||
levelsQuery->getSequence().push_back(argTex);
|
||
levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
|
||
levelsQuery->setLoc(loc);
|
||
|
||
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
|
||
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
|
||
}
|
||
|
||
// 2DMS formats query # samples, which needs a different query op
|
||
if (sampler.isMultiSample()) {
|
||
TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
|
||
|
||
TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
|
||
samplesQuery->getSequence().push_back(argTex);
|
||
samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
|
||
samplesQuery->setLoc(loc);
|
||
|
||
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
|
||
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
|
||
}
|
||
|
||
compoundStatement->setOperator(EOpSequence);
|
||
compoundStatement->setLoc(loc);
|
||
compoundStatement->setType(TType(EbtVoid));
|
||
|
||
node = compoundStatement;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodSampleCmp: // fall through...
|
||
case EOpMethodSampleCmpLevelZero:
|
||
{
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
|
||
TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
|
||
TIntermTyped* argOffset = nullptr;
|
||
|
||
// Sampler argument should be a sampler.
|
||
if (argSamp->getType().getBasicType() != EbtSampler) {
|
||
error(loc, "expected: sampler type", "", "");
|
||
return;
|
||
}
|
||
|
||
// Sampler should be a SamplerComparisonState
|
||
if (! argSamp->getType().getSampler().isShadow()) {
|
||
error(loc, "expected: SamplerComparisonState", "", "");
|
||
return;
|
||
}
|
||
|
||
// optional offset value
|
||
if (argAggregate->getSequence().size() > 4)
|
||
argOffset = argAggregate->getSequence()[4]->getAsTyped();
|
||
|
||
const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
|
||
|
||
// AST wants comparison value as one of the texture coordinates
|
||
TOperator constructOp = EOpNull;
|
||
switch (coordDimWithCmpVal) {
|
||
// 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
|
||
case 2: constructOp = EOpConstructVec2; break;
|
||
case 3: constructOp = EOpConstructVec3; break;
|
||
case 4: constructOp = EOpConstructVec4; break;
|
||
case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg.
|
||
default: assert(0); break;
|
||
}
|
||
|
||
TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
|
||
coordWithCmp->getSequence().push_back(argCoord);
|
||
if (coordDimWithCmpVal != 5) // cube array shadow is special.
|
||
coordWithCmp->getSequence().push_back(argCmpVal);
|
||
coordWithCmp->setLoc(loc);
|
||
coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
|
||
|
||
TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
|
||
if (argOffset != nullptr)
|
||
textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
|
||
|
||
// Create combined sampler & texture op
|
||
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
|
||
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
|
||
txsample->getSequence().push_back(txcombine);
|
||
txsample->getSequence().push_back(coordWithCmp);
|
||
|
||
if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
|
||
txsample->getSequence().push_back(argCmpVal);
|
||
|
||
// the LevelZero form uses 0 as an explicit LOD
|
||
if (op == EOpMethodSampleCmpLevelZero)
|
||
txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
|
||
|
||
// Add offset if present
|
||
if (argOffset != nullptr)
|
||
txsample->getSequence().push_back(argOffset);
|
||
|
||
txsample->setType(node->getType());
|
||
txsample->setLoc(loc);
|
||
node = txsample;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodLoad:
|
||
{
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* argOffset = nullptr;
|
||
TIntermTyped* lodComponent = nullptr;
|
||
TIntermTyped* coordSwizzle = nullptr;
|
||
|
||
const TSampler& sampler = argTex->getType().getSampler();
|
||
const bool isMS = sampler.isMultiSample();
|
||
const bool isBuffer = sampler.dim == EsdBuffer;
|
||
const bool isImage = sampler.isImage();
|
||
const TBasicType coordBaseType = argCoord->getType().getBasicType();
|
||
|
||
// Last component of coordinate is the mip level, for non-MS. we separate them here:
|
||
if (isMS || isBuffer || isImage) {
|
||
// MS, Buffer, and Image have no LOD
|
||
coordSwizzle = argCoord;
|
||
} else {
|
||
// Extract coordinate
|
||
int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
|
||
TSwizzleSelectors<TVectorSelector> coordFields;
|
||
for (int i = 0; i < swizzleSize; ++i)
|
||
coordFields.push_back(i);
|
||
TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
|
||
coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
|
||
coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
|
||
|
||
// Extract LOD
|
||
TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
|
||
lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
|
||
lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
|
||
}
|
||
|
||
const int numArgs = (int)argAggregate->getSequence().size();
|
||
const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
|
||
|
||
// Create texel fetch
|
||
const TOperator fetchOp = (isImage ? EOpImageLoad :
|
||
hasOffset ? EOpTextureFetchOffset :
|
||
EOpTextureFetch);
|
||
TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
|
||
|
||
// Build up the fetch
|
||
txfetch->getSequence().push_back(argTex);
|
||
txfetch->getSequence().push_back(coordSwizzle);
|
||
|
||
if (isMS) {
|
||
// add 2DMS sample index
|
||
TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped();
|
||
txfetch->getSequence().push_back(argSampleIdx);
|
||
} else if (isBuffer) {
|
||
// Nothing else to do for buffers.
|
||
} else if (isImage) {
|
||
// Nothing else to do for images.
|
||
} else {
|
||
// 2DMS and buffer have no LOD, but everything else does.
|
||
txfetch->getSequence().push_back(lodComponent);
|
||
}
|
||
|
||
// Obtain offset arg, if there is one.
|
||
if (hasOffset) {
|
||
const int offsetPos = (isMS ? 3 : 2);
|
||
argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
|
||
txfetch->getSequence().push_back(argOffset);
|
||
}
|
||
|
||
node = clampReturn(txfetch, sampler);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodSampleLevel:
|
||
{
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
|
||
TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped();
|
||
TIntermTyped* argOffset = nullptr;
|
||
const TSampler& sampler = argTex->getType().getSampler();
|
||
|
||
const int numArgs = (int)argAggregate->getSequence().size();
|
||
|
||
if (numArgs == 5) // offset, if present
|
||
argOffset = argAggregate->getSequence()[4]->getAsTyped();
|
||
|
||
const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
|
||
TIntermAggregate* txsample = new TIntermAggregate(textureOp);
|
||
|
||
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
|
||
|
||
txsample->getSequence().push_back(txcombine);
|
||
txsample->getSequence().push_back(argCoord);
|
||
txsample->getSequence().push_back(argLod);
|
||
|
||
if (argOffset != nullptr)
|
||
txsample->getSequence().push_back(argOffset);
|
||
|
||
node = clampReturn(txsample, sampler);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodGather:
|
||
{
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
|
||
TIntermTyped* argOffset = nullptr;
|
||
|
||
// Offset is optional
|
||
if (argAggregate->getSequence().size() > 3)
|
||
argOffset = argAggregate->getSequence()[3]->getAsTyped();
|
||
|
||
const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
|
||
TIntermAggregate* txgather = new TIntermAggregate(textureOp);
|
||
|
||
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
|
||
|
||
txgather->getSequence().push_back(txcombine);
|
||
txgather->getSequence().push_back(argCoord);
|
||
// Offset if not given is implicitly channel 0 (red)
|
||
|
||
if (argOffset != nullptr)
|
||
txgather->getSequence().push_back(argOffset);
|
||
|
||
txgather->setType(node->getType());
|
||
txgather->setLoc(loc);
|
||
node = txgather;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodGatherRed: // fall through...
|
||
case EOpMethodGatherGreen: // ...
|
||
case EOpMethodGatherBlue: // ...
|
||
case EOpMethodGatherAlpha: // ...
|
||
case EOpMethodGatherCmpRed: // ...
|
||
case EOpMethodGatherCmpGreen: // ...
|
||
case EOpMethodGatherCmpBlue: // ...
|
||
case EOpMethodGatherCmpAlpha: // ...
|
||
{
|
||
int channel = 0; // the channel we are gathering
|
||
int cmpValues = 0; // 1 if there is a compare value (handier than a bool below)
|
||
|
||
switch (op) {
|
||
case EOpMethodGatherCmpRed: cmpValues = 1; // fall through
|
||
case EOpMethodGatherRed: channel = 0; break;
|
||
case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through
|
||
case EOpMethodGatherGreen: channel = 1; break;
|
||
case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through
|
||
case EOpMethodGatherBlue: channel = 2; break;
|
||
case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through
|
||
case EOpMethodGatherAlpha: channel = 3; break;
|
||
default: assert(0); break;
|
||
}
|
||
|
||
// For now, we have nothing to map the component-wise comparison forms
|
||
// to, because neither GLSL nor SPIR-V has such an opcode. Issue an
|
||
// unimplemented error instead. Most of the machinery is here if that
|
||
// should ever become available. However, red can be passed through
|
||
// to OpImageDrefGather. G/B/A cannot, because that opcode does not
|
||
// accept a component.
|
||
if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
|
||
error(loc, "unimplemented: component-level gather compare", "", "");
|
||
return;
|
||
}
|
||
|
||
int arg = 0;
|
||
|
||
TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped();
|
||
TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped();
|
||
TIntermTyped* argOffset = nullptr;
|
||
TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
|
||
// TIntermTyped* argStatus = nullptr; // TODO: residency
|
||
TIntermTyped* argCmp = nullptr;
|
||
|
||
const TSamplerDim dim = argTex->getType().getSampler().dim;
|
||
|
||
const int argSize = (int)argAggregate->getSequence().size();
|
||
bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
|
||
bool hasOffset1 = false;
|
||
bool hasOffset4 = false;
|
||
|
||
// Sampler argument should be a sampler.
|
||
if (argSamp->getType().getBasicType() != EbtSampler) {
|
||
error(loc, "expected: sampler type", "", "");
|
||
return;
|
||
}
|
||
|
||
// Cmp forms require SamplerComparisonState
|
||
if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
|
||
error(loc, "expected: SamplerComparisonState", "", "");
|
||
return;
|
||
}
|
||
|
||
// Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets.
|
||
if (dim == Esd2D) {
|
||
hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
|
||
hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
|
||
}
|
||
|
||
assert(!(hasOffset1 && hasOffset4));
|
||
|
||
TOperator textureOp = EOpTextureGather;
|
||
|
||
// Compare forms have compare value
|
||
if (cmpValues != 0)
|
||
argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
|
||
|
||
// Some forms have single offset
|
||
if (hasOffset1) {
|
||
textureOp = EOpTextureGatherOffset; // single offset form
|
||
argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
|
||
}
|
||
|
||
// Some forms have 4 gather offsets
|
||
if (hasOffset4) {
|
||
textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form
|
||
for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
|
||
argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
|
||
}
|
||
|
||
// Residency status
|
||
if (hasStatus) {
|
||
// argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
|
||
error(loc, "unimplemented: residency status", "", "");
|
||
return;
|
||
}
|
||
|
||
TIntermAggregate* txgather = new TIntermAggregate(textureOp);
|
||
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
|
||
|
||
TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
|
||
|
||
txgather->getSequence().push_back(txcombine);
|
||
txgather->getSequence().push_back(argCoord);
|
||
|
||
// AST wants an array of 4 offsets, where HLSL has separate args. Here
|
||
// we construct an array from the separate args.
|
||
if (hasOffset4) {
|
||
TType arrayType(EbtInt, EvqTemporary, 2);
|
||
TArraySizes arraySizes;
|
||
arraySizes.addInnerSize(4);
|
||
arrayType.newArraySizes(arraySizes);
|
||
|
||
TIntermAggregate* initList = new TIntermAggregate(EOpNull);
|
||
|
||
for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
|
||
initList->getSequence().push_back(argOffsets[offsetNum]);
|
||
|
||
argOffset = addConstructor(loc, initList, arrayType);
|
||
}
|
||
|
||
// Add comparison value if we have one
|
||
if (argCmp != nullptr)
|
||
txgather->getSequence().push_back(argCmp);
|
||
|
||
// Add offset (either 1, or an array of 4) if we have one
|
||
if (argOffset != nullptr)
|
||
txgather->getSequence().push_back(argOffset);
|
||
|
||
// Add channel value if the sampler is not shadow
|
||
if (! argSamp->getType().getSampler().isShadow())
|
||
txgather->getSequence().push_back(argChannel);
|
||
|
||
txgather->setType(node->getType());
|
||
txgather->setLoc(loc);
|
||
node = txgather;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodCalculateLevelOfDetail:
|
||
case EOpMethodCalculateLevelOfDetailUnclamped:
|
||
{
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
|
||
|
||
TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
|
||
|
||
TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
|
||
txquerylod->getSequence().push_back(txcombine);
|
||
txquerylod->getSequence().push_back(argCoord);
|
||
|
||
TIntermTyped* lodComponent = intermediate.addConstantUnion(0, loc, true);
|
||
TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
|
||
lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
|
||
|
||
node = lodComponentIdx;
|
||
|
||
// We cannot currently obtain the unclamped LOD
|
||
if (op == EOpMethodCalculateLevelOfDetailUnclamped)
|
||
error(loc, "unimplemented: CalculateLevelOfDetailUnclamped", "", "");
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpMethodGetSamplePosition:
|
||
{
|
||
// TODO: this entire decomposition exists because there is not yet a way to query
|
||
// the sample position directly through SPIR-V. Instead, we return fixed sample
|
||
// positions for common cases. *** If the sample positions are set differently,
|
||
// this will be wrong. ***
|
||
|
||
TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
|
||
|
||
TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
|
||
samplesQuery->getSequence().push_back(argTex);
|
||
samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
|
||
samplesQuery->setLoc(loc);
|
||
|
||
TIntermAggregate* compoundStatement = nullptr;
|
||
|
||
TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
|
||
outSampleCount->getWritableType().getQualifier().makeTemporary();
|
||
TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
|
||
samplesQuery, loc);
|
||
compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
|
||
|
||
TIntermTyped* idxtest[4];
|
||
|
||
// Create tests against 2, 4, 8, and 16 sample values
|
||
int count = 0;
|
||
for (int val = 2; val <= 16; val *= 2)
|
||
idxtest[count++] =
|
||
intermediate.addBinaryNode(EOpEqual,
|
||
intermediate.addSymbol(*outSampleCount, loc),
|
||
intermediate.addConstantUnion(val, loc),
|
||
loc, TType(EbtBool));
|
||
|
||
const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
|
||
|
||
// Create index ops into position arrays given sample index.
|
||
// TODO: should it be clamped?
|
||
TIntermTyped* index[4];
|
||
count = 0;
|
||
for (int val = 2; val <= 16; val *= 2) {
|
||
index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
|
||
index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
|
||
}
|
||
|
||
// Create expression as:
|
||
// (sampleCount == 2) ? pos2[idx] :
|
||
// (sampleCount == 4) ? pos4[idx] :
|
||
// (sampleCount == 8) ? pos8[idx] :
|
||
// (sampleCount == 16) ? pos16[idx] : float2(0,0);
|
||
TIntermTyped* test =
|
||
intermediate.addSelection(idxtest[0], index[0],
|
||
intermediate.addSelection(idxtest[1], index[1],
|
||
intermediate.addSelection(idxtest[2], index[2],
|
||
intermediate.addSelection(idxtest[3], index[3],
|
||
getSamplePosArray(1), loc), loc), loc), loc);
|
||
|
||
compoundStatement = intermediate.growAggregate(compoundStatement, test);
|
||
compoundStatement->setOperator(EOpSequence);
|
||
compoundStatement->setLoc(loc);
|
||
compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
|
||
|
||
node = compoundStatement;
|
||
|
||
break;
|
||
}
|
||
|
||
default:
|
||
break; // most pass through unchanged
|
||
}
|
||
}
|
||
|
||
//
|
||
// Decompose geometry shader methods
|
||
//
|
||
void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
|
||
{
|
||
if (node == nullptr || !node->getAsOperator())
|
||
return;
|
||
|
||
const TOperator op = node->getAsOperator()->getOp();
|
||
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
|
||
|
||
switch (op) {
|
||
case EOpMethodAppend:
|
||
if (argAggregate) {
|
||
// Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
|
||
if (language != EShLangGeometry) {
|
||
node = nullptr;
|
||
return;
|
||
}
|
||
|
||
TIntermAggregate* sequence = nullptr;
|
||
TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
|
||
|
||
emit->setLoc(loc);
|
||
emit->setType(TType(EbtVoid));
|
||
|
||
// find the matching output
|
||
if (gsStreamOutput == nullptr) {
|
||
error(loc, "unable to find output symbol for Append()", "", "");
|
||
return;
|
||
}
|
||
|
||
sequence = intermediate.growAggregate(sequence,
|
||
handleAssign(loc, EOpAssign,
|
||
intermediate.addSymbol(*gsStreamOutput, loc),
|
||
argAggregate->getSequence()[1]->getAsTyped()),
|
||
loc);
|
||
|
||
sequence = intermediate.growAggregate(sequence, emit);
|
||
|
||
sequence->setOperator(EOpSequence);
|
||
sequence->setLoc(loc);
|
||
sequence->setType(TType(EbtVoid));
|
||
node = sequence;
|
||
}
|
||
break;
|
||
|
||
case EOpMethodRestartStrip:
|
||
{
|
||
// Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
|
||
if (language != EShLangGeometry) {
|
||
node = nullptr;
|
||
return;
|
||
}
|
||
|
||
TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
|
||
cut->setLoc(loc);
|
||
cut->setType(TType(EbtVoid));
|
||
node = cut;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break; // most pass through unchanged
|
||
}
|
||
}
|
||
|
||
//
|
||
// Optionally decompose intrinsics to AST opcodes.
|
||
//
|
||
void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
|
||
{
|
||
// Helper to find image data for image atomics:
|
||
// OpImageLoad(image[idx])
|
||
// We take the image load apart and add its params to the atomic op aggregate node
|
||
const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
|
||
TIntermAggregate* loadOp = load->getAsAggregate();
|
||
if (loadOp == nullptr) {
|
||
error(loc, "unknown image type in atomic operation", "", "");
|
||
node = nullptr;
|
||
return;
|
||
}
|
||
|
||
atomic->getSequence().push_back(loadOp->getSequence()[0]);
|
||
atomic->getSequence().push_back(loadOp->getSequence()[1]);
|
||
};
|
||
|
||
// Return true if this is an imageLoad, which we will change to an image atomic.
|
||
const auto isImageParam = [](TIntermTyped* image) -> bool {
|
||
TIntermAggregate* imageAggregate = image->getAsAggregate();
|
||
return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
|
||
};
|
||
|
||
// HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
|
||
// opcodes for compatibility with existing software stacks.
|
||
static const bool decomposeHlslIntrinsics = true;
|
||
|
||
if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
|
||
return;
|
||
|
||
const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
|
||
TIntermUnary* fnUnary = node->getAsUnaryNode();
|
||
const TOperator op = node->getAsOperator()->getOp();
|
||
|
||
switch (op) {
|
||
case EOpGenMul:
|
||
{
|
||
// mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
|
||
// Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
|
||
// we must reverse the operand order here. Hence, arg0 gets sequence[1], etc.
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
|
||
|
||
if (arg0->isVector() && arg1->isVector()) { // vec * vec
|
||
node->getAsAggregate()->setOperator(EOpDot);
|
||
} else {
|
||
node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpRcp:
|
||
{
|
||
// rcp(a) -> 1 / a
|
||
TIntermTyped* arg0 = fnUnary->getOperand();
|
||
TBasicType type0 = arg0->getBasicType();
|
||
TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true);
|
||
node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpAny: // fall through
|
||
case EOpAll:
|
||
{
|
||
TIntermTyped* typedArg = arguments->getAsTyped();
|
||
|
||
// HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
|
||
// We'll convert here. Note that for efficiency, we could add a smarter
|
||
// decomposition for some type cases, e.g, maybe by decomposing a dot product.
|
||
if (typedArg->getType().getBasicType() != EbtBool) {
|
||
const TType boolType(EbtBool, EvqTemporary,
|
||
typedArg->getVectorSize(),
|
||
typedArg->getMatrixCols(),
|
||
typedArg->getMatrixRows(),
|
||
typedArg->isVector());
|
||
|
||
typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
|
||
node->getAsUnaryNode()->setOperand(typedArg);
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpSaturate:
|
||
{
|
||
// saturate(a) -> clamp(a,0,1)
|
||
TIntermTyped* arg0 = fnUnary->getOperand();
|
||
TBasicType type0 = arg0->getBasicType();
|
||
TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
|
||
|
||
clamp->getSequence().push_back(arg0);
|
||
clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
|
||
clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
|
||
clamp->setLoc(loc);
|
||
clamp->setType(node->getType());
|
||
clamp->getWritableType().getQualifier().makeTemporary();
|
||
node = clamp;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpSinCos:
|
||
{
|
||
// sincos(a,b,c) -> b = sin(a), c = cos(a)
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
|
||
|
||
TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
|
||
TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
|
||
TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
|
||
TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
|
||
|
||
TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
|
||
compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
|
||
compoundStatement->setOperator(EOpSequence);
|
||
compoundStatement->setLoc(loc);
|
||
compoundStatement->setType(TType(EbtVoid));
|
||
|
||
node = compoundStatement;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpClip:
|
||
{
|
||
// clip(a) -> if (any(a<0)) discard;
|
||
TIntermTyped* arg0 = fnUnary->getOperand();
|
||
TBasicType type0 = arg0->getBasicType();
|
||
TIntermTyped* compareNode = nullptr;
|
||
|
||
// For non-scalars: per experiment with FXC compiler, discard if any component < 0.
|
||
if (!arg0->isScalar()) {
|
||
// component-wise compare: a < 0
|
||
TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
|
||
less->getSequence().push_back(arg0);
|
||
less->setLoc(loc);
|
||
|
||
// make vec or mat of bool matching dimensions of input
|
||
less->setType(TType(EbtBool, EvqTemporary,
|
||
arg0->getType().getVectorSize(),
|
||
arg0->getType().getMatrixCols(),
|
||
arg0->getType().getMatrixRows(),
|
||
arg0->getType().isVector()));
|
||
|
||
// calculate # of components for comparison const
|
||
const int constComponentCount =
|
||
std::max(arg0->getType().getVectorSize(), 1) *
|
||
std::max(arg0->getType().getMatrixCols(), 1) *
|
||
std::max(arg0->getType().getMatrixRows(), 1);
|
||
|
||
TConstUnion zero;
|
||
zero.setDConst(0.0);
|
||
TConstUnionArray zeros(constComponentCount, zero);
|
||
|
||
less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
|
||
|
||
compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
|
||
} else {
|
||
TIntermTyped* zero = intermediate.addConstantUnion(0, type0, loc, true);
|
||
compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
|
||
}
|
||
|
||
TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
|
||
|
||
node = new TIntermSelection(compareNode, killNode, nullptr);
|
||
node->setLoc(loc);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpLog10:
|
||
{
|
||
// log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10))
|
||
TIntermTyped* arg0 = fnUnary->getOperand();
|
||
TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
|
||
TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
|
||
|
||
node = handleBinaryMath(loc, "mul", EOpMul, log2, base);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpDst:
|
||
{
|
||
// dest.x = 1;
|
||
// dest.y = src0.y * src1.y;
|
||
// dest.z = src0.z;
|
||
// dest.w = src1.w;
|
||
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
|
||
|
||
TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
|
||
TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
|
||
TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
|
||
|
||
TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
|
||
TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
|
||
TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
|
||
TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
|
||
|
||
TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
|
||
|
||
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
|
||
dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
|
||
dst->getSequence().push_back(src0z);
|
||
dst->getSequence().push_back(src1w);
|
||
dst->setType(TType(EbtFloat, EvqTemporary, 4));
|
||
dst->setLoc(loc);
|
||
node = dst;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
|
||
case EOpInterlockedMin: // ...
|
||
case EOpInterlockedMax: // ...
|
||
case EOpInterlockedAnd: // ...
|
||
case EOpInterlockedOr: // ...
|
||
case EOpInterlockedXor: // ...
|
||
case EOpInterlockedExchange: // always has output arg
|
||
{
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value
|
||
TIntermTyped* arg2 = nullptr;
|
||
|
||
if (argAggregate->getSequence().size() > 2)
|
||
arg2 = argAggregate->getSequence()[2]->getAsTyped();
|
||
|
||
const bool isImage = isImageParam(arg0);
|
||
const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
|
||
TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
|
||
atomic->setType(arg0->getType());
|
||
atomic->getWritableType().getQualifier().makeTemporary();
|
||
atomic->setLoc(loc);
|
||
|
||
if (isImage) {
|
||
// orig_value = imageAtomicOp(image, loc, data)
|
||
imageAtomicParams(atomic, arg0);
|
||
atomic->getSequence().push_back(arg1);
|
||
|
||
if (argAggregate->getSequence().size() > 2) {
|
||
node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
|
||
} else {
|
||
node = atomic; // no assignment needed, as there was no out var.
|
||
}
|
||
} else {
|
||
// Normal memory variable:
|
||
// arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
|
||
if (argAggregate->getSequence().size() > 2) {
|
||
// optional output param is present. return value goes to arg2.
|
||
atomic->getSequence().push_back(arg0);
|
||
atomic->getSequence().push_back(arg1);
|
||
|
||
node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
|
||
} else {
|
||
// Set the matching operator. Since output is absent, this is all we need to do.
|
||
node->getAsAggregate()->setOperator(atomicOp);
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpInterlockedCompareExchange:
|
||
{
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp
|
||
TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value
|
||
TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig
|
||
|
||
const bool isImage = isImageParam(arg0);
|
||
TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
|
||
atomic->setLoc(loc);
|
||
atomic->setType(arg2->getType());
|
||
atomic->getWritableType().getQualifier().makeTemporary();
|
||
|
||
if (isImage) {
|
||
imageAtomicParams(atomic, arg0);
|
||
} else {
|
||
atomic->getSequence().push_back(arg0);
|
||
}
|
||
|
||
atomic->getSequence().push_back(arg1);
|
||
atomic->getSequence().push_back(arg2);
|
||
node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpEvaluateAttributeSnapped:
|
||
{
|
||
// SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
|
||
// HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
|
||
// iU = (iU<<28)>>28
|
||
// fU = ((float)iU)/16
|
||
// Targets might handle this natively, in which case they can disable
|
||
// decompositions.
|
||
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset
|
||
|
||
TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
|
||
TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
|
||
handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
|
||
i28);
|
||
|
||
TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
|
||
TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
|
||
intermediate.addConversion(EOpConstructFloat,
|
||
TType(EbtFloat, EvqTemporary, 2), iU),
|
||
recip16);
|
||
|
||
TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
|
||
interp->getSequence().push_back(arg0);
|
||
interp->getSequence().push_back(floatOffset);
|
||
interp->setLoc(loc);
|
||
interp->setType(arg0->getType());
|
||
interp->getWritableType().getQualifier().makeTemporary();
|
||
|
||
node = interp;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpLit:
|
||
{
|
||
TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
|
||
TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
|
||
|
||
TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
|
||
|
||
// Ambient
|
||
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
|
||
|
||
// Diffuse:
|
||
TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
|
||
TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
|
||
diffuse->getSequence().push_back(n_dot_l);
|
||
diffuse->getSequence().push_back(zero);
|
||
diffuse->setLoc(loc);
|
||
diffuse->setType(TType(EbtFloat));
|
||
dst->getSequence().push_back(diffuse);
|
||
|
||
// Specular:
|
||
TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
|
||
min_ndot->getSequence().push_back(n_dot_l);
|
||
min_ndot->getSequence().push_back(n_dot_h);
|
||
min_ndot->setLoc(loc);
|
||
min_ndot->setType(TType(EbtFloat));
|
||
|
||
TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
|
||
TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m
|
||
|
||
dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
|
||
|
||
// One:
|
||
dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
|
||
|
||
dst->setLoc(loc);
|
||
dst->setType(TType(EbtFloat, EvqTemporary, 4));
|
||
node = dst;
|
||
break;
|
||
}
|
||
|
||
case EOpAsDouble:
|
||
{
|
||
// asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must
|
||
// first construct a uint64.
|
||
TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
|
||
TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
|
||
|
||
if (arg0->getType().isVector()) { // TODO: ...
|
||
error(loc, "double2 conversion not implemented", "asdouble", "");
|
||
break;
|
||
}
|
||
|
||
TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
|
||
|
||
uint64->getSequence().push_back(arg0);
|
||
uint64->getSequence().push_back(arg1);
|
||
uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2
|
||
uint64->setLoc(loc);
|
||
|
||
// bitcast uint2 to a double
|
||
TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
|
||
convert->getAsUnaryNode()->setOperand(uint64);
|
||
convert->setLoc(loc);
|
||
convert->setType(TType(EbtDouble, EvqTemporary));
|
||
node = convert;
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpF16tof32:
|
||
{
|
||
// input uvecN with low 16 bits of each component holding a float16. convert to float32.
|
||
TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
|
||
TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
|
||
const int vecSize = argValue->getType().getVectorSize();
|
||
|
||
TOperator constructOp = EOpNull;
|
||
switch (vecSize) {
|
||
case 1: constructOp = EOpNull; break; // direct use, no construct needed
|
||
case 2: constructOp = EOpConstructVec2; break;
|
||
case 3: constructOp = EOpConstructVec3; break;
|
||
case 4: constructOp = EOpConstructVec4; break;
|
||
default: assert(0); break;
|
||
}
|
||
|
||
// For scalar case, we don't need to construct another type.
|
||
TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
|
||
|
||
if (result) {
|
||
result->setType(TType(EbtFloat, EvqTemporary, vecSize));
|
||
result->setLoc(loc);
|
||
}
|
||
|
||
for (int idx = 0; idx < vecSize; ++idx) {
|
||
TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
|
||
TIntermTyped* component = argValue->getType().isVector() ?
|
||
intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
|
||
|
||
if (component != argValue)
|
||
component->setType(TType(argValue->getBasicType(), EvqTemporary));
|
||
|
||
TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16);
|
||
unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
|
||
unpackOp->getAsUnaryNode()->setOperand(component);
|
||
unpackOp->setLoc(loc);
|
||
|
||
TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
|
||
|
||
if (result != nullptr) {
|
||
result->getSequence().push_back(lowOrder);
|
||
node = result;
|
||
} else {
|
||
node = lowOrder;
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpF32tof16:
|
||
{
|
||
// input floatN converted to 16 bit float in low order bits of each component of uintN
|
||
TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
|
||
|
||
TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
|
||
const int vecSize = argValue->getType().getVectorSize();
|
||
|
||
TOperator constructOp = EOpNull;
|
||
switch (vecSize) {
|
||
case 1: constructOp = EOpNull; break; // direct use, no construct needed
|
||
case 2: constructOp = EOpConstructUVec2; break;
|
||
case 3: constructOp = EOpConstructUVec3; break;
|
||
case 4: constructOp = EOpConstructUVec4; break;
|
||
default: assert(0); break;
|
||
}
|
||
|
||
// For scalar case, we don't need to construct another type.
|
||
TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
|
||
|
||
if (result) {
|
||
result->setType(TType(EbtUint, EvqTemporary, vecSize));
|
||
result->setLoc(loc);
|
||
}
|
||
|
||
for (int idx = 0; idx < vecSize; ++idx) {
|
||
TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
|
||
TIntermTyped* component = argValue->getType().isVector() ?
|
||
intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
|
||
|
||
if (component != argValue)
|
||
component->setType(TType(argValue->getBasicType(), EvqTemporary));
|
||
|
||
TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
|
||
vec2ComponentAndZero->getSequence().push_back(component);
|
||
vec2ComponentAndZero->getSequence().push_back(zero);
|
||
vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
|
||
vec2ComponentAndZero->setLoc(loc);
|
||
|
||
TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
|
||
packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
|
||
packOp->setLoc(loc);
|
||
packOp->setType(TType(EbtUint, EvqTemporary));
|
||
|
||
if (result != nullptr) {
|
||
result->getSequence().push_back(packOp);
|
||
node = result;
|
||
} else {
|
||
node = packOp;
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpD3DCOLORtoUBYTE4:
|
||
{
|
||
// ivec4 ( x.zyxw * 255.001953 );
|
||
TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
|
||
TSwizzleSelectors<TVectorSelector> selectors;
|
||
selectors.push_back(2);
|
||
selectors.push_back(1);
|
||
selectors.push_back(0);
|
||
selectors.push_back(3);
|
||
TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
|
||
TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
|
||
swizzled->setType(arg0->getType());
|
||
swizzled->getWritableType().getQualifier().makeTemporary();
|
||
|
||
TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
|
||
TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
|
||
rangeConverted->setType(arg0->getType());
|
||
rangeConverted->getWritableType().getQualifier().makeTemporary();
|
||
|
||
node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
|
||
node->setLoc(loc);
|
||
node->setType(TType(EbtInt, EvqTemporary, 4));
|
||
break;
|
||
}
|
||
|
||
case EOpIsFinite:
|
||
{
|
||
// Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
|
||
// it to !isnan && !isinf
|
||
|
||
TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
|
||
|
||
// We'll make a temporary in case the RHS is cmoplex
|
||
TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
|
||
tempArg->getWritableType().getQualifier().makeTemporary();
|
||
|
||
TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
|
||
intermediate.addSymbol(*tempArg, loc),
|
||
arg0, loc);
|
||
|
||
TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
|
||
|
||
const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
|
||
arg0->getMatrixRows());
|
||
|
||
TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
|
||
isnan->setType(boolType);
|
||
|
||
TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
|
||
notnan->setType(boolType);
|
||
|
||
TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
|
||
isinf->setType(boolType);
|
||
|
||
TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
|
||
notinf->setType(boolType);
|
||
|
||
TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
|
||
andNode->setType(boolType);
|
||
|
||
compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
|
||
compoundStatement->setOperator(EOpSequence);
|
||
compoundStatement->setLoc(loc);
|
||
compoundStatement->setType(boolType);
|
||
|
||
node = compoundStatement;
|
||
|
||
break;
|
||
}
|
||
|
||
default:
|
||
break; // most pass through unchanged
|
||
}
|
||
}
|
||
|
||
//
|
||
// Handle seeing function call syntax in the grammar, which could be any of
|
||
// - .length() method
|
||
// - constructor
|
||
// - a call to a built-in function mapped to an operator
|
||
// - a call to a built-in function that will remain a function call (e.g., texturing)
|
||
// - user function
|
||
// - subroutine call (not implemented yet)
|
||
//
|
||
TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
|
||
{
|
||
TIntermTyped* result = nullptr;
|
||
|
||
TOperator op = function->getBuiltInOp();
|
||
if (op != EOpNull) {
|
||
//
|
||
// Then this should be a constructor.
|
||
// Don't go through the symbol table for constructors.
|
||
// Their parameters will be verified algorithmically.
|
||
//
|
||
TType type(EbtVoid); // use this to get the type back
|
||
if (! constructorError(loc, arguments, *function, op, type)) {
|
||
//
|
||
// It's a constructor, of type 'type'.
|
||
//
|
||
result = handleConstructor(loc, arguments, type);
|
||
if (result == nullptr)
|
||
error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
|
||
}
|
||
} else {
|
||
//
|
||
// Find it in the symbol table.
|
||
//
|
||
const TFunction* fnCandidate = nullptr;
|
||
bool builtIn = false;
|
||
int thisDepth = 0;
|
||
|
||
TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
|
||
|
||
// TODO: this needs improvement: there's no way at present to look up a signature in
|
||
// the symbol table for an arbitrary type. This is a temporary hack until that ability exists.
|
||
// It will have false positives, since it doesn't check arg counts or types.
|
||
if (arguments) {
|
||
// Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we
|
||
// look for either case.
|
||
|
||
TIntermTyped* arg0 = nullptr;
|
||
|
||
if (aggregate && aggregate->getSequence().size() > 0)
|
||
arg0 = aggregate->getSequence()[0]->getAsTyped();
|
||
else if (arguments->getAsSymbolNode())
|
||
arg0 = arguments->getAsSymbolNode();
|
||
|
||
if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
|
||
static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
|
||
|
||
if (function->getName().length() > methodPrefixSize &&
|
||
isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
|
||
const TString mangle = function->getName() + "(";
|
||
TSymbol* symbol = symbolTable.find(mangle, &builtIn);
|
||
|
||
if (symbol)
|
||
fnCandidate = symbol->getAsFunction();
|
||
}
|
||
}
|
||
}
|
||
|
||
if (fnCandidate == nullptr)
|
||
fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
|
||
|
||
if (fnCandidate) {
|
||
// This is a declared function that might map to
|
||
// - a built-in operator,
|
||
// - a built-in function not mapped to an operator, or
|
||
// - a user function.
|
||
|
||
// Error check for a function requiring specific extensions present.
|
||
if (builtIn && fnCandidate->getNumExtensions())
|
||
requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(),
|
||
fnCandidate->getName().c_str());
|
||
|
||
// turn an implicit member-function resolution into an explicit call
|
||
TString callerName;
|
||
if (thisDepth == 0)
|
||
callerName = fnCandidate->getMangledName();
|
||
else {
|
||
// get the explicit (full) name of the function
|
||
callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
|
||
callerName += fnCandidate->getMangledName();
|
||
// insert the implicit calling argument
|
||
pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
|
||
}
|
||
|
||
// Convert 'in' arguments, so that types match.
|
||
// However, skip those that need expansion, that is covered next.
|
||
if (arguments)
|
||
addInputArgumentConversions(*fnCandidate, arguments);
|
||
|
||
// Expand arguments. Some arguments must physically expand to a different set
|
||
// than what the shader declared and passes.
|
||
if (arguments && !builtIn)
|
||
expandArguments(loc, *fnCandidate, arguments);
|
||
|
||
// Expansion may have changed the form of arguments
|
||
aggregate = arguments ? arguments->getAsAggregate() : nullptr;
|
||
|
||
op = fnCandidate->getBuiltInOp();
|
||
if (builtIn && op != EOpNull) {
|
||
// A function call mapped to a built-in operation.
|
||
result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
|
||
fnCandidate->getType());
|
||
if (result == nullptr) {
|
||
error(arguments->getLoc(), " wrong operand type", "Internal Error",
|
||
"built in unary operator function. Type: %s",
|
||
static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
|
||
} else if (result->getAsOperator()) {
|
||
builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
|
||
}
|
||
} else {
|
||
// This is a function call not mapped to built-in operator.
|
||
// It could still be a built-in function, but only if PureOperatorBuiltins == false.
|
||
result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
|
||
TIntermAggregate* call = result->getAsAggregate();
|
||
call->setName(callerName);
|
||
|
||
// this is how we know whether the given function is a built-in function or a user-defined function
|
||
// if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
|
||
// if builtIn == true, it's definitely a built-in function with EOpNull
|
||
if (! builtIn) {
|
||
call->setUserDefined();
|
||
intermediate.addToCallGraph(infoSink, currentCaller, callerName);
|
||
}
|
||
}
|
||
|
||
// for decompositions, since we want to operate on the function node, not the aggregate holding
|
||
// output conversions.
|
||
const TIntermTyped* fnNode = result;
|
||
|
||
decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
|
||
decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
|
||
decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
|
||
decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
|
||
|
||
// Create the qualifier list, carried in the AST for the call.
|
||
// Because some arguments expand to multiple arguments, the qualifier list will
|
||
// be longer than the formal parameter list.
|
||
if (result == fnNode && result->getAsAggregate()) {
|
||
TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
|
||
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
|
||
TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
|
||
if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
|
||
// add buffer and counter buffer argument qualifier
|
||
qualifierList.push_back(qual);
|
||
qualifierList.push_back(qual);
|
||
} else if (shouldFlatten(*(*fnCandidate)[i].type)) {
|
||
// add structure member expansion
|
||
for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
|
||
qualifierList.push_back(qual);
|
||
} else {
|
||
// Normal 1:1 case
|
||
qualifierList.push_back(qual);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
|
||
// Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
|
||
// Also, build the qualifier list for user function calls, which are always called with an aggregate.
|
||
// We don't do this is if there has been a decomposition, which will have added its own conversions
|
||
// for output parameters.
|
||
if (result == fnNode && result->getAsAggregate())
|
||
result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
|
||
}
|
||
}
|
||
|
||
// generic error recovery
|
||
// TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
|
||
// reduce cascades
|
||
if (result == nullptr)
|
||
result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
|
||
|
||
return result;
|
||
}
|
||
|
||
// An initial argument list is difficult: it can be null, or a single node,
|
||
// or an aggregate if more than one argument. Add one to the front, maintaining
|
||
// this lack of uniformity.
|
||
void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
|
||
{
|
||
if (arguments == nullptr)
|
||
arguments = front;
|
||
else if (arguments->getAsAggregate() != nullptr)
|
||
arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
|
||
else
|
||
arguments = intermediate.growAggregate(front, arguments);
|
||
}
|
||
|
||
//
|
||
// Add any needed implicit conversions for function-call arguments to input parameters.
|
||
//
|
||
void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
|
||
{
|
||
TIntermAggregate* aggregate = arguments->getAsAggregate();
|
||
|
||
// Replace a single argument with a single argument.
|
||
const auto setArg = [&](int paramNum, TIntermTyped* arg) {
|
||
if (function.getParamCount() == 1)
|
||
arguments = arg;
|
||
else {
|
||
if (aggregate == nullptr)
|
||
arguments = arg;
|
||
else
|
||
aggregate->getSequence()[paramNum] = arg;
|
||
}
|
||
};
|
||
|
||
// Process each argument's conversion
|
||
for (int param = 0; param < function.getParamCount(); ++param) {
|
||
if (! function[param].type->getQualifier().isParamInput())
|
||
continue;
|
||
|
||
// At this early point there is a slight ambiguity between whether an aggregate 'arguments'
|
||
// is the single argument itself or its children are the arguments. Only one argument
|
||
// means take 'arguments' itself as the one argument.
|
||
TIntermTyped* arg = function.getParamCount() == 1
|
||
? arguments->getAsTyped()
|
||
: (aggregate ?
|
||
aggregate->getSequence()[param]->getAsTyped() :
|
||
arguments->getAsTyped());
|
||
if (*function[param].type != arg->getType()) {
|
||
// In-qualified arguments just need an extra node added above the argument to
|
||
// convert to the correct type.
|
||
TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
|
||
if (convArg != nullptr)
|
||
convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
|
||
if (convArg != nullptr)
|
||
setArg(param, convArg);
|
||
else
|
||
error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
|
||
} else {
|
||
if (wasFlattened(arg)) {
|
||
// If both formal and calling arg are to be flattened, leave that to argument
|
||
// expansion, not conversion.
|
||
if (!shouldFlatten(*function[param].type)) {
|
||
// Will make a two-level subtree.
|
||
// The deepest will copy member-by-member to build the structure to pass.
|
||
// The level above that will be a two-operand EOpComma sequence that follows the copy by the
|
||
// object itself.
|
||
TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
|
||
internalAggregate->getWritableType().getQualifier().makeTemporary();
|
||
TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
|
||
internalAggregate->getName(),
|
||
internalAggregate->getType());
|
||
internalSymbolNode->setLoc(arg->getLoc());
|
||
// This makes the deepest level, the member-wise copy
|
||
TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
|
||
internalSymbolNode, arg)->getAsAggregate();
|
||
|
||
// Now, pair that with the resulting aggregate.
|
||
assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
|
||
assignAgg->setOperator(EOpComma);
|
||
assignAgg->setType(internalAggregate->getType());
|
||
setArg(param, assignAgg);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
//
|
||
// Add any needed implicit expansion of calling arguments from what the shader listed to what's
|
||
// internally needed for the AST (given the constraints downstream).
|
||
//
|
||
void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
|
||
{
|
||
TIntermAggregate* aggregate = arguments->getAsAggregate();
|
||
int functionParamNumberOffset = 0;
|
||
|
||
// Replace a single argument with a single argument.
|
||
const auto setArg = [&](int paramNum, TIntermTyped* arg) {
|
||
if (function.getParamCount() + functionParamNumberOffset == 1)
|
||
arguments = arg;
|
||
else {
|
||
if (aggregate == nullptr)
|
||
arguments = arg;
|
||
else
|
||
aggregate->getSequence()[paramNum] = arg;
|
||
}
|
||
};
|
||
|
||
// Replace a single argument with a list of arguments
|
||
const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
|
||
if (args.size() == 1)
|
||
setArg(paramNum, args.front());
|
||
else {
|
||
if (function.getParamCount() + functionParamNumberOffset == 1) {
|
||
arguments = intermediate.makeAggregate(args.front());
|
||
std::for_each(args.begin() + 1, args.end(),
|
||
[&](TIntermTyped* arg) {
|
||
arguments = intermediate.growAggregate(arguments, arg);
|
||
});
|
||
} else {
|
||
auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
|
||
aggregate->getSequence().insert(it, args.begin(), args.end());
|
||
}
|
||
}
|
||
functionParamNumberOffset += (args.size() - 1);
|
||
};
|
||
|
||
// Process each argument's conversion
|
||
for (int param = 0; param < function.getParamCount(); ++param) {
|
||
// At this early point there is a slight ambiguity between whether an aggregate 'arguments'
|
||
// is the single argument itself or its children are the arguments. Only one argument
|
||
// means take 'arguments' itself as the one argument.
|
||
TIntermTyped* arg = function.getParamCount() == 1
|
||
? arguments->getAsTyped()
|
||
: (aggregate ?
|
||
aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
|
||
arguments->getAsTyped());
|
||
|
||
if (wasFlattened(arg) && shouldFlatten(*function[param].type)) {
|
||
// Need to pass the structure members instead of the structure.
|
||
TVector<TIntermTyped*> memberArgs;
|
||
for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
|
||
memberArgs.push_back(flattenAccess(arg, memb));
|
||
setArgList(param + functionParamNumberOffset, memberArgs);
|
||
}
|
||
}
|
||
|
||
// TODO: if we need both hidden counter args (below) and struct expansion (above)
|
||
// the two algorithms need to be merged: Each assumes the list starts out 1:1 between
|
||
// parameters and arguments.
|
||
|
||
// If any argument is a pass-by-reference struct buffer with an associated counter
|
||
// buffer, we have to add another hidden parameter for that counter.
|
||
if (aggregate)
|
||
addStructBuffArguments(loc, aggregate);
|
||
}
|
||
|
||
//
|
||
// Add any needed implicit output conversions for function-call arguments. This
|
||
// can require a new tree topology, complicated further by whether the function
|
||
// has a return value.
|
||
//
|
||
// Returns a node of a subtree that evaluates to the return value of the function.
|
||
//
|
||
TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
|
||
{
|
||
assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
|
||
|
||
const TSourceLoc& loc = intermNode.getLoc();
|
||
|
||
TIntermSequence argSequence; // temp sequence for unary node args
|
||
|
||
if (intermNode.getAsUnaryNode())
|
||
argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
|
||
|
||
TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
|
||
|
||
const auto needsConversion = [&](int argNum) {
|
||
return function[argNum].type->getQualifier().isParamOutput() &&
|
||
(*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
|
||
shouldConvertLValue(arguments[argNum]) ||
|
||
wasFlattened(arguments[argNum]->getAsTyped()));
|
||
};
|
||
|
||
// Will there be any output conversions?
|
||
bool outputConversions = false;
|
||
for (int i = 0; i < function.getParamCount(); ++i) {
|
||
if (needsConversion(i)) {
|
||
outputConversions = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (! outputConversions)
|
||
return &intermNode;
|
||
|
||
// Setup for the new tree, if needed:
|
||
//
|
||
// Output conversions need a different tree topology.
|
||
// Out-qualified arguments need a temporary of the correct type, with the call
|
||
// followed by an assignment of the temporary to the original argument:
|
||
// void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
|
||
// ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
|
||
// Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
|
||
TIntermTyped* conversionTree = nullptr;
|
||
TVariable* tempRet = nullptr;
|
||
if (intermNode.getBasicType() != EbtVoid) {
|
||
// do the "tempRet = function(...), " bit from above
|
||
tempRet = makeInternalVariable("tempReturn", intermNode.getType());
|
||
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
|
||
conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
|
||
} else
|
||
conversionTree = &intermNode;
|
||
|
||
conversionTree = intermediate.makeAggregate(conversionTree);
|
||
|
||
// Process each argument's conversion
|
||
for (int i = 0; i < function.getParamCount(); ++i) {
|
||
if (needsConversion(i)) {
|
||
// Out-qualified arguments needing conversion need to use the topology setup above.
|
||
// Do the " ...(tempArg, ...), arg = tempArg" bit from above.
|
||
|
||
// Make a temporary for what the function expects the argument to look like.
|
||
TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
|
||
tempArg->getWritableType().getQualifier().makeTemporary();
|
||
TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
|
||
|
||
// This makes the deepest level, the member-wise copy
|
||
TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
|
||
tempArgNode);
|
||
tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
|
||
conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
|
||
|
||
// replace the argument with another node for the same tempArg variable
|
||
arguments[i] = intermediate.addSymbol(*tempArg, loc);
|
||
}
|
||
}
|
||
|
||
// Finalize the tree topology (see bigger comment above).
|
||
if (tempRet) {
|
||
// do the "..., tempRet" bit from above
|
||
TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
|
||
conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
|
||
}
|
||
|
||
conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
|
||
|
||
return conversionTree;
|
||
}
|
||
|
||
//
|
||
// Add any needed "hidden" counter buffer arguments for function calls.
|
||
//
|
||
// Modifies the 'aggregate' argument if needed. Otherwise, is no-op.
|
||
//
|
||
void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
|
||
{
|
||
// See if there are any SB types with counters.
|
||
const bool hasStructBuffArg =
|
||
std::any_of(aggregate->getSequence().begin(),
|
||
aggregate->getSequence().end(),
|
||
[this](const TIntermNode* node) {
|
||
return (node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
|
||
});
|
||
|
||
// Nothing to do, if we didn't find one.
|
||
if (! hasStructBuffArg)
|
||
return;
|
||
|
||
TIntermSequence argsWithCounterBuffers;
|
||
|
||
for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
|
||
argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
|
||
|
||
if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
|
||
const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
|
||
if (blockSym != nullptr) {
|
||
TType counterType;
|
||
counterBufferType(loc, counterType);
|
||
|
||
const TString counterBlockName(getStructBuffCounterName(blockSym->getName()));
|
||
|
||
TVariable* variable = makeInternalVariable(counterBlockName, counterType);
|
||
|
||
// Mark this buffer as requiring a counter block. TODO: there should be a better
|
||
// way to track it.
|
||
structBufferCounter[counterBlockName] = true;
|
||
|
||
TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
|
||
argsWithCounterBuffers.push_back(sym);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Swap with the temp list we've built up.
|
||
aggregate->getSequence().swap(argsWithCounterBuffers);
|
||
}
|
||
|
||
|
||
//
|
||
// Do additional checking of built-in function calls that is not caught
|
||
// by normal semantic checks on argument type, extension tagging, etc.
|
||
//
|
||
// Assumes there has been a semantically correct match to a built-in function prototype.
|
||
//
|
||
void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
|
||
{
|
||
// Set up convenience accessors to the argument(s). There is almost always
|
||
// multiple arguments for the cases below, but when there might be one,
|
||
// check the unaryArg first.
|
||
const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
|
||
const TIntermTyped* unaryArg = nullptr;
|
||
const TIntermTyped* arg0 = nullptr;
|
||
if (callNode.getAsAggregate()) {
|
||
argp = &callNode.getAsAggregate()->getSequence();
|
||
if (argp->size() > 0)
|
||
arg0 = (*argp)[0]->getAsTyped();
|
||
} else {
|
||
assert(callNode.getAsUnaryNode());
|
||
unaryArg = callNode.getAsUnaryNode()->getOperand();
|
||
arg0 = unaryArg;
|
||
}
|
||
const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr
|
||
|
||
switch (callNode.getOp()) {
|
||
case EOpTextureGather:
|
||
case EOpTextureGatherOffset:
|
||
case EOpTextureGatherOffsets:
|
||
{
|
||
// Figure out which variants are allowed by what extensions,
|
||
// and what arguments must be constant for which situations.
|
||
|
||
TString featureString = fnCandidate.getName() + "(...)";
|
||
const char* feature = featureString.c_str();
|
||
int compArg = -1; // track which argument, if any, is the constant component argument
|
||
switch (callNode.getOp()) {
|
||
case EOpTextureGather:
|
||
// More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
|
||
// otherwise, need GL_ARB_texture_gather.
|
||
if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
|
||
fnCandidate[0].type->getSampler().shadow) {
|
||
if (! fnCandidate[0].type->getSampler().shadow)
|
||
compArg = 2;
|
||
}
|
||
break;
|
||
case EOpTextureGatherOffset:
|
||
// GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
|
||
if (! fnCandidate[0].type->getSampler().shadow)
|
||
compArg = 3;
|
||
break;
|
||
case EOpTextureGatherOffsets:
|
||
if (! fnCandidate[0].type->getSampler().shadow)
|
||
compArg = 3;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
|
||
if (aggArgs[compArg]->getAsConstantUnion()) {
|
||
int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
|
||
if (value < 0 || value > 3)
|
||
error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
|
||
} else
|
||
error(loc, "must be a compile-time constant:", feature, "component argument");
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpTextureOffset:
|
||
case EOpTextureFetchOffset:
|
||
case EOpTextureProjOffset:
|
||
case EOpTextureLodOffset:
|
||
case EOpTextureProjLodOffset:
|
||
case EOpTextureGradOffset:
|
||
case EOpTextureProjGradOffset:
|
||
{
|
||
// Handle texture-offset limits checking
|
||
// Pick which argument has to hold constant offsets
|
||
int arg = -1;
|
||
switch (callNode.getOp()) {
|
||
case EOpTextureOffset: arg = 2; break;
|
||
case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
|
||
case EOpTextureProjOffset: arg = 2; break;
|
||
case EOpTextureLodOffset: arg = 3; break;
|
||
case EOpTextureProjLodOffset: arg = 3; break;
|
||
case EOpTextureGradOffset: arg = 4; break;
|
||
case EOpTextureProjGradOffset: arg = 4; break;
|
||
default:
|
||
assert(0);
|
||
break;
|
||
}
|
||
|
||
if (arg > 0) {
|
||
if (aggArgs[arg]->getAsConstantUnion() == nullptr)
|
||
error(loc, "argument must be compile-time constant", "texel offset", "");
|
||
else {
|
||
const TType& type = aggArgs[arg]->getAsTyped()->getType();
|
||
for (int c = 0; c < type.getVectorSize(); ++c) {
|
||
int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
|
||
if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
|
||
error(loc, "value is out of range:", "texel offset",
|
||
"[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case EOpTextureQuerySamples:
|
||
case EOpImageQuerySamples:
|
||
break;
|
||
|
||
case EOpImageAtomicAdd:
|
||
case EOpImageAtomicMin:
|
||
case EOpImageAtomicMax:
|
||
case EOpImageAtomicAnd:
|
||
case EOpImageAtomicOr:
|
||
case EOpImageAtomicXor:
|
||
case EOpImageAtomicExchange:
|
||
case EOpImageAtomicCompSwap:
|
||
break;
|
||
|
||
case EOpInterpolateAtCentroid:
|
||
case EOpInterpolateAtSample:
|
||
case EOpInterpolateAtOffset:
|
||
// Make sure the first argument is an interpolant, or an array element of an interpolant
|
||
if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
|
||
// It might still be an array element.
|
||
//
|
||
// We could check more, but the semantics of the first argument are already met; the
|
||
// only way to turn an array into a float/vec* is array dereference and swizzle.
|
||
//
|
||
// ES and desktop 4.3 and earlier: swizzles may not be used
|
||
// desktop 4.4 and later: swizzles may be used
|
||
const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
|
||
if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
|
||
error(loc, "first argument must be an interpolant, or interpolant-array element",
|
||
fnCandidate.getName().c_str(), "");
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Handle seeing something in a grammar production that can be done by calling
|
||
// a constructor.
|
||
//
|
||
// The constructor still must be "handled" by handleFunctionCall(), which will
|
||
// then call handleConstructor().
|
||
//
|
||
TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
|
||
{
|
||
TOperator op = intermediate.mapTypeToConstructorOp(type);
|
||
|
||
if (op == EOpNull) {
|
||
error(loc, "cannot construct this type", type.getBasicString(), "");
|
||
return nullptr;
|
||
}
|
||
|
||
TString empty("");
|
||
|
||
return new TFunction(&empty, type, op);
|
||
}
|
||
|
||
//
|
||
// Handle seeing a "COLON semantic" at the end of a type declaration,
|
||
// by updating the type according to the semantic.
|
||
//
|
||
void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
|
||
const TString& upperCase)
|
||
{
|
||
// Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed
|
||
// semantic number is >= limit, errorMsg is issued and 0 is returned.
|
||
// TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
|
||
// accept those in lambda functions.
|
||
const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
|
||
size_t pos = semantic.find_last_not_of("0123456789");
|
||
if (pos == std::string::npos)
|
||
return 0u;
|
||
|
||
unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
|
||
|
||
if (limit != 0 && semanticNum >= limit) {
|
||
error(loc, errorMsg, semantic.c_str(), "");
|
||
return 0u;
|
||
}
|
||
|
||
return semanticNum;
|
||
};
|
||
|
||
switch(builtIn) {
|
||
case EbvNone:
|
||
// Get location numbers from fragment outputs, instead of
|
||
// auto-assigning them.
|
||
if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
|
||
qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
|
||
nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
|
||
} else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
|
||
builtIn = EbvClipDistance;
|
||
qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
|
||
} else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
|
||
builtIn = EbvCullDistance;
|
||
qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
|
||
}
|
||
break;
|
||
case EbvPosition:
|
||
// adjust for stage in/out
|
||
if (language == EShLangFragment)
|
||
builtIn = EbvFragCoord;
|
||
break;
|
||
case EbvFragStencilRef:
|
||
error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
|
||
break;
|
||
case EbvTessLevelInner:
|
||
case EbvTessLevelOuter:
|
||
qualifier.patch = true;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
qualifier.builtIn = builtIn;
|
||
qualifier.semanticName = intermediate.addSemanticName(upperCase);
|
||
}
|
||
|
||
//
|
||
// Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
|
||
//
|
||
// 'location' has the "c[Subcomponent]" part.
|
||
// 'component' points to the "component" part, or nullptr if not present.
|
||
//
|
||
void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
|
||
const glslang::TString* component)
|
||
{
|
||
if (location.size() == 0 || location[0] != 'c') {
|
||
error(loc, "expected 'c'", "packoffset", "");
|
||
return;
|
||
}
|
||
if (location.size() == 1)
|
||
return;
|
||
if (! isdigit(location[1])) {
|
||
error(loc, "expected number after 'c'", "packoffset", "");
|
||
return;
|
||
}
|
||
|
||
qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
|
||
if (component != nullptr) {
|
||
int componentOffset = 0;
|
||
switch ((*component)[0]) {
|
||
case 'x': componentOffset = 0; break;
|
||
case 'y': componentOffset = 4; break;
|
||
case 'z': componentOffset = 8; break;
|
||
case 'w': componentOffset = 12; break;
|
||
default:
|
||
componentOffset = -1;
|
||
break;
|
||
}
|
||
if (componentOffset < 0 || component->size() > 1) {
|
||
error(loc, "expected {x, y, z, w} for component", "packoffset", "");
|
||
return;
|
||
}
|
||
qualifier.layoutOffset += componentOffset;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
|
||
//
|
||
// 'profile' points to the shader_profile part, or nullptr if not present.
|
||
// 'desc' is the type# part.
|
||
//
|
||
void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
|
||
const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
|
||
{
|
||
if (profile != nullptr)
|
||
warn(loc, "ignoring shader_profile", "register", "");
|
||
|
||
if (desc.size() < 1) {
|
||
error(loc, "expected register type", "register", "");
|
||
return;
|
||
}
|
||
|
||
int regNumber = 0;
|
||
if (desc.size() > 1) {
|
||
if (isdigit(desc[1]))
|
||
regNumber = atoi(desc.substr(1, desc.size()).c_str());
|
||
else {
|
||
error(loc, "expected register number after register type", "register", "");
|
||
return;
|
||
}
|
||
}
|
||
|
||
// TODO: learn what all these really mean and how they interact with regNumber and subComponent
|
||
const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
|
||
switch (std::tolower(desc[0])) {
|
||
case 'b':
|
||
case 't':
|
||
case 'c':
|
||
case 's':
|
||
case 'u':
|
||
qualifier.layoutBinding = regNumber + subComponent;
|
||
|
||
// This handles per-register layout sets numbers. For the global mode which sets
|
||
// every symbol to the same value, see setLinkageLayoutSets().
|
||
if ((resourceInfo.size() % 3) == 0) {
|
||
// Apply per-symbol resource set and binding.
|
||
for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
|
||
if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
|
||
qualifier.layoutSet = atoi(it[1].c_str());
|
||
qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
|
||
break;
|
||
}
|
||
|
||
// space
|
||
unsigned int setNumber;
|
||
const auto crackSpace = [&]() -> bool {
|
||
const int spaceLen = 5;
|
||
if (spaceDesc->size() < spaceLen + 1)
|
||
return false;
|
||
if (spaceDesc->compare(0, spaceLen, "space") != 0)
|
||
return false;
|
||
if (! isdigit((*spaceDesc)[spaceLen]))
|
||
return false;
|
||
setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
|
||
return true;
|
||
};
|
||
|
||
if (spaceDesc) {
|
||
if (! crackSpace()) {
|
||
error(loc, "expected spaceN", "register", "");
|
||
return;
|
||
}
|
||
qualifier.layoutSet = setNumber;
|
||
}
|
||
}
|
||
|
||
// Convert to a scalar boolean, or if not allowed by HLSL semantics,
|
||
// report an error and return nullptr.
|
||
TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
|
||
bool mustBeScalar)
|
||
{
|
||
if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
|
||
error(loc, "requires a scalar", "conditional expression", "");
|
||
return nullptr;
|
||
}
|
||
|
||
return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
|
||
condition);
|
||
}
|
||
|
||
//
|
||
// Same error message for all places assignments don't work.
|
||
//
|
||
void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
|
||
{
|
||
error(loc, "", op, "cannot convert from '%s' to '%s'",
|
||
right.c_str(), left.c_str());
|
||
}
|
||
|
||
//
|
||
// Same error message for all places unary operations don't work.
|
||
//
|
||
void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
|
||
{
|
||
error(loc, " wrong operand type", op,
|
||
"no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
|
||
op, operand.c_str());
|
||
}
|
||
|
||
//
|
||
// Same error message for all binary operations don't work.
|
||
//
|
||
void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
|
||
{
|
||
error(loc, " wrong operand types:", op,
|
||
"no operation '%s' exists that takes a left-hand operand of type '%s' and "
|
||
"a right operand of type '%s' (or there is no acceptable conversion)",
|
||
op, left.c_str(), right.c_str());
|
||
}
|
||
|
||
//
|
||
// A basic type of EbtVoid is a key that the name string was seen in the source, but
|
||
// it was not found as a variable in the symbol table. If so, give the error
|
||
// message and insert a dummy variable in the symbol table to prevent future errors.
|
||
//
|
||
void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
|
||
{
|
||
TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
|
||
if (! symbol)
|
||
return;
|
||
|
||
if (symbol->getType().getBasicType() == EbtVoid) {
|
||
error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
|
||
|
||
// Add to symbol table to prevent future error messages on the same name
|
||
if (symbol->getName().size() > 0) {
|
||
TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
|
||
symbolTable.insert(*fakeVariable);
|
||
|
||
// substitute a symbol node for this new variable
|
||
nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
|
||
}
|
||
}
|
||
}
|
||
|
||
//
|
||
// Both test, and if necessary spit out an error, to see if the node is really
|
||
// a constant.
|
||
//
|
||
void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
|
||
{
|
||
if (node->getQualifier().storage != EvqConst)
|
||
error(node->getLoc(), "constant expression required", token, "");
|
||
}
|
||
|
||
//
|
||
// Both test, and if necessary spit out an error, to see if the node is really
|
||
// an integer.
|
||
//
|
||
void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
|
||
{
|
||
if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
|
||
return;
|
||
|
||
error(node->getLoc(), "scalar integer expression required", token, "");
|
||
}
|
||
|
||
//
|
||
// Both test, and if necessary spit out an error, to see if we are currently
|
||
// globally scoped.
|
||
//
|
||
void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
|
||
{
|
||
if (! symbolTable.atGlobalLevel())
|
||
error(loc, "not allowed in nested scope", token, "");
|
||
}
|
||
|
||
bool HlslParseContext::builtInName(const TString& /*identifier*/)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
//
|
||
// Make sure there is enough data and not too many arguments provided to the
|
||
// constructor to build something of the type of the constructor. Also returns
|
||
// the type of the constructor.
|
||
//
|
||
// Returns true if there was an error in construction.
|
||
//
|
||
bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
|
||
TOperator op, TType& type)
|
||
{
|
||
type.shallowCopy(function.getType());
|
||
|
||
bool constructingMatrix = false;
|
||
switch (op) {
|
||
case EOpConstructTextureSampler:
|
||
return constructorTextureSamplerError(loc, function);
|
||
case EOpConstructMat2x2:
|
||
case EOpConstructMat2x3:
|
||
case EOpConstructMat2x4:
|
||
case EOpConstructMat3x2:
|
||
case EOpConstructMat3x3:
|
||
case EOpConstructMat3x4:
|
||
case EOpConstructMat4x2:
|
||
case EOpConstructMat4x3:
|
||
case EOpConstructMat4x4:
|
||
case EOpConstructDMat2x2:
|
||
case EOpConstructDMat2x3:
|
||
case EOpConstructDMat2x4:
|
||
case EOpConstructDMat3x2:
|
||
case EOpConstructDMat3x3:
|
||
case EOpConstructDMat3x4:
|
||
case EOpConstructDMat4x2:
|
||
case EOpConstructDMat4x3:
|
||
case EOpConstructDMat4x4:
|
||
case EOpConstructIMat2x2:
|
||
case EOpConstructIMat2x3:
|
||
case EOpConstructIMat2x4:
|
||
case EOpConstructIMat3x2:
|
||
case EOpConstructIMat3x3:
|
||
case EOpConstructIMat3x4:
|
||
case EOpConstructIMat4x2:
|
||
case EOpConstructIMat4x3:
|
||
case EOpConstructIMat4x4:
|
||
case EOpConstructUMat2x2:
|
||
case EOpConstructUMat2x3:
|
||
case EOpConstructUMat2x4:
|
||
case EOpConstructUMat3x2:
|
||
case EOpConstructUMat3x3:
|
||
case EOpConstructUMat3x4:
|
||
case EOpConstructUMat4x2:
|
||
case EOpConstructUMat4x3:
|
||
case EOpConstructUMat4x4:
|
||
case EOpConstructBMat2x2:
|
||
case EOpConstructBMat2x3:
|
||
case EOpConstructBMat2x4:
|
||
case EOpConstructBMat3x2:
|
||
case EOpConstructBMat3x3:
|
||
case EOpConstructBMat3x4:
|
||
case EOpConstructBMat4x2:
|
||
case EOpConstructBMat4x3:
|
||
case EOpConstructBMat4x4:
|
||
constructingMatrix = true;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
//
|
||
// Walk the arguments for first-pass checks and collection of information.
|
||
//
|
||
|
||
int size = 0;
|
||
bool constType = true;
|
||
bool full = false;
|
||
bool overFull = false;
|
||
bool matrixInMatrix = false;
|
||
bool arrayArg = false;
|
||
for (int arg = 0; arg < function.getParamCount(); ++arg) {
|
||
if (function[arg].type->isArray()) {
|
||
if (! function[arg].type->isExplicitlySizedArray()) {
|
||
// Can't construct from an unsized array.
|
||
error(loc, "array argument must be sized", "constructor", "");
|
||
return true;
|
||
}
|
||
arrayArg = true;
|
||
}
|
||
if (constructingMatrix && function[arg].type->isMatrix())
|
||
matrixInMatrix = true;
|
||
|
||
// 'full' will go to true when enough args have been seen. If we loop
|
||
// again, there is an extra argument.
|
||
if (full) {
|
||
// For vectors and matrices, it's okay to have too many components
|
||
// available, but not okay to have unused arguments.
|
||
overFull = true;
|
||
}
|
||
|
||
size += function[arg].type->computeNumComponents();
|
||
if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
|
||
full = true;
|
||
|
||
if (function[arg].type->getQualifier().storage != EvqConst)
|
||
constType = false;
|
||
}
|
||
|
||
if (constType)
|
||
type.getQualifier().storage = EvqConst;
|
||
|
||
if (type.isArray()) {
|
||
if (function.getParamCount() == 0) {
|
||
error(loc, "array constructor must have at least one argument", "constructor", "");
|
||
return true;
|
||
}
|
||
|
||
if (type.isImplicitlySizedArray()) {
|
||
// auto adapt the constructor type to the number of arguments
|
||
type.changeOuterArraySize(function.getParamCount());
|
||
} else if (type.getOuterArraySize() != function.getParamCount() &&
|
||
type.computeNumComponents() > size) {
|
||
error(loc, "array constructor needs one argument per array element", "constructor", "");
|
||
return true;
|
||
}
|
||
|
||
if (type.isArrayOfArrays()) {
|
||
// Types have to match, but we're still making the type.
|
||
// Finish making the type, and the comparison is done later
|
||
// when checking for conversion.
|
||
TArraySizes& arraySizes = type.getArraySizes();
|
||
|
||
// At least the dimensionalities have to match.
|
||
if (! function[0].type->isArray() ||
|
||
arraySizes.getNumDims() != function[0].type->getArraySizes().getNumDims() + 1) {
|
||
error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
|
||
return true;
|
||
}
|
||
|
||
if (arraySizes.isInnerImplicit()) {
|
||
// "Arrays of arrays ..., and the size for any dimension is optional"
|
||
// That means we need to adopt (from the first argument) the other array sizes into the type.
|
||
for (int d = 1; d < arraySizes.getNumDims(); ++d) {
|
||
if (arraySizes.getDimSize(d) == UnsizedArraySize) {
|
||
arraySizes.setDimSize(d, function[0].type->getArraySizes().getDimSize(d - 1));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Some array -> array type casts are okay
|
||
if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
|
||
!type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
|
||
type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
|
||
return false;
|
||
|
||
if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
|
||
error(loc, "constructing non-array constituent from array argument", "constructor", "");
|
||
return true;
|
||
}
|
||
|
||
if (matrixInMatrix && ! type.isArray()) {
|
||
return false;
|
||
}
|
||
|
||
if (overFull) {
|
||
error(loc, "too many arguments", "constructor", "");
|
||
return true;
|
||
}
|
||
|
||
if (op == EOpConstructStruct && ! type.isArray() && isScalarConstructor(node))
|
||
return false;
|
||
|
||
if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) {
|
||
error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
|
||
return true;
|
||
}
|
||
|
||
if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
|
||
(op == EOpConstructStruct && size < type.computeNumComponents())) {
|
||
error(loc, "not enough data provided for construction", "constructor", "");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// See if 'node', in the context of constructing aggregates, is a scalar argument
|
||
// to a constructor.
|
||
//
|
||
bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
|
||
{
|
||
// Obviously, it must be a scalar, but an aggregate node might not be fully
|
||
// completed yet: holding a sequence of initializers under an aggregate
|
||
// would not yet be typed, so don't check it's type. This corresponds to
|
||
// the aggregate operator also not being set yet. (An aggregate operation
|
||
// that legitimately yields a scalar will have a getOp() of that operator,
|
||
// not EOpNull.)
|
||
|
||
return node->getAsTyped() != nullptr &&
|
||
node->getAsTyped()->isScalar() &&
|
||
(node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
|
||
}
|
||
|
||
// Verify all the correct semantics for constructing a combined texture/sampler.
|
||
// Return true if the semantics are incorrect.
|
||
bool HlslParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function)
|
||
{
|
||
TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change
|
||
const char* token = constructorName.c_str();
|
||
|
||
// exactly two arguments needed
|
||
if (function.getParamCount() != 2) {
|
||
error(loc, "sampler-constructor requires two arguments", token, "");
|
||
return true;
|
||
}
|
||
|
||
// For now, not allowing arrayed constructors, the rest of this function
|
||
// is set up to allow them, if this test is removed:
|
||
if (function.getType().isArray()) {
|
||
error(loc, "sampler-constructor cannot make an array of samplers", token, "");
|
||
return true;
|
||
}
|
||
|
||
// first argument
|
||
// * the constructor's first argument must be a texture type
|
||
// * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array)
|
||
// of the texture type must match that of the constructed sampler type
|
||
// (that is, the suffixes of the type of the first argument and the
|
||
// type of the constructor will be spelled the same way)
|
||
if (function[0].type->getBasicType() != EbtSampler ||
|
||
! function[0].type->getSampler().isTexture() ||
|
||
function[0].type->isArray()) {
|
||
error(loc, "sampler-constructor first argument must be a scalar textureXXX type", token, "");
|
||
return true;
|
||
}
|
||
// simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=()
|
||
TSampler texture = function.getType().getSampler();
|
||
texture.combined = false;
|
||
texture.shadow = false;
|
||
if (texture != function[0].type->getSampler()) {
|
||
error(loc, "sampler-constructor first argument must match type and dimensionality of constructor type", token, "");
|
||
return true;
|
||
}
|
||
|
||
// second argument
|
||
// * the constructor's second argument must be a scalar of type
|
||
// *sampler* or *samplerShadow*
|
||
// * the presence or absence of depth comparison (Shadow) must match
|
||
// between the constructed sampler type and the type of the second argument
|
||
if (function[1].type->getBasicType() != EbtSampler ||
|
||
! function[1].type->getSampler().isPureSampler() ||
|
||
function[1].type->isArray()) {
|
||
error(loc, "sampler-constructor second argument must be a scalar type 'sampler'", token, "");
|
||
return true;
|
||
}
|
||
if (function.getType().getSampler().shadow != function[1].type->getSampler().shadow) {
|
||
error(loc, "sampler-constructor second argument presence of shadow must match constructor presence of shadow",
|
||
token, "");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Checks to see if a void variable has been declared and raise an error message for such a case
|
||
//
|
||
// returns true in case of an error
|
||
//
|
||
bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
|
||
{
|
||
if (basicType == EbtVoid) {
|
||
error(loc, "illegal use of type 'void'", identifier.c_str(), "");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
//
|
||
// Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
|
||
//
|
||
void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
|
||
{
|
||
// move from parameter/unknown qualifiers to pipeline in/out qualifiers
|
||
switch (qualifier.storage) {
|
||
case EvqIn:
|
||
qualifier.storage = EvqVaryingIn;
|
||
break;
|
||
case EvqOut:
|
||
qualifier.storage = EvqVaryingOut;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Merge characteristics of the 'src' qualifier into the 'dst'.
|
||
// If there is duplication, issue error messages, unless 'force'
|
||
// is specified, which means to just override default settings.
|
||
//
|
||
// Also, when force is false, it will be assumed that 'src' follows
|
||
// 'dst', for the purpose of error checking order for versions
|
||
// that require specific orderings of qualifiers.
|
||
//
|
||
void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
|
||
{
|
||
// Storage qualification
|
||
if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
|
||
dst.storage = src.storage;
|
||
else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
|
||
(dst.storage == EvqOut && src.storage == EvqIn))
|
||
dst.storage = EvqInOut;
|
||
else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
|
||
(dst.storage == EvqConst && src.storage == EvqIn))
|
||
dst.storage = EvqConstReadOnly;
|
||
|
||
// Layout qualifiers
|
||
mergeObjectLayoutQualifiers(dst, src, false);
|
||
|
||
// individual qualifiers
|
||
bool repeated = false;
|
||
#define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
|
||
MERGE_SINGLETON(invariant);
|
||
MERGE_SINGLETON(noContraction);
|
||
MERGE_SINGLETON(centroid);
|
||
MERGE_SINGLETON(smooth);
|
||
MERGE_SINGLETON(flat);
|
||
MERGE_SINGLETON(nopersp);
|
||
MERGE_SINGLETON(patch);
|
||
MERGE_SINGLETON(sample);
|
||
MERGE_SINGLETON(coherent);
|
||
MERGE_SINGLETON(volatil);
|
||
MERGE_SINGLETON(restrict);
|
||
MERGE_SINGLETON(readonly);
|
||
MERGE_SINGLETON(writeonly);
|
||
MERGE_SINGLETON(specConstant);
|
||
}
|
||
|
||
// used to flatten the sampler type space into a single dimension
|
||
// correlates with the declaration of defaultSamplerPrecision[]
|
||
int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
|
||
{
|
||
int arrayIndex = sampler.arrayed ? 1 : 0;
|
||
int shadowIndex = sampler.shadow ? 1 : 0;
|
||
int externalIndex = sampler.external ? 1 : 0;
|
||
|
||
return EsdNumDims *
|
||
(EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
|
||
}
|
||
|
||
//
|
||
// Do size checking for an array type's size.
|
||
//
|
||
void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
|
||
{
|
||
bool isConst = false;
|
||
sizePair.size = 1;
|
||
sizePair.node = nullptr;
|
||
|
||
TIntermConstantUnion* constant = expr->getAsConstantUnion();
|
||
if (constant) {
|
||
// handle true (non-specialization) constant
|
||
sizePair.size = constant->getConstArray()[0].getIConst();
|
||
isConst = true;
|
||
} else {
|
||
// see if it's a specialization constant instead
|
||
if (expr->getQualifier().isSpecConstant()) {
|
||
isConst = true;
|
||
sizePair.node = expr;
|
||
TIntermSymbol* symbol = expr->getAsSymbolNode();
|
||
if (symbol && symbol->getConstArray().size() > 0)
|
||
sizePair.size = symbol->getConstArray()[0].getIConst();
|
||
}
|
||
}
|
||
|
||
if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
|
||
error(loc, "array size must be a constant integer expression", "", "");
|
||
return;
|
||
}
|
||
|
||
if (sizePair.size <= 0) {
|
||
error(loc, "array size must be a positive integer", "", "");
|
||
return;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Require array to be completely sized
|
||
//
|
||
void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
|
||
{
|
||
if (arraySizes.isImplicit())
|
||
error(loc, "array size required", "", "");
|
||
}
|
||
|
||
void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
|
||
{
|
||
const TTypeList& structure = *type.getStruct();
|
||
for (int m = 0; m < (int)structure.size(); ++m) {
|
||
const TType& member = *structure[m].type;
|
||
if (member.isArray())
|
||
arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
|
||
}
|
||
}
|
||
|
||
// Merge array dimensions listed in 'sizes' onto the type's array dimensions.
|
||
//
|
||
// From the spec: "vec4[2] a[3]; // size-3 array of size-2 array of vec4"
|
||
//
|
||
// That means, the 'sizes' go in front of the 'type' as outermost sizes.
|
||
// 'type' is the type part of the declaration (to the left)
|
||
// 'sizes' is the arrayness tagged on the identifier (to the right)
|
||
//
|
||
void HlslParseContext::arrayDimMerge(TType& type, const TArraySizes* sizes)
|
||
{
|
||
if (sizes)
|
||
type.addArrayOuterSizes(*sizes);
|
||
}
|
||
|
||
//
|
||
// Do all the semantic checking for declaring or redeclaring an array, with and
|
||
// without a size, and make the right changes to the symbol table.
|
||
//
|
||
void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
|
||
TSymbol*& symbol, bool track)
|
||
{
|
||
if (symbol == nullptr) {
|
||
bool currentScope;
|
||
symbol = symbolTable.find(identifier, nullptr, ¤tScope);
|
||
|
||
if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
|
||
// bad shader (errors already reported) trying to redeclare a built-in name as an array
|
||
return;
|
||
}
|
||
if (symbol == nullptr || ! currentScope) {
|
||
//
|
||
// Successfully process a new definition.
|
||
// (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
|
||
//
|
||
symbol = new TVariable(&identifier, type);
|
||
symbolTable.insert(*symbol);
|
||
if (track && symbolTable.atGlobalLevel())
|
||
trackLinkage(*symbol);
|
||
|
||
return;
|
||
}
|
||
if (symbol->getAsAnonMember()) {
|
||
error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
|
||
symbol = nullptr;
|
||
return;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Process a redeclaration.
|
||
//
|
||
|
||
if (symbol == nullptr) {
|
||
error(loc, "array variable name expected", identifier.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
// redeclareBuiltinVariable() should have already done the copyUp()
|
||
TType& existingType = symbol->getWritableType();
|
||
|
||
if (existingType.isExplicitlySizedArray()) {
|
||
// be more lenient for input arrays to geometry shaders and tessellation control outputs,
|
||
// where the redeclaration is the same size
|
||
return;
|
||
}
|
||
|
||
existingType.updateArraySizes(type);
|
||
}
|
||
|
||
void HlslParseContext::updateImplicitArraySize(const TSourceLoc& loc, TIntermNode *node, int index)
|
||
{
|
||
// maybe there is nothing to do...
|
||
TIntermTyped* typedNode = node->getAsTyped();
|
||
if (typedNode->getType().getImplicitArraySize() > index)
|
||
return;
|
||
|
||
// something to do...
|
||
|
||
// Figure out what symbol to lookup, as we will use its type to edit for the size change,
|
||
// as that type will be shared through shallow copies for future references.
|
||
TSymbol* symbol = nullptr;
|
||
int blockIndex = -1;
|
||
const TString* lookupName = nullptr;
|
||
if (node->getAsSymbolNode())
|
||
lookupName = &node->getAsSymbolNode()->getName();
|
||
else if (node->getAsBinaryNode()) {
|
||
const TIntermBinary* deref = node->getAsBinaryNode();
|
||
// This has to be the result of a block dereference, unless it's bad shader code
|
||
// If it's a uniform block, then an error will be issued elsewhere, but
|
||
// return early now to avoid crashing later in this function.
|
||
if (! deref->getLeft()->getAsSymbolNode() || deref->getLeft()->getBasicType() != EbtBlock ||
|
||
deref->getLeft()->getType().getQualifier().storage == EvqUniform ||
|
||
deref->getRight()->getAsConstantUnion() == nullptr)
|
||
return;
|
||
|
||
blockIndex = deref->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst();
|
||
|
||
lookupName = &deref->getLeft()->getAsSymbolNode()->getName();
|
||
if (IsAnonymous(*lookupName))
|
||
lookupName = &(*deref->getLeft()->getType().getStruct())[blockIndex].type->getFieldName();
|
||
}
|
||
|
||
// Lookup the symbol, should only fail if shader code is incorrect
|
||
symbol = symbolTable.find(*lookupName);
|
||
if (symbol == nullptr)
|
||
return;
|
||
|
||
if (symbol->getAsFunction()) {
|
||
error(loc, "array variable name expected", symbol->getName().c_str(), "");
|
||
return;
|
||
}
|
||
|
||
symbol->getWritableType().setImplicitArraySize(index + 1);
|
||
}
|
||
|
||
//
|
||
// Enforce non-initializer type/qualifier rules.
|
||
//
|
||
void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
|
||
TIntermTyped*& initializer)
|
||
{
|
||
//
|
||
// Make the qualifier make sense, given that there is an initializer.
|
||
//
|
||
if (initializer == nullptr) {
|
||
if (type.getQualifier().storage == EvqConst ||
|
||
type.getQualifier().storage == EvqConstReadOnly) {
|
||
initializer = intermediate.makeAggregate(loc);
|
||
warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
|
||
}
|
||
}
|
||
}
|
||
|
||
//
|
||
// See if the identifier is a built-in symbol that can be redeclared, and if so,
|
||
// copy the symbol table's read-only built-in variable to the current
|
||
// global level, where it can be modified based on the passed in type.
|
||
//
|
||
// Returns nullptr if no redeclaration took place; meaning a normal declaration still
|
||
// needs to occur for it, not necessarily an error.
|
||
//
|
||
// Returns a redeclared and type-modified variable if a redeclared occurred.
|
||
//
|
||
TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
|
||
const TQualifier& /*qualifier*/,
|
||
const TShaderQualifiers& /*publicType*/)
|
||
{
|
||
if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
|
||
return nullptr;
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
//
|
||
// Generate index to the array element in a structure buffer (SSBO)
|
||
//
|
||
TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
|
||
{
|
||
// Bail out if not a struct buffer
|
||
if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
|
||
return nullptr;
|
||
|
||
// Runtime sized array is always the last element.
|
||
const TTypeList* bufferStruct = buffer->getType().getStruct();
|
||
TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
|
||
|
||
TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
|
||
argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
|
||
|
||
return argArray;
|
||
}
|
||
|
||
//
|
||
// IFF type is a structuredbuffer/byteaddressbuffer type, return the content
|
||
// (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr.
|
||
//
|
||
TType* HlslParseContext::getStructBufferContentType(const TType& type) const
|
||
{
|
||
if (type.getBasicType() != EbtBlock)
|
||
return nullptr;
|
||
|
||
const int memberCount = (int)type.getStruct()->size();
|
||
assert(memberCount > 0);
|
||
|
||
TType* contentType = (*type.getStruct())[memberCount-1].type;
|
||
|
||
return contentType->isRuntimeSizedArray() ? contentType : nullptr;
|
||
}
|
||
|
||
//
|
||
// If an existing struct buffer has a sharable type, then share it.
|
||
//
|
||
void HlslParseContext::shareStructBufferType(TType& type)
|
||
{
|
||
// PackOffset must be equivalent to share types on a per-member basis.
|
||
// Note: cannot use auto type due to recursion. Thus, this is a std::function.
|
||
const std::function<bool(TType& lhs, TType& rhs)>
|
||
compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
|
||
if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
|
||
return false;
|
||
|
||
if (lhs.isStruct() != rhs.isStruct())
|
||
return false;
|
||
|
||
if (lhs.isStruct() && rhs.isStruct()) {
|
||
if (lhs.getStruct()->size() != rhs.getStruct()->size())
|
||
return false;
|
||
|
||
for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
|
||
if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
};
|
||
|
||
// We need to compare certain qualifiers in addition to the type.
|
||
const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
|
||
if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
|
||
return false;
|
||
|
||
// If both are structures, recursively look for packOffset equality
|
||
// as well as type equality.
|
||
return compareQualifiers(lhs, rhs) && lhs == rhs;
|
||
};
|
||
|
||
// This is an exhaustive O(N) search, but real world shaders have
|
||
// only a small number of these.
|
||
for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
|
||
// If the deep structure matches, modulo qualifiers, use it
|
||
if (typeEqual(*structBufferTypes[idx], type)) {
|
||
type.shallowCopy(*structBufferTypes[idx]);
|
||
return;
|
||
}
|
||
}
|
||
|
||
// Otherwise, remember it:
|
||
TType* typeCopy = new TType;
|
||
typeCopy->shallowCopy(type);
|
||
structBufferTypes.push_back(typeCopy);
|
||
}
|
||
|
||
void HlslParseContext::paramFix(TType& type)
|
||
{
|
||
switch (type.getQualifier().storage) {
|
||
case EvqConst:
|
||
type.getQualifier().storage = EvqConstReadOnly;
|
||
break;
|
||
case EvqGlobal:
|
||
case EvqTemporary:
|
||
type.getQualifier().storage = EvqIn;
|
||
break;
|
||
case EvqBuffer:
|
||
{
|
||
// SSBO parameter. These do not go through the declareBlock path since they are fn parameters.
|
||
correctUniform(type.getQualifier());
|
||
TQualifier bufferQualifier = globalBufferDefaults;
|
||
mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
|
||
bufferQualifier.storage = type.getQualifier().storage;
|
||
bufferQualifier.readonly = type.getQualifier().readonly;
|
||
bufferQualifier.coherent = type.getQualifier().coherent;
|
||
bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
|
||
type.getQualifier() = bufferQualifier;
|
||
break;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
|
||
{
|
||
if (type.containsSpecializationSize())
|
||
error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
|
||
}
|
||
|
||
//
|
||
// Layout qualifier stuff.
|
||
//
|
||
|
||
// Put the id's layout qualification into the public type, for qualifiers not having a number set.
|
||
// This is before we know any type information for error checking.
|
||
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
|
||
{
|
||
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
|
||
|
||
if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
|
||
qualifier.layoutMatrix = ElmRowMajor;
|
||
return;
|
||
}
|
||
if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
|
||
qualifier.layoutMatrix = ElmColumnMajor;
|
||
return;
|
||
}
|
||
if (id == "push_constant") {
|
||
requireVulkan(loc, "push_constant");
|
||
qualifier.layoutPushConstant = true;
|
||
return;
|
||
}
|
||
if (language == EShLangGeometry || language == EShLangTessEvaluation) {
|
||
if (id == TQualifier::getGeometryString(ElgTriangles)) {
|
||
// publicType.shaderQualifiers.geometry = ElgTriangles;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (language == EShLangGeometry) {
|
||
if (id == TQualifier::getGeometryString(ElgPoints)) {
|
||
// publicType.shaderQualifiers.geometry = ElgPoints;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getGeometryString(ElgLineStrip)) {
|
||
// publicType.shaderQualifiers.geometry = ElgLineStrip;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getGeometryString(ElgLines)) {
|
||
// publicType.shaderQualifiers.geometry = ElgLines;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
|
||
// publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
|
||
// publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
|
||
// publicType.shaderQualifiers.geometry = ElgTriangleStrip;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
} else {
|
||
assert(language == EShLangTessEvaluation);
|
||
|
||
// input primitive
|
||
if (id == TQualifier::getGeometryString(ElgTriangles)) {
|
||
// publicType.shaderQualifiers.geometry = ElgTriangles;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getGeometryString(ElgQuads)) {
|
||
// publicType.shaderQualifiers.geometry = ElgQuads;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getGeometryString(ElgIsolines)) {
|
||
// publicType.shaderQualifiers.geometry = ElgIsolines;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
// vertex spacing
|
||
if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
|
||
// publicType.shaderQualifiers.spacing = EvsEqual;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
|
||
// publicType.shaderQualifiers.spacing = EvsFractionalEven;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
|
||
// publicType.shaderQualifiers.spacing = EvsFractionalOdd;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
// triangle order
|
||
if (id == TQualifier::getVertexOrderString(EvoCw)) {
|
||
// publicType.shaderQualifiers.order = EvoCw;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == TQualifier::getVertexOrderString(EvoCcw)) {
|
||
// publicType.shaderQualifiers.order = EvoCcw;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
// point mode
|
||
if (id == "point_mode") {
|
||
// publicType.shaderQualifiers.pointMode = true;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
if (language == EShLangFragment) {
|
||
if (id == "origin_upper_left") {
|
||
// publicType.shaderQualifiers.originUpperLeft = true;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == "pixel_center_integer") {
|
||
// publicType.shaderQualifiers.pixelCenterInteger = true;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == "early_fragment_tests") {
|
||
// publicType.shaderQualifiers.earlyFragmentTests = true;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
|
||
if (id == TQualifier::getLayoutDepthString(depth)) {
|
||
// publicType.shaderQualifiers.layoutDepth = depth;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
}
|
||
if (id.compare(0, 13, "blend_support") == 0) {
|
||
bool found = false;
|
||
for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
|
||
if (id == TQualifier::getBlendEquationString(be)) {
|
||
requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
|
||
intermediate.addBlendEquation(be);
|
||
// publicType.shaderQualifiers.blendEquation = true;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
found = true;
|
||
break;
|
||
}
|
||
}
|
||
if (! found)
|
||
error(loc, "unknown blend equation", "blend_support", "");
|
||
return;
|
||
}
|
||
}
|
||
error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
|
||
}
|
||
|
||
// Put the id's layout qualifier value into the public type, for qualifiers having a number set.
|
||
// This is before we know any type information for error checking.
|
||
void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
|
||
const TIntermTyped* node)
|
||
{
|
||
const char* feature = "layout-id value";
|
||
// const char* nonLiteralFeature = "non-literal layout-id value";
|
||
|
||
integerCheck(node, feature);
|
||
const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
|
||
int value = 0;
|
||
if (constUnion) {
|
||
value = constUnion->getConstArray()[0].getIConst();
|
||
}
|
||
|
||
std::transform(id.begin(), id.end(), id.begin(), ::tolower);
|
||
|
||
if (id == "offset") {
|
||
qualifier.layoutOffset = value;
|
||
return;
|
||
} else if (id == "align") {
|
||
// "The specified alignment must be a power of 2, or a compile-time error results."
|
||
if (! IsPow2(value))
|
||
error(loc, "must be a power of 2", "align", "");
|
||
else
|
||
qualifier.layoutAlign = value;
|
||
return;
|
||
} else if (id == "location") {
|
||
if ((unsigned int)value >= TQualifier::layoutLocationEnd)
|
||
error(loc, "location is too large", id.c_str(), "");
|
||
else
|
||
qualifier.layoutLocation = value;
|
||
return;
|
||
} else if (id == "set") {
|
||
if ((unsigned int)value >= TQualifier::layoutSetEnd)
|
||
error(loc, "set is too large", id.c_str(), "");
|
||
else
|
||
qualifier.layoutSet = value;
|
||
return;
|
||
} else if (id == "binding") {
|
||
if ((unsigned int)value >= TQualifier::layoutBindingEnd)
|
||
error(loc, "binding is too large", id.c_str(), "");
|
||
else
|
||
qualifier.layoutBinding = value;
|
||
return;
|
||
} else if (id == "component") {
|
||
if ((unsigned)value >= TQualifier::layoutComponentEnd)
|
||
error(loc, "component is too large", id.c_str(), "");
|
||
else
|
||
qualifier.layoutComponent = value;
|
||
return;
|
||
} else if (id.compare(0, 4, "xfb_") == 0) {
|
||
// "Any shader making any static use (after preprocessing) of any of these
|
||
// *xfb_* qualifiers will cause the shader to be in a transform feedback
|
||
// capturing mode and hence responsible for describing the transform feedback
|
||
// setup."
|
||
intermediate.setXfbMode();
|
||
if (id == "xfb_buffer") {
|
||
// "It is a compile-time error to specify an *xfb_buffer* that is greater than
|
||
// the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
|
||
if (value >= resources.maxTransformFeedbackBuffers)
|
||
error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
|
||
resources.maxTransformFeedbackBuffers);
|
||
if (value >= (int)TQualifier::layoutXfbBufferEnd)
|
||
error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
|
||
else
|
||
qualifier.layoutXfbBuffer = value;
|
||
return;
|
||
} else if (id == "xfb_offset") {
|
||
if (value >= (int)TQualifier::layoutXfbOffsetEnd)
|
||
error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
|
||
else
|
||
qualifier.layoutXfbOffset = value;
|
||
return;
|
||
} else if (id == "xfb_stride") {
|
||
// "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
|
||
// implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
|
||
if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
|
||
error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
|
||
resources.maxTransformFeedbackInterleavedComponents);
|
||
else if (value >= (int)TQualifier::layoutXfbStrideEnd)
|
||
error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
|
||
if (value < (int)TQualifier::layoutXfbStrideEnd)
|
||
qualifier.layoutXfbStride = value;
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (id == "input_attachment_index") {
|
||
requireVulkan(loc, "input_attachment_index");
|
||
if (value >= (int)TQualifier::layoutAttachmentEnd)
|
||
error(loc, "attachment index is too large", id.c_str(), "");
|
||
else
|
||
qualifier.layoutAttachment = value;
|
||
return;
|
||
}
|
||
if (id == "constant_id") {
|
||
requireSpv(loc, "constant_id");
|
||
if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
|
||
error(loc, "specialization-constant id is too large", id.c_str(), "");
|
||
} else {
|
||
qualifier.layoutSpecConstantId = value;
|
||
qualifier.specConstant = true;
|
||
if (! intermediate.addUsedConstantId(value))
|
||
error(loc, "specialization-constant id already used", id.c_str(), "");
|
||
}
|
||
return;
|
||
}
|
||
|
||
switch (language) {
|
||
case EShLangVertex:
|
||
break;
|
||
|
||
case EShLangTessControl:
|
||
if (id == "vertices") {
|
||
if (value == 0)
|
||
error(loc, "must be greater than 0", "vertices", "");
|
||
else
|
||
// publicType.shaderQualifiers.vertices = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case EShLangTessEvaluation:
|
||
break;
|
||
|
||
case EShLangGeometry:
|
||
if (id == "invocations") {
|
||
if (value == 0)
|
||
error(loc, "must be at least 1", "invocations", "");
|
||
else
|
||
// publicType.shaderQualifiers.invocations = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == "max_vertices") {
|
||
// publicType.shaderQualifiers.vertices = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
if (value > resources.maxGeometryOutputVertices)
|
||
error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
|
||
return;
|
||
}
|
||
if (id == "stream") {
|
||
qualifier.layoutStream = value;
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case EShLangFragment:
|
||
if (id == "index") {
|
||
qualifier.layoutIndex = value;
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case EShLangCompute:
|
||
if (id.compare(0, 11, "local_size_") == 0) {
|
||
if (id == "local_size_x") {
|
||
// publicType.shaderQualifiers.localSize[0] = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == "local_size_y") {
|
||
// publicType.shaderQualifiers.localSize[1] = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == "local_size_z") {
|
||
// publicType.shaderQualifiers.localSize[2] = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (spvVersion.spv != 0) {
|
||
if (id == "local_size_x_id") {
|
||
// publicType.shaderQualifiers.localSizeSpecId[0] = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == "local_size_y_id") {
|
||
// publicType.shaderQualifiers.localSizeSpecId[1] = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
if (id == "local_size_z_id") {
|
||
// publicType.shaderQualifiers.localSizeSpecId[2] = value;
|
||
warn(loc, "ignored", id.c_str(), "");
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
|
||
}
|
||
|
||
// Merge any layout qualifier information from src into dst, leaving everything else in dst alone
|
||
//
|
||
// "More than one layout qualifier may appear in a single declaration.
|
||
// Additionally, the same layout-qualifier-name can occur multiple times
|
||
// within a layout qualifier or across multiple layout qualifiers in the
|
||
// same declaration. When the same layout-qualifier-name occurs
|
||
// multiple times, in a single declaration, the last occurrence overrides
|
||
// the former occurrence(s). Further, if such a layout-qualifier-name
|
||
// will effect subsequent declarations or other observable behavior, it
|
||
// is only the last occurrence that will have any effect, behaving as if
|
||
// the earlier occurrence(s) within the declaration are not present.
|
||
// This is also true for overriding layout-qualifier-names, where one
|
||
// overrides the other (e.g., row_major vs. column_major); only the last
|
||
// occurrence has any effect."
|
||
//
|
||
void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
|
||
{
|
||
if (src.hasMatrix())
|
||
dst.layoutMatrix = src.layoutMatrix;
|
||
if (src.hasPacking())
|
||
dst.layoutPacking = src.layoutPacking;
|
||
|
||
if (src.hasStream())
|
||
dst.layoutStream = src.layoutStream;
|
||
|
||
if (src.hasFormat())
|
||
dst.layoutFormat = src.layoutFormat;
|
||
|
||
if (src.hasXfbBuffer())
|
||
dst.layoutXfbBuffer = src.layoutXfbBuffer;
|
||
|
||
if (src.hasAlign())
|
||
dst.layoutAlign = src.layoutAlign;
|
||
|
||
if (! inheritOnly) {
|
||
if (src.hasLocation())
|
||
dst.layoutLocation = src.layoutLocation;
|
||
if (src.hasComponent())
|
||
dst.layoutComponent = src.layoutComponent;
|
||
if (src.hasIndex())
|
||
dst.layoutIndex = src.layoutIndex;
|
||
|
||
if (src.hasOffset())
|
||
dst.layoutOffset = src.layoutOffset;
|
||
|
||
if (src.hasSet())
|
||
dst.layoutSet = src.layoutSet;
|
||
if (src.layoutBinding != TQualifier::layoutBindingEnd)
|
||
dst.layoutBinding = src.layoutBinding;
|
||
|
||
if (src.hasXfbStride())
|
||
dst.layoutXfbStride = src.layoutXfbStride;
|
||
if (src.hasXfbOffset())
|
||
dst.layoutXfbOffset = src.layoutXfbOffset;
|
||
if (src.hasAttachment())
|
||
dst.layoutAttachment = src.layoutAttachment;
|
||
if (src.hasSpecConstantId())
|
||
dst.layoutSpecConstantId = src.layoutSpecConstantId;
|
||
|
||
if (src.layoutPushConstant)
|
||
dst.layoutPushConstant = true;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Look up a function name in the symbol table, and make sure it is a function.
|
||
//
|
||
// First, look for an exact match. If there is none, use the generic selector
|
||
// TParseContextBase::selectFunction() to find one, parameterized by the
|
||
// convertible() and better() predicates defined below.
|
||
//
|
||
// Return the function symbol if found, otherwise nullptr.
|
||
//
|
||
const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
|
||
TIntermTyped*& args)
|
||
{
|
||
if (symbolTable.isFunctionNameVariable(call.getName())) {
|
||
error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
|
||
return nullptr;
|
||
}
|
||
|
||
// first, look for an exact match
|
||
bool dummyScope;
|
||
TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
|
||
if (symbol)
|
||
return symbol->getAsFunction();
|
||
|
||
// no exact match, use the generic selector, parameterized by the GLSL rules
|
||
|
||
// create list of candidates to send
|
||
TVector<const TFunction*> candidateList;
|
||
symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
|
||
|
||
// These built-in ops can accept any type, so we bypass the argument selection
|
||
if (candidateList.size() == 1 && builtIn &&
|
||
(candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
|
||
candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
|
||
candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
|
||
candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
|
||
candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
|
||
candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
|
||
return candidateList[0];
|
||
}
|
||
|
||
bool allowOnlyUpConversions = true;
|
||
|
||
// can 'from' convert to 'to'?
|
||
const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
|
||
if (from == to)
|
||
return true;
|
||
|
||
// no aggregate conversions
|
||
if (from.isArray() || to.isArray() ||
|
||
from.isStruct() || to.isStruct())
|
||
return false;
|
||
|
||
switch (op) {
|
||
case EOpInterlockedAdd:
|
||
case EOpInterlockedAnd:
|
||
case EOpInterlockedCompareExchange:
|
||
case EOpInterlockedCompareStore:
|
||
case EOpInterlockedExchange:
|
||
case EOpInterlockedMax:
|
||
case EOpInterlockedMin:
|
||
case EOpInterlockedOr:
|
||
case EOpInterlockedXor:
|
||
// We do not promote the texture or image type for these ocodes. Normally that would not
|
||
// be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
|
||
// stage it's merely e.g, a basic integer type.
|
||
//
|
||
// Instead, we want to promote other arguments, but stay within the same family. In other
|
||
// words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
|
||
// but it is allowed to promote its other arguments.
|
||
if (arg == 0)
|
||
return false;
|
||
break;
|
||
case EOpMethodSample:
|
||
case EOpMethodSampleBias:
|
||
case EOpMethodSampleCmp:
|
||
case EOpMethodSampleCmpLevelZero:
|
||
case EOpMethodSampleGrad:
|
||
case EOpMethodSampleLevel:
|
||
case EOpMethodLoad:
|
||
case EOpMethodGetDimensions:
|
||
case EOpMethodGetSamplePosition:
|
||
case EOpMethodGather:
|
||
case EOpMethodCalculateLevelOfDetail:
|
||
case EOpMethodCalculateLevelOfDetailUnclamped:
|
||
case EOpMethodGatherRed:
|
||
case EOpMethodGatherGreen:
|
||
case EOpMethodGatherBlue:
|
||
case EOpMethodGatherAlpha:
|
||
case EOpMethodGatherCmp:
|
||
case EOpMethodGatherCmpRed:
|
||
case EOpMethodGatherCmpGreen:
|
||
case EOpMethodGatherCmpBlue:
|
||
case EOpMethodGatherCmpAlpha:
|
||
case EOpMethodAppend:
|
||
case EOpMethodRestartStrip:
|
||
// those are method calls, the object type can not be changed
|
||
// they are equal if the dim and type match (is dim sufficient?)
|
||
if (arg == 0)
|
||
return from.getSampler().type == to.getSampler().type &&
|
||
from.getSampler().arrayed == to.getSampler().arrayed &&
|
||
from.getSampler().shadow == to.getSampler().shadow &&
|
||
from.getSampler().ms == to.getSampler().ms &&
|
||
from.getSampler().dim == to.getSampler().dim;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// basic types have to be convertible
|
||
if (allowOnlyUpConversions)
|
||
if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
|
||
return false;
|
||
|
||
// shapes have to be convertible
|
||
if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
|
||
(from.isScalarOrVec1() && to.isVector()) ||
|
||
(from.isScalarOrVec1() && to.isMatrix()) ||
|
||
(from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
|
||
return true;
|
||
|
||
// TODO: what are the matrix rules? they go here
|
||
|
||
return false;
|
||
};
|
||
|
||
// Is 'to2' a better conversion than 'to1'?
|
||
// Ties should not be considered as better.
|
||
// Assumes 'convertible' already said true.
|
||
const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
|
||
// exact match is always better than mismatch
|
||
if (from == to2)
|
||
return from != to1;
|
||
if (from == to1)
|
||
return false;
|
||
|
||
// shape changes are always worse
|
||
if (from.isScalar() || from.isVector()) {
|
||
if (from.getVectorSize() == to2.getVectorSize() &&
|
||
from.getVectorSize() != to1.getVectorSize())
|
||
return true;
|
||
if (from.getVectorSize() == to1.getVectorSize() &&
|
||
from.getVectorSize() != to2.getVectorSize())
|
||
return false;
|
||
}
|
||
|
||
// Handle sampler betterness: An exact sampler match beats a non-exact match.
|
||
// (If we just looked at basic type, all EbtSamplers would look the same).
|
||
// If any type is not a sampler, just use the linearize function below.
|
||
if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
|
||
// We can ignore the vector size in the comparison.
|
||
TSampler to1Sampler = to1.getSampler();
|
||
TSampler to2Sampler = to2.getSampler();
|
||
|
||
to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
|
||
|
||
if (from.getSampler() == to2Sampler)
|
||
return from.getSampler() != to1Sampler;
|
||
if (from.getSampler() == to1Sampler)
|
||
return false;
|
||
}
|
||
|
||
// Might or might not be changing shape, which means basic type might
|
||
// or might not match, so within that, the question is how big a
|
||
// basic-type conversion is being done.
|
||
//
|
||
// Use a hierarchy of domains, translated to order of magnitude
|
||
// in a linearized view:
|
||
// - floating-point vs. integer
|
||
// - 32 vs. 64 bit (or width in general)
|
||
// - bool vs. non bool
|
||
// - signed vs. not signed
|
||
const auto linearize = [](const TBasicType& basicType) -> int {
|
||
switch (basicType) {
|
||
case EbtBool: return 1;
|
||
case EbtInt: return 10;
|
||
case EbtUint: return 11;
|
||
case EbtInt64: return 20;
|
||
case EbtUint64: return 21;
|
||
case EbtFloat: return 100;
|
||
case EbtDouble: return 110;
|
||
default: return 0;
|
||
}
|
||
};
|
||
|
||
return std::abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
|
||
std::abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
|
||
};
|
||
|
||
// for ambiguity reporting
|
||
bool tie = false;
|
||
|
||
// send to the generic selector
|
||
const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie);
|
||
|
||
if (bestMatch == nullptr) {
|
||
// If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
|
||
// we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
|
||
// upconversions possible.
|
||
allowOnlyUpConversions = false;
|
||
bestMatch = selectFunction(candidateList, call, convertible, better, tie);
|
||
}
|
||
|
||
if (bestMatch == nullptr) {
|
||
error(loc, "no matching overloaded function found", call.getName().c_str(), "");
|
||
return nullptr;
|
||
}
|
||
|
||
// For built-ins, we can convert across the arguments. This will happen in several steps:
|
||
// Step 1: If there's an exact match, use it.
|
||
// Step 2a: Otherwise, get the operator from the best match and promote arguments:
|
||
// Step 2b: reconstruct the TFunction based on the new arg types
|
||
// Step 3: Re-select after type promotion is applied, to find proper candidate.
|
||
if (builtIn) {
|
||
// Step 1: If there's an exact match, use it.
|
||
if (call.getMangledName() == bestMatch->getMangledName())
|
||
return bestMatch;
|
||
|
||
// Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
|
||
// are that kind of operator.
|
||
if (args != nullptr) {
|
||
// The arg list can be a unary node, or an aggregate. We have to handle both.
|
||
// We will use the normal promote() facilities, which require an interm node.
|
||
TIntermOperator* promote = nullptr;
|
||
|
||
if (call.getParamCount() == 1) {
|
||
promote = new TIntermUnary(bestMatch->getBuiltInOp());
|
||
promote->getAsUnaryNode()->setOperand(args->getAsTyped());
|
||
} else {
|
||
promote = new TIntermAggregate(bestMatch->getBuiltInOp());
|
||
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
|
||
}
|
||
|
||
if (! intermediate.promote(promote))
|
||
return nullptr;
|
||
|
||
// Obtain the promoted arg list.
|
||
if (call.getParamCount() == 1) {
|
||
args = promote->getAsUnaryNode()->getOperand();
|
||
} else {
|
||
promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
|
||
}
|
||
}
|
||
|
||
// Step 2b: reconstruct the TFunction based on the new arg types
|
||
TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
|
||
|
||
if (args->getAsAggregate()) {
|
||
// Handle aggregates: put all args into the new function call
|
||
for (int arg=0; arg<int(args->getAsAggregate()->getSequence().size()); ++arg) {
|
||
// TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
|
||
TParameter param = { 0, new TType, nullptr };
|
||
param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
|
||
convertedCall.addParameter(param);
|
||
}
|
||
} else if (args->getAsUnaryNode()) {
|
||
// Handle unaries: put all args into the new function call
|
||
TParameter param = { 0, new TType, nullptr };
|
||
param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
|
||
convertedCall.addParameter(param);
|
||
} else if (args->getAsTyped()) {
|
||
// Handle bare e.g, floats, not in an aggregate.
|
||
TParameter param = { 0, new TType, nullptr };
|
||
param.type->shallowCopy(args->getAsTyped()->getType());
|
||
convertedCall.addParameter(param);
|
||
} else {
|
||
assert(0); // unknown argument list.
|
||
return nullptr;
|
||
}
|
||
|
||
// Step 3: Re-select after type promotion, to find proper candidate
|
||
// send to the generic selector
|
||
bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
|
||
|
||
// At this point, there should be no tie.
|
||
}
|
||
|
||
if (tie)
|
||
error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
|
||
|
||
// Append default parameter values if needed
|
||
if (!tie && bestMatch != nullptr) {
|
||
for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
|
||
handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
|
||
}
|
||
}
|
||
|
||
return bestMatch;
|
||
}
|
||
|
||
//
|
||
// Do everything necessary to handle a typedef declaration, for a single symbol.
|
||
//
|
||
// 'parseType' is the type part of the declaration (to the left)
|
||
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
|
||
//
|
||
void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
|
||
{
|
||
TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
|
||
if (! symbolTable.insert(*typeSymbol))
|
||
error(loc, "name already defined", "typedef", identifier.c_str());
|
||
}
|
||
|
||
// Do everything necessary to handle a struct declaration, including
|
||
// making IO aliases because HLSL allows mixed IO in a struct that specializes
|
||
// based on the usage (input, output, uniform, none).
|
||
void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
|
||
{
|
||
// If it was named, which means the type can be reused later, add
|
||
// it to the symbol table. (Unless it's a block, in which
|
||
// case the name is not a type.)
|
||
if (type.getBasicType() == EbtBlock || structName.size() == 0)
|
||
return;
|
||
|
||
TVariable* userTypeDef = new TVariable(&structName, type, true);
|
||
if (! symbolTable.insert(*userTypeDef)) {
|
||
error(loc, "redefinition", structName.c_str(), "struct");
|
||
return;
|
||
}
|
||
|
||
// See if we need IO aliases for the structure typeList
|
||
|
||
const auto condAlloc = [](bool pred, TTypeList*& list) {
|
||
if (pred && list == nullptr)
|
||
list = new TTypeList;
|
||
};
|
||
|
||
tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
|
||
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
|
||
condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
|
||
condAlloc( hasInput(member->type->getQualifier()), newLists.input);
|
||
condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
|
||
|
||
if (member->type->isStruct()) {
|
||
auto it = ioTypeMap.find(member->type->getStruct());
|
||
if (it != ioTypeMap.end()) {
|
||
condAlloc(it->second.uniform != nullptr, newLists.uniform);
|
||
condAlloc(it->second.input != nullptr, newLists.input);
|
||
condAlloc(it->second.output != nullptr, newLists.output);
|
||
}
|
||
}
|
||
}
|
||
if (newLists.uniform == nullptr &&
|
||
newLists.input == nullptr &&
|
||
newLists.output == nullptr) {
|
||
// Won't do any IO caching, clear up the type and get out now.
|
||
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
|
||
clearUniformInputOutput(member->type->getQualifier());
|
||
return;
|
||
}
|
||
|
||
// We have IO involved.
|
||
|
||
// Make a pure typeList for the symbol table, and cache side copies of IO versions.
|
||
for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
|
||
const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
|
||
if (s != nullptr) {
|
||
ioMember.type = new TType;
|
||
ioMember.type->shallowCopy(*member->type);
|
||
ioMember.type->setStruct(s);
|
||
}
|
||
};
|
||
const auto newMember = [&](TTypeLoc& m) {
|
||
if (m.type == nullptr) {
|
||
m.type = new TType;
|
||
m.type->shallowCopy(*member->type);
|
||
}
|
||
};
|
||
|
||
TTypeLoc newUniformMember = { nullptr, member->loc };
|
||
TTypeLoc newInputMember = { nullptr, member->loc };
|
||
TTypeLoc newOutputMember = { nullptr, member->loc };
|
||
if (member->type->isStruct()) {
|
||
// swap in an IO child if there is one
|
||
auto it = ioTypeMap.find(member->type->getStruct());
|
||
if (it != ioTypeMap.end()) {
|
||
inheritStruct(it->second.uniform, newUniformMember);
|
||
inheritStruct(it->second.input, newInputMember);
|
||
inheritStruct(it->second.output, newOutputMember);
|
||
}
|
||
}
|
||
if (newLists.uniform) {
|
||
newMember(newUniformMember);
|
||
correctUniform(newUniformMember.type->getQualifier());
|
||
newLists.uniform->push_back(newUniformMember);
|
||
}
|
||
if (newLists.input) {
|
||
newMember(newInputMember);
|
||
correctInput(newInputMember.type->getQualifier());
|
||
newLists.input->push_back(newInputMember);
|
||
}
|
||
if (newLists.output) {
|
||
newMember(newOutputMember);
|
||
correctOutput(newOutputMember.type->getQualifier());
|
||
newLists.output->push_back(newOutputMember);
|
||
}
|
||
|
||
// make original pure
|
||
clearUniformInputOutput(member->type->getQualifier());
|
||
}
|
||
ioTypeMap[type.getStruct()] = newLists;
|
||
}
|
||
|
||
// Lookup a user-type by name.
|
||
// If found, fill in the type and return the defining symbol.
|
||
// If not found, return nullptr.
|
||
TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
|
||
{
|
||
TSymbol* symbol = symbolTable.find(typeName);
|
||
if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
|
||
type.shallowCopy(symbol->getType());
|
||
return symbol;
|
||
} else
|
||
return nullptr;
|
||
}
|
||
|
||
//
|
||
// Do everything necessary to handle a variable (non-block) declaration.
|
||
// Either redeclaring a variable, or making a new one, updating the symbol
|
||
// table, and all error checking.
|
||
//
|
||
// Returns a subtree node that computes an initializer, if needed.
|
||
// Returns nullptr if there is no code to execute for initialization.
|
||
//
|
||
// 'parseType' is the type part of the declaration (to the left)
|
||
// 'arraySizes' is the arrayness tagged on the identifier (to the right)
|
||
//
|
||
TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
|
||
TIntermTyped* initializer)
|
||
{
|
||
if (voidErrorCheck(loc, identifier, type.getBasicType()))
|
||
return nullptr;
|
||
|
||
// Global consts with initializers that are non-const act like EvqGlobal in HLSL.
|
||
// This test is implicitly recursive, because initializers propagate constness
|
||
// up the aggregate node tree during creation. E.g, for:
|
||
// { { 1, 2 }, { 3, 4 } }
|
||
// the initializer list is marked EvqConst at the top node, and remains so here. However:
|
||
// { 1, { myvar, 2 }, 3 }
|
||
// is not a const intializer, and still becomes EvqGlobal here.
|
||
|
||
const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
|
||
|
||
if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
|
||
// Force to global
|
||
type.getQualifier().storage = EvqGlobal;
|
||
}
|
||
|
||
// make const and initialization consistent
|
||
fixConstInit(loc, identifier, type, initializer);
|
||
|
||
// Check for redeclaration of built-ins and/or attempting to declare a reserved name
|
||
TSymbol* symbol = nullptr;
|
||
|
||
inheritGlobalDefaults(type.getQualifier());
|
||
|
||
const bool flattenVar = shouldFlatten(type);
|
||
|
||
// correct IO in the type
|
||
switch (type.getQualifier().storage) {
|
||
case EvqGlobal:
|
||
case EvqTemporary:
|
||
clearUniformInputOutput(type.getQualifier());
|
||
break;
|
||
case EvqUniform:
|
||
case EvqBuffer:
|
||
correctUniform(type.getQualifier());
|
||
if (type.isStruct()) {
|
||
auto it = ioTypeMap.find(type.getStruct());
|
||
if (it != ioTypeMap.end())
|
||
type.setStruct(it->second.uniform);
|
||
}
|
||
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// Declare the variable
|
||
if (type.isArray()) {
|
||
// array case
|
||
declareArray(loc, identifier, type, symbol, !flattenVar);
|
||
} else {
|
||
// non-array case
|
||
if (symbol == nullptr)
|
||
symbol = declareNonArray(loc, identifier, type, !flattenVar);
|
||
else if (type != symbol->getType())
|
||
error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
|
||
}
|
||
|
||
if (symbol == nullptr)
|
||
return nullptr;
|
||
|
||
if (flattenVar)
|
||
flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
|
||
|
||
if (initializer == nullptr)
|
||
return nullptr;
|
||
|
||
// Deal with initializer
|
||
TVariable* variable = symbol->getAsVariable();
|
||
if (variable == nullptr) {
|
||
error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
|
||
return nullptr;
|
||
}
|
||
return executeInitializer(loc, initializer, variable, flattenVar);
|
||
}
|
||
|
||
// Pick up global defaults from the provide global defaults into dst.
|
||
void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
|
||
{
|
||
if (dst.storage == EvqVaryingOut) {
|
||
if (! dst.hasStream() && language == EShLangGeometry)
|
||
dst.layoutStream = globalOutputDefaults.layoutStream;
|
||
if (! dst.hasXfbBuffer())
|
||
dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Make an internal-only variable whose name is for debug purposes only
|
||
// and won't be searched for. Callers will only use the return value to use
|
||
// the variable, not the name to look it up. It is okay if the name
|
||
// is the same as other names; there won't be any conflict.
|
||
//
|
||
TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
|
||
{
|
||
TString* nameString = NewPoolTString(name);
|
||
TVariable* variable = new TVariable(nameString, type);
|
||
symbolTable.makeInternalVariable(*variable);
|
||
|
||
return variable;
|
||
}
|
||
|
||
// Make a symbol node holding a new internal temporary variable.
|
||
TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
|
||
const TType& type) const
|
||
{
|
||
TVariable* tmpVar = makeInternalVariable(name, type);
|
||
tmpVar->getWritableType().getQualifier().makeTemporary();
|
||
|
||
return intermediate.addSymbol(*tmpVar, loc);
|
||
}
|
||
|
||
//
|
||
// Declare a non-array variable, the main point being there is no redeclaration
|
||
// for resizing allowed.
|
||
//
|
||
// Return the successfully declared variable.
|
||
//
|
||
TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
|
||
bool track)
|
||
{
|
||
// make a new variable
|
||
TVariable* variable = new TVariable(&identifier, type);
|
||
|
||
// add variable to symbol table
|
||
if (symbolTable.insert(*variable)) {
|
||
if (track && symbolTable.atGlobalLevel())
|
||
trackLinkage(*variable);
|
||
return variable;
|
||
}
|
||
|
||
error(loc, "redefinition", variable->getName().c_str(), "");
|
||
return nullptr;
|
||
}
|
||
|
||
//
|
||
// Handle all types of initializers from the grammar.
|
||
//
|
||
// Returning nullptr just means there is no code to execute to handle the
|
||
// initializer, which will, for example, be the case for constant initializers.
|
||
//
|
||
TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable,
|
||
bool flattened)
|
||
{
|
||
//
|
||
// Identifier must be of type constant, a global, or a temporary, and
|
||
// starting at version 120, desktop allows uniforms to have initializers.
|
||
//
|
||
TStorageQualifier qualifier = variable->getType().getQualifier().storage;
|
||
|
||
//
|
||
// If the initializer was from braces { ... }, we convert the whole subtree to a
|
||
// constructor-style subtree, allowing the rest of the code to operate
|
||
// identically for both kinds of initializers.
|
||
//
|
||
//
|
||
// Type can't be deduced from the initializer list, so a skeletal type to
|
||
// follow has to be passed in. Constness and specialization-constness
|
||
// should be deduced bottom up, not dictated by the skeletal type.
|
||
//
|
||
TType skeletalType;
|
||
skeletalType.shallowCopy(variable->getType());
|
||
skeletalType.getQualifier().makeTemporary();
|
||
if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
|
||
initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
|
||
if (initializer == nullptr) {
|
||
// error recovery; don't leave const without constant values
|
||
if (qualifier == EvqConst)
|
||
variable->getWritableType().getQualifier().storage = EvqTemporary;
|
||
return nullptr;
|
||
}
|
||
|
||
// Fix outer arrayness if variable is unsized, getting size from the initializer
|
||
if (initializer->getType().isExplicitlySizedArray() &&
|
||
variable->getType().isImplicitlySizedArray())
|
||
variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
|
||
|
||
// Inner arrayness can also get set by an initializer
|
||
if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
|
||
initializer->getType().getArraySizes()->getNumDims() ==
|
||
variable->getType().getArraySizes()->getNumDims()) {
|
||
// adopt unsized sizes from the initializer's sizes
|
||
for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
|
||
if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize)
|
||
variable->getWritableType().getArraySizes().setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d));
|
||
}
|
||
}
|
||
|
||
// Uniform and global consts require a constant initializer
|
||
if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
|
||
error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
|
||
variable->getWritableType().getQualifier().storage = EvqTemporary;
|
||
return nullptr;
|
||
}
|
||
|
||
// Const variables require a constant initializer
|
||
if (qualifier == EvqConst) {
|
||
if (initializer->getType().getQualifier().storage != EvqConst) {
|
||
variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
|
||
qualifier = EvqConstReadOnly;
|
||
}
|
||
}
|
||
|
||
if (qualifier == EvqConst || qualifier == EvqUniform) {
|
||
// Compile-time tagging of the variable with its constant value...
|
||
|
||
initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
|
||
if (initializer != nullptr && variable->getType() != initializer->getType())
|
||
initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
|
||
if (initializer == nullptr || !initializer->getAsConstantUnion() ||
|
||
variable->getType() != initializer->getType()) {
|
||
error(loc, "non-matching or non-convertible constant type for const initializer",
|
||
variable->getType().getStorageQualifierString(), "");
|
||
variable->getWritableType().getQualifier().storage = EvqTemporary;
|
||
return nullptr;
|
||
}
|
||
|
||
variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
|
||
} else {
|
||
// normal assigning of a value to a variable...
|
||
specializationCheck(loc, initializer->getType(), "initializer");
|
||
TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
|
||
|
||
// If we are flattening, it could be due to setting opaques, which must be handled
|
||
// as aliases, and the 'initializer' node cannot actually be emitted, because it
|
||
// itself stores the result of the constructor, and we can't store to opaques.
|
||
// handleAssign() will emit the initializer.
|
||
TIntermNode* initNode = nullptr;
|
||
if (flattened && intermSymbol->getType().containsOpaque())
|
||
return executeFlattenedInitializer(loc, intermSymbol, *initializer->getAsAggregate());
|
||
else {
|
||
initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
|
||
if (initNode == nullptr)
|
||
assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
|
||
return initNode;
|
||
}
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
//
|
||
// Reprocess any initializer-list { ... } parts of the initializer.
|
||
// Need to hierarchically assign correct types and implicit
|
||
// conversions. Will do this mimicking the same process used for
|
||
// creating a constructor-style initializer, ensuring we get the
|
||
// same form.
|
||
//
|
||
// Returns a node representing an expression for the initializer list expressed
|
||
// as the correct type.
|
||
//
|
||
// Returns nullptr if there is an error.
|
||
//
|
||
TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
|
||
TIntermTyped* initializer, TIntermTyped* scalarInit)
|
||
{
|
||
// Will operate recursively. Once a subtree is found that is constructor style,
|
||
// everything below it is already good: Only the "top part" of the initializer
|
||
// can be an initializer list, where "top part" can extend for several (or all) levels.
|
||
|
||
// see if we have bottomed out in the tree within the initializer-list part
|
||
TIntermAggregate* initList = initializer->getAsAggregate();
|
||
if (initList == nullptr || initList->getOp() != EOpNull) {
|
||
// We don't have a list, but if it's a scalar and the 'type' is a
|
||
// composite, we need to lengthen below to make it useful.
|
||
// Otherwise, this is an already formed object to initialize with.
|
||
if (type.isScalar() || !initializer->getType().isScalar())
|
||
return initializer;
|
||
else
|
||
initList = intermediate.makeAggregate(initializer);
|
||
}
|
||
|
||
// Of the initializer-list set of nodes, need to process bottom up,
|
||
// so recurse deep, then process on the way up.
|
||
|
||
// Go down the tree here...
|
||
if (type.isArray()) {
|
||
// The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
|
||
// Later on, initializer execution code will deal with array size logic.
|
||
TType arrayType;
|
||
arrayType.shallowCopy(type); // sharing struct stuff is fine
|
||
arrayType.newArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
|
||
|
||
// edit array sizes to fill in unsized dimensions
|
||
if (type.isImplicitlySizedArray())
|
||
arrayType.changeOuterArraySize((int)initList->getSequence().size());
|
||
|
||
// set unsized array dimensions that can be derived from the initializer's first element
|
||
if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
|
||
TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
|
||
if (firstInit->getType().isArray() &&
|
||
arrayType.getArraySizes().getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
|
||
for (int d = 1; d < arrayType.getArraySizes().getNumDims(); ++d) {
|
||
if (arrayType.getArraySizes().getDimSize(d) == UnsizedArraySize)
|
||
arrayType.getArraySizes().setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
|
||
}
|
||
}
|
||
}
|
||
|
||
// lengthen list to be long enough
|
||
lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
|
||
|
||
// recursively process each element
|
||
TType elementType(arrayType, 0); // dereferenced type
|
||
for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
|
||
initList->getSequence()[i] = convertInitializerList(loc, elementType,
|
||
initList->getSequence()[i]->getAsTyped(), scalarInit);
|
||
if (initList->getSequence()[i] == nullptr)
|
||
return nullptr;
|
||
}
|
||
|
||
return addConstructor(loc, initList, arrayType);
|
||
} else if (type.isStruct()) {
|
||
// lengthen list to be long enough
|
||
lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
|
||
|
||
if (type.getStruct()->size() != initList->getSequence().size()) {
|
||
error(loc, "wrong number of structure members", "initializer list", "");
|
||
return nullptr;
|
||
}
|
||
for (size_t i = 0; i < type.getStruct()->size(); ++i) {
|
||
initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
|
||
initList->getSequence()[i]->getAsTyped(), scalarInit);
|
||
if (initList->getSequence()[i] == nullptr)
|
||
return nullptr;
|
||
}
|
||
} else if (type.isMatrix()) {
|
||
if (type.computeNumComponents() == (int)initList->getSequence().size()) {
|
||
// This means the matrix is initialized component-wise, rather than as
|
||
// a series of rows and columns. We can just use the list directly as
|
||
// a constructor; no further processing needed.
|
||
} else {
|
||
// lengthen list to be long enough
|
||
lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
|
||
|
||
if (type.getMatrixCols() != (int)initList->getSequence().size()) {
|
||
error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
|
||
return nullptr;
|
||
}
|
||
TType vectorType(type, 0); // dereferenced type
|
||
for (int i = 0; i < type.getMatrixCols(); ++i) {
|
||
initList->getSequence()[i] = convertInitializerList(loc, vectorType,
|
||
initList->getSequence()[i]->getAsTyped(), scalarInit);
|
||
if (initList->getSequence()[i] == nullptr)
|
||
return nullptr;
|
||
}
|
||
}
|
||
} else if (type.isVector()) {
|
||
// lengthen list to be long enough
|
||
lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
|
||
|
||
// error check; we're at bottom, so work is finished below
|
||
if (type.getVectorSize() != (int)initList->getSequence().size()) {
|
||
error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
|
||
type.getCompleteString().c_str());
|
||
return nullptr;
|
||
}
|
||
} else if (type.isScalar()) {
|
||
// lengthen list to be long enough
|
||
lengthenList(loc, initList->getSequence(), 1, scalarInit);
|
||
|
||
if ((int)initList->getSequence().size() != 1) {
|
||
error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
|
||
return nullptr;
|
||
}
|
||
} else {
|
||
error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
|
||
return nullptr;
|
||
}
|
||
|
||
// Now that the subtree is processed, process this node as if the
|
||
// initializer list is a set of arguments to a constructor.
|
||
TIntermTyped* emulatedConstructorArguments;
|
||
if (initList->getSequence().size() == 1)
|
||
emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
|
||
else
|
||
emulatedConstructorArguments = initList;
|
||
|
||
return addConstructor(loc, emulatedConstructorArguments, type);
|
||
}
|
||
|
||
// Lengthen list to be long enough to cover any gap from the current list size
|
||
// to 'size'. If the list is longer, do nothing.
|
||
// The value to lengthen with is the default for short lists.
|
||
//
|
||
// By default, lists that are too short due to lack of initializers initialize to zero.
|
||
// Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
|
||
// based on whether something is passed in as 'scalarInit'.
|
||
//
|
||
// 'scalarInit' must be safe to use each time this is called (no side effects replication).
|
||
//
|
||
void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
|
||
{
|
||
for (int c = (int)list.size(); c < size; ++c) {
|
||
if (scalarInit == nullptr)
|
||
list.push_back(intermediate.addConstantUnion(0, loc));
|
||
else
|
||
list.push_back(scalarInit);
|
||
}
|
||
}
|
||
|
||
//
|
||
// Test for the correctness of the parameters passed to various constructor functions
|
||
// and also convert them to the right data type, if allowed and required.
|
||
//
|
||
// Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
|
||
//
|
||
TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
|
||
{
|
||
if (node == nullptr)
|
||
return nullptr;
|
||
|
||
// Handle the idiom "(struct type)<scalar value>"
|
||
if (type.isStruct() && isScalarConstructor(node)) {
|
||
// 'node' will almost always get used multiple times, so should not be used directly,
|
||
// it would create a DAG instead of a tree, which might be okay (would
|
||
// like to formalize that for constants and symbols), but if it has
|
||
// side effects, they would get executed multiple times, which is not okay.
|
||
if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
|
||
TIntermAggregate* seq = intermediate.makeAggregate(loc);
|
||
TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
|
||
seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
|
||
seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
|
||
seq->setOp(EOpComma);
|
||
seq->setType(type);
|
||
return seq;
|
||
} else
|
||
return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
|
||
}
|
||
|
||
return addConstructor(loc, node, type);
|
||
}
|
||
|
||
// Add a constructor, either from the grammar, or other programmatic reasons.
|
||
//
|
||
// 'node' is what to construct from.
|
||
// 'type' is what type to construct.
|
||
//
|
||
// Returns the constructed object.
|
||
// Return nullptr if it can't be done.
|
||
//
|
||
TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
|
||
{
|
||
TOperator op = intermediate.mapTypeToConstructorOp(type);
|
||
|
||
// Combined texture-sampler constructors are completely semantic checked
|
||
// in constructorTextureSamplerError()
|
||
if (op == EOpConstructTextureSampler)
|
||
return intermediate.setAggregateOperator(node->getAsAggregate(), op, type, loc);
|
||
|
||
TTypeList::const_iterator memberTypes;
|
||
if (op == EOpConstructStruct)
|
||
memberTypes = type.getStruct()->begin();
|
||
|
||
TType elementType;
|
||
if (type.isArray()) {
|
||
TType dereferenced(type, 0);
|
||
elementType.shallowCopy(dereferenced);
|
||
} else
|
||
elementType.shallowCopy(type);
|
||
|
||
bool singleArg;
|
||
TIntermAggregate* aggrNode = node->getAsAggregate();
|
||
if (aggrNode != nullptr) {
|
||
if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
|
||
singleArg = true;
|
||
else
|
||
singleArg = false;
|
||
} else
|
||
singleArg = true;
|
||
|
||
TIntermTyped *newNode;
|
||
if (singleArg) {
|
||
// Handle array -> array conversion
|
||
// Constructing an array of one type from an array of another type is allowed,
|
||
// assuming there are enough components available (semantic-checked earlier).
|
||
if (type.isArray() && node->isArray())
|
||
newNode = convertArray(node, type);
|
||
|
||
// If structure constructor or array constructor is being called
|
||
// for only one parameter inside the structure, we need to call constructAggregate function once.
|
||
else if (type.isArray())
|
||
newNode = constructAggregate(node, elementType, 1, node->getLoc());
|
||
else if (op == EOpConstructStruct)
|
||
newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
|
||
else {
|
||
// shape conversion for matrix constructor from scalar. HLSL semantics are: scalar
|
||
// is replicated into every element of the matrix (not just the diagnonal), so
|
||
// that is handled specially here.
|
||
if (type.isMatrix() && node->getType().isScalarOrVec1())
|
||
node = intermediate.addShapeConversion(type, node);
|
||
|
||
newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
|
||
}
|
||
|
||
if (newNode && (type.isArray() || op == EOpConstructStruct))
|
||
newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
|
||
|
||
return newNode;
|
||
}
|
||
|
||
//
|
||
// Handle list of arguments.
|
||
//
|
||
TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
|
||
// if the structure constructor contains more than one parameter, then construct
|
||
// each parameter
|
||
|
||
int paramCount = 0; // keeps a track of the constructor parameter number being checked
|
||
|
||
// for each parameter to the constructor call, check to see if the right type is passed or convert them
|
||
// to the right type if possible (and allowed).
|
||
// for structure constructors, just check if the right type is passed, no conversion is allowed.
|
||
|
||
for (TIntermSequence::iterator p = sequenceVector.begin();
|
||
p != sequenceVector.end(); p++, paramCount++) {
|
||
if (type.isArray())
|
||
newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
|
||
else if (op == EOpConstructStruct)
|
||
newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
|
||
else
|
||
newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
|
||
|
||
if (newNode)
|
||
*p = newNode;
|
||
else
|
||
return nullptr;
|
||
}
|
||
|
||
TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
|
||
|
||
return constructor;
|
||
}
|
||
|
||
// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
|
||
// for the parameter to the constructor (passed to this function). Essentially, it converts
|
||
// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
|
||
// float, then float is converted to int.
|
||
//
|
||
// Returns nullptr for an error or the constructed node.
|
||
//
|
||
TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
|
||
const TSourceLoc& loc, bool subset)
|
||
{
|
||
TIntermTyped* newNode;
|
||
TOperator basicOp;
|
||
|
||
//
|
||
// First, convert types as needed.
|
||
//
|
||
switch (op) {
|
||
case EOpConstructVec2:
|
||
case EOpConstructVec3:
|
||
case EOpConstructVec4:
|
||
case EOpConstructMat2x2:
|
||
case EOpConstructMat2x3:
|
||
case EOpConstructMat2x4:
|
||
case EOpConstructMat3x2:
|
||
case EOpConstructMat3x3:
|
||
case EOpConstructMat3x4:
|
||
case EOpConstructMat4x2:
|
||
case EOpConstructMat4x3:
|
||
case EOpConstructMat4x4:
|
||
case EOpConstructFloat:
|
||
basicOp = EOpConstructFloat;
|
||
break;
|
||
|
||
case EOpConstructDVec2:
|
||
case EOpConstructDVec3:
|
||
case EOpConstructDVec4:
|
||
case EOpConstructDMat2x2:
|
||
case EOpConstructDMat2x3:
|
||
case EOpConstructDMat2x4:
|
||
case EOpConstructDMat3x2:
|
||
case EOpConstructDMat3x3:
|
||
case EOpConstructDMat3x4:
|
||
case EOpConstructDMat4x2:
|
||
case EOpConstructDMat4x3:
|
||
case EOpConstructDMat4x4:
|
||
case EOpConstructDouble:
|
||
basicOp = EOpConstructDouble;
|
||
break;
|
||
|
||
case EOpConstructIVec2:
|
||
case EOpConstructIVec3:
|
||
case EOpConstructIVec4:
|
||
case EOpConstructIMat2x2:
|
||
case EOpConstructIMat2x3:
|
||
case EOpConstructIMat2x4:
|
||
case EOpConstructIMat3x2:
|
||
case EOpConstructIMat3x3:
|
||
case EOpConstructIMat3x4:
|
||
case EOpConstructIMat4x2:
|
||
case EOpConstructIMat4x3:
|
||
case EOpConstructIMat4x4:
|
||
case EOpConstructInt:
|
||
basicOp = EOpConstructInt;
|
||
break;
|
||
|
||
case EOpConstructUVec2:
|
||
case EOpConstructUVec3:
|
||
case EOpConstructUVec4:
|
||
case EOpConstructUMat2x2:
|
||
case EOpConstructUMat2x3:
|
||
case EOpConstructUMat2x4:
|
||
case EOpConstructUMat3x2:
|
||
case EOpConstructUMat3x3:
|
||
case EOpConstructUMat3x4:
|
||
case EOpConstructUMat4x2:
|
||
case EOpConstructUMat4x3:
|
||
case EOpConstructUMat4x4:
|
||
case EOpConstructUint:
|
||
basicOp = EOpConstructUint;
|
||
break;
|
||
|
||
case EOpConstructBVec2:
|
||
case EOpConstructBVec3:
|
||
case EOpConstructBVec4:
|
||
case EOpConstructBMat2x2:
|
||
case EOpConstructBMat2x3:
|
||
case EOpConstructBMat2x4:
|
||
case EOpConstructBMat3x2:
|
||
case EOpConstructBMat3x3:
|
||
case EOpConstructBMat3x4:
|
||
case EOpConstructBMat4x2:
|
||
case EOpConstructBMat4x3:
|
||
case EOpConstructBMat4x4:
|
||
case EOpConstructBool:
|
||
basicOp = EOpConstructBool;
|
||
break;
|
||
|
||
default:
|
||
error(loc, "unsupported construction", "", "");
|
||
|
||
return nullptr;
|
||
}
|
||
newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
|
||
if (newNode == nullptr) {
|
||
error(loc, "can't convert", "constructor", "");
|
||
return nullptr;
|
||
}
|
||
|
||
//
|
||
// Now, if there still isn't an operation to do the construction, and we need one, add one.
|
||
//
|
||
|
||
// Otherwise, skip out early.
|
||
if (subset || (newNode != node && newNode->getType() == type))
|
||
return newNode;
|
||
|
||
// setAggregateOperator will insert a new node for the constructor, as needed.
|
||
return intermediate.setAggregateOperator(newNode, op, type, loc);
|
||
}
|
||
|
||
// Convert the array in node to the requested type, which is also an array.
|
||
// Returns nullptr on failure, otherwise returns aggregate holding the list of
|
||
// elements needed to construct the array.
|
||
TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
|
||
{
|
||
assert(node->isArray() && type.isArray());
|
||
if (node->getType().computeNumComponents() < type.computeNumComponents())
|
||
return nullptr;
|
||
|
||
// TODO: write an argument replicator, for the case the argument should not be
|
||
// executed multiple times, yet multiple copies are needed.
|
||
|
||
TIntermTyped* constructee = node->getAsTyped();
|
||
// track where we are in consuming the argument
|
||
int constructeeElement = 0;
|
||
int constructeeComponent = 0;
|
||
|
||
// bump up to the next component to consume
|
||
const auto getNextComponent = [&]() {
|
||
TIntermTyped* component;
|
||
component = handleBracketDereference(node->getLoc(), constructee,
|
||
intermediate.addConstantUnion(constructeeElement, node->getLoc()));
|
||
if (component->isVector())
|
||
component = handleBracketDereference(node->getLoc(), component,
|
||
intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
|
||
// bump component pointer up
|
||
++constructeeComponent;
|
||
if (constructeeComponent == constructee->getVectorSize()) {
|
||
constructeeComponent = 0;
|
||
++constructeeElement;
|
||
}
|
||
return component;
|
||
};
|
||
|
||
// make one subnode per constructed array element
|
||
TIntermAggregate* constructor = nullptr;
|
||
TType derefType(type, 0);
|
||
TType speculativeComponentType(derefType, 0);
|
||
TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
|
||
TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
|
||
TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
|
||
for (int e = 0; e < type.getOuterArraySize(); ++e) {
|
||
// construct an element
|
||
TIntermTyped* elementArg;
|
||
if (type.getVectorSize() == constructee->getVectorSize()) {
|
||
// same element shape
|
||
elementArg = handleBracketDereference(node->getLoc(), constructee,
|
||
intermediate.addConstantUnion(e, node->getLoc()));
|
||
} else {
|
||
// mismatched element shapes
|
||
if (type.getVectorSize() == 1)
|
||
elementArg = getNextComponent();
|
||
else {
|
||
// make a vector
|
||
TIntermAggregate* elementConstructee = nullptr;
|
||
for (int c = 0; c < type.getVectorSize(); ++c)
|
||
elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
|
||
elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
|
||
}
|
||
}
|
||
// convert basic types
|
||
elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
|
||
if (elementArg == nullptr)
|
||
return nullptr;
|
||
// combine with top-level constructor
|
||
constructor = intermediate.growAggregate(constructor, elementArg);
|
||
}
|
||
|
||
return constructor;
|
||
}
|
||
|
||
// This function tests for the type of the parameters to the structure or array constructor. Raises
|
||
// an error message if the expected type does not match the parameter passed to the constructor.
|
||
//
|
||
// Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
|
||
//
|
||
TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
|
||
const TSourceLoc& loc)
|
||
{
|
||
// Handle cases that map more 1:1 between constructor arguments and constructed.
|
||
TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
|
||
if (converted == nullptr || converted->getType() != type) {
|
||
error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
|
||
node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
return converted;
|
||
}
|
||
|
||
//
|
||
// Do everything needed to add an interface block.
|
||
//
|
||
void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName, TArraySizes* arraySizes)
|
||
{
|
||
assert(type.getWritableStruct() != nullptr);
|
||
|
||
// Clean up top-level decorations that don't belong.
|
||
switch (type.getQualifier().storage) {
|
||
case EvqUniform:
|
||
case EvqBuffer:
|
||
correctUniform(type.getQualifier());
|
||
break;
|
||
case EvqVaryingIn:
|
||
correctInput(type.getQualifier());
|
||
break;
|
||
case EvqVaryingOut:
|
||
correctOutput(type.getQualifier());
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
TTypeList& typeList = *type.getWritableStruct();
|
||
// fix and check for member storage qualifiers and types that don't belong within a block
|
||
for (unsigned int member = 0; member < typeList.size(); ++member) {
|
||
TType& memberType = *typeList[member].type;
|
||
TQualifier& memberQualifier = memberType.getQualifier();
|
||
const TSourceLoc& memberLoc = typeList[member].loc;
|
||
globalQualifierFix(memberLoc, memberQualifier);
|
||
memberQualifier.storage = type.getQualifier().storage;
|
||
|
||
if (memberType.isStruct()) {
|
||
// clean up and pick up the right set of decorations
|
||
auto it = ioTypeMap.find(memberType.getStruct());
|
||
switch (type.getQualifier().storage) {
|
||
case EvqUniform:
|
||
case EvqBuffer:
|
||
correctUniform(type.getQualifier());
|
||
if (it != ioTypeMap.end() && it->second.uniform)
|
||
memberType.setStruct(it->second.uniform);
|
||
break;
|
||
case EvqVaryingIn:
|
||
correctInput(type.getQualifier());
|
||
if (it != ioTypeMap.end() && it->second.input)
|
||
memberType.setStruct(it->second.input);
|
||
break;
|
||
case EvqVaryingOut:
|
||
correctOutput(type.getQualifier());
|
||
if (it != ioTypeMap.end() && it->second.output)
|
||
memberType.setStruct(it->second.output);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Make default block qualification, and adjust the member qualifications
|
||
|
||
TQualifier defaultQualification;
|
||
switch (type.getQualifier().storage) {
|
||
case EvqUniform: defaultQualification = globalUniformDefaults; break;
|
||
case EvqBuffer: defaultQualification = globalBufferDefaults; break;
|
||
case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
|
||
case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
|
||
default: defaultQualification.clear(); break;
|
||
}
|
||
|
||
// Special case for "push_constant uniform", which has a default of std430,
|
||
// contrary to normal uniform defaults, and can't have a default tracked for it.
|
||
if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
|
||
type.getQualifier().layoutPacking = ElpStd430;
|
||
|
||
// fix and check for member layout qualifiers
|
||
|
||
mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
|
||
|
||
bool memberWithLocation = false;
|
||
bool memberWithoutLocation = false;
|
||
for (unsigned int member = 0; member < typeList.size(); ++member) {
|
||
TQualifier& memberQualifier = typeList[member].type->getQualifier();
|
||
const TSourceLoc& memberLoc = typeList[member].loc;
|
||
if (memberQualifier.hasStream()) {
|
||
if (defaultQualification.layoutStream != memberQualifier.layoutStream)
|
||
error(memberLoc, "member cannot contradict block", "stream", "");
|
||
}
|
||
|
||
// "This includes a block's inheritance of the
|
||
// current global default buffer, a block member's inheritance of the block's
|
||
// buffer, and the requirement that any *xfb_buffer* declared on a block
|
||
// member must match the buffer inherited from the block."
|
||
if (memberQualifier.hasXfbBuffer()) {
|
||
if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
|
||
error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
|
||
}
|
||
|
||
if (memberQualifier.hasLocation()) {
|
||
switch (type.getQualifier().storage) {
|
||
case EvqVaryingIn:
|
||
case EvqVaryingOut:
|
||
memberWithLocation = true;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
} else
|
||
memberWithoutLocation = true;
|
||
|
||
TQualifier newMemberQualification = defaultQualification;
|
||
mergeQualifiers(newMemberQualification, memberQualifier);
|
||
memberQualifier = newMemberQualification;
|
||
}
|
||
|
||
// Process the members
|
||
fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
|
||
fixBlockXfbOffsets(type.getQualifier(), typeList);
|
||
fixBlockUniformOffsets(type.getQualifier(), typeList);
|
||
|
||
// reverse merge, so that currentBlockQualifier now has all layout information
|
||
// (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
|
||
mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
|
||
|
||
//
|
||
// Build and add the interface block as a new type named 'blockName'
|
||
//
|
||
|
||
// Use the instance name as the interface name if one exists, else the block name.
|
||
const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
|
||
|
||
TType blockType(&typeList, interfaceName, type.getQualifier());
|
||
if (arraySizes)
|
||
blockType.newArraySizes(*arraySizes);
|
||
|
||
// Add the variable, as anonymous or named instanceName.
|
||
// Make an anonymous variable if no name was provided.
|
||
if (instanceName == nullptr)
|
||
instanceName = NewPoolTString("");
|
||
|
||
TVariable& variable = *new TVariable(instanceName, blockType);
|
||
if (! symbolTable.insert(variable)) {
|
||
if (*instanceName == "")
|
||
error(loc, "nameless block contains a member that already has a name at global scope",
|
||
"" /* blockName->c_str() */, "");
|
||
else
|
||
error(loc, "block instance name redefinition", variable.getName().c_str(), "");
|
||
|
||
return;
|
||
}
|
||
|
||
// Save it in the AST for linker use.
|
||
trackLinkage(variable);
|
||
}
|
||
|
||
//
|
||
// "For a block, this process applies to the entire block, or until the first member
|
||
// is reached that has a location layout qualifier. When a block member is declared with a location
|
||
// qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
|
||
// declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
|
||
// until the next member declared with a location qualifier. The values used for locations do not have to be
|
||
// declared in increasing order."
|
||
void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
|
||
{
|
||
// "If a block has no block-level location layout qualifier, it is required that either all or none of its members
|
||
// have a location layout qualifier, or a compile-time error results."
|
||
if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
|
||
error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
|
||
else {
|
||
if (memberWithLocation) {
|
||
// remove any block-level location and make it per *every* member
|
||
int nextLocation = 0; // by the rule above, initial value is not relevant
|
||
if (qualifier.hasAnyLocation()) {
|
||
nextLocation = qualifier.layoutLocation;
|
||
qualifier.layoutLocation = TQualifier::layoutLocationEnd;
|
||
if (qualifier.hasComponent()) {
|
||
// "It is a compile-time error to apply the *component* qualifier to a ... block"
|
||
error(loc, "cannot apply to a block", "component", "");
|
||
}
|
||
if (qualifier.hasIndex()) {
|
||
error(loc, "cannot apply to a block", "index", "");
|
||
}
|
||
}
|
||
for (unsigned int member = 0; member < typeList.size(); ++member) {
|
||
TQualifier& memberQualifier = typeList[member].type->getQualifier();
|
||
const TSourceLoc& memberLoc = typeList[member].loc;
|
||
if (! memberQualifier.hasLocation()) {
|
||
if (nextLocation >= (int)TQualifier::layoutLocationEnd)
|
||
error(memberLoc, "location is too large", "location", "");
|
||
memberQualifier.layoutLocation = nextLocation;
|
||
memberQualifier.layoutComponent = 0;
|
||
}
|
||
nextLocation = memberQualifier.layoutLocation +
|
||
intermediate.computeTypeLocationSize(*typeList[member].type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void HlslParseContext::fixBlockXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
|
||
{
|
||
// "If a block is qualified with xfb_offset, all its
|
||
// members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
|
||
// members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
|
||
// offsets."
|
||
|
||
if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
|
||
return;
|
||
|
||
int nextOffset = qualifier.layoutXfbOffset;
|
||
for (unsigned int member = 0; member < typeList.size(); ++member) {
|
||
TQualifier& memberQualifier = typeList[member].type->getQualifier();
|
||
bool containsDouble = false;
|
||
int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, containsDouble);
|
||
// see if we need to auto-assign an offset to this member
|
||
if (! memberQualifier.hasXfbOffset()) {
|
||
// "if applied to an aggregate containing a double, the offset must also be a multiple of 8"
|
||
if (containsDouble)
|
||
RoundToPow2(nextOffset, 8);
|
||
memberQualifier.layoutXfbOffset = nextOffset;
|
||
} else
|
||
nextOffset = memberQualifier.layoutXfbOffset;
|
||
nextOffset += memberSize;
|
||
}
|
||
|
||
// The above gave all block members an offset, so we can take it off the block now,
|
||
// which will avoid double counting the offset usage.
|
||
qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
|
||
}
|
||
|
||
// Calculate and save the offset of each block member, using the recursively
|
||
// defined block offset rules and the user-provided offset and align.
|
||
//
|
||
// Also, compute and save the total size of the block. For the block's size, arrayness
|
||
// is not taken into account, as each element is backed by a separate buffer.
|
||
//
|
||
void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
|
||
{
|
||
if (! qualifier.isUniformOrBuffer())
|
||
return;
|
||
if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430)
|
||
return;
|
||
|
||
int offset = 0;
|
||
int memberSize;
|
||
for (unsigned int member = 0; member < typeList.size(); ++member) {
|
||
TQualifier& memberQualifier = typeList[member].type->getQualifier();
|
||
const TSourceLoc& memberLoc = typeList[member].loc;
|
||
|
||
// "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
|
||
|
||
// modify just the children's view of matrix layout, if there is one for this member
|
||
TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
|
||
int dummyStride;
|
||
int memberAlignment = intermediate.getBaseAlignment(*typeList[member].type, memberSize, dummyStride,
|
||
qualifier.layoutPacking == ElpStd140,
|
||
subMatrixLayout != ElmNone
|
||
? subMatrixLayout == ElmRowMajor
|
||
: qualifier.layoutMatrix == ElmRowMajor);
|
||
if (memberQualifier.hasOffset()) {
|
||
// "The specified offset must be a multiple
|
||
// of the base alignment of the type of the block member it qualifies, or a compile-time error results."
|
||
if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
|
||
error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
|
||
|
||
// "The offset qualifier forces the qualified member to start at or after the specified
|
||
// integral-constant expression, which will be its byte offset from the beginning of the buffer.
|
||
// "The actual offset of a member is computed as
|
||
// follows: If offset was declared, start with that offset, otherwise start with the next available offset."
|
||
offset = std::max(offset, memberQualifier.layoutOffset);
|
||
}
|
||
|
||
// "The actual alignment of a member will be the greater of the specified align alignment and the standard
|
||
// (e.g., std140) base alignment for the member's type."
|
||
if (memberQualifier.hasAlign())
|
||
memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
|
||
|
||
// "If the resulting offset is not a multiple of the actual alignment,
|
||
// increase it to the first offset that is a multiple of
|
||
// the actual alignment."
|
||
RoundToPow2(offset, memberAlignment);
|
||
typeList[member].type->getQualifier().layoutOffset = offset;
|
||
offset += memberSize;
|
||
}
|
||
}
|
||
|
||
// For an identifier that is already declared, add more qualification to it.
|
||
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
|
||
{
|
||
TSymbol* symbol = symbolTable.find(identifier);
|
||
if (symbol == nullptr) {
|
||
error(loc, "identifier not previously declared", identifier.c_str(), "");
|
||
return;
|
||
}
|
||
if (symbol->getAsFunction()) {
|
||
error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
if (qualifier.isAuxiliary() ||
|
||
qualifier.isMemory() ||
|
||
qualifier.isInterpolation() ||
|
||
qualifier.hasLayout() ||
|
||
qualifier.storage != EvqTemporary ||
|
||
qualifier.precision != EpqNone) {
|
||
error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
// For read-only built-ins, add a new symbol for holding the modified qualifier.
|
||
// This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
|
||
if (symbol->isReadOnly())
|
||
symbol = symbolTable.copyUp(symbol);
|
||
|
||
if (qualifier.invariant) {
|
||
if (intermediate.inIoAccessed(identifier))
|
||
error(loc, "cannot change qualification after use", "invariant", "");
|
||
symbol->getWritableType().getQualifier().invariant = true;
|
||
} else if (qualifier.noContraction) {
|
||
if (intermediate.inIoAccessed(identifier))
|
||
error(loc, "cannot change qualification after use", "precise", "");
|
||
symbol->getWritableType().getQualifier().noContraction = true;
|
||
} else if (qualifier.specConstant) {
|
||
symbol->getWritableType().getQualifier().makeSpecConstant();
|
||
if (qualifier.hasSpecConstantId())
|
||
symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
|
||
} else
|
||
warn(loc, "unknown requalification", "", "");
|
||
}
|
||
|
||
void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
|
||
{
|
||
for (unsigned int i = 0; i < identifiers.size(); ++i)
|
||
addQualifierToExisting(loc, qualifier, *identifiers[i]);
|
||
}
|
||
|
||
//
|
||
// Update the intermediate for the given input geometry
|
||
//
|
||
bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
|
||
{
|
||
switch (geometry) {
|
||
case ElgPoints: // fall through
|
||
case ElgLines: // ...
|
||
case ElgTriangles: // ...
|
||
case ElgLinesAdjacency: // ...
|
||
case ElgTrianglesAdjacency: // ...
|
||
if (! intermediate.setInputPrimitive(geometry)) {
|
||
error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
|
||
return false;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
//
|
||
// Update the intermediate for the given output geometry
|
||
//
|
||
bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
|
||
{
|
||
switch (geometry) {
|
||
case ElgPoints:
|
||
case ElgLineStrip:
|
||
case ElgTriangleStrip:
|
||
if (! intermediate.setOutputPrimitive(geometry)) {
|
||
error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
|
||
return false;
|
||
}
|
||
break;
|
||
default:
|
||
error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
//
|
||
// Selection hints
|
||
//
|
||
TSelectionControl HlslParseContext::handleSelectionControl(const TAttributeMap& attributes) const
|
||
{
|
||
if (attributes.contains(EatFlatten))
|
||
return ESelectionControlFlatten;
|
||
else if (attributes.contains(EatBranch))
|
||
return ESelectionControlDontFlatten;
|
||
else
|
||
return ESelectionControlNone;
|
||
}
|
||
|
||
//
|
||
// Loop hints
|
||
//
|
||
TLoopControl HlslParseContext::handleLoopControl(const TAttributeMap& attributes) const
|
||
{
|
||
if (attributes.contains(EatUnroll))
|
||
return ELoopControlUnroll;
|
||
else if (attributes.contains(EatLoop))
|
||
return ELoopControlDontUnroll;
|
||
else
|
||
return ELoopControlNone;
|
||
}
|
||
|
||
//
|
||
// Updating default qualifier for the case of a declaration with just a qualifier,
|
||
// no type, block, or identifier.
|
||
//
|
||
void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
|
||
{
|
||
if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
|
||
assert(language == EShLangTessControl || language == EShLangGeometry);
|
||
// const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
|
||
}
|
||
if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
|
||
if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
|
||
error(loc, "cannot change previously set layout value", "invocations", "");
|
||
}
|
||
if (publicType.shaderQualifiers.geometry != ElgNone) {
|
||
if (publicType.qualifier.storage == EvqVaryingIn) {
|
||
switch (publicType.shaderQualifiers.geometry) {
|
||
case ElgPoints:
|
||
case ElgLines:
|
||
case ElgLinesAdjacency:
|
||
case ElgTriangles:
|
||
case ElgTrianglesAdjacency:
|
||
case ElgQuads:
|
||
case ElgIsolines:
|
||
break;
|
||
default:
|
||
error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
|
||
"");
|
||
}
|
||
} else if (publicType.qualifier.storage == EvqVaryingOut) {
|
||
handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
|
||
} else
|
||
error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
|
||
GetStorageQualifierString(publicType.qualifier.storage));
|
||
}
|
||
if (publicType.shaderQualifiers.spacing != EvsNone)
|
||
intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
|
||
if (publicType.shaderQualifiers.order != EvoNone)
|
||
intermediate.setVertexOrder(publicType.shaderQualifiers.order);
|
||
if (publicType.shaderQualifiers.pointMode)
|
||
intermediate.setPointMode();
|
||
for (int i = 0; i < 3; ++i) {
|
||
if (publicType.shaderQualifiers.localSize[i] > 1) {
|
||
int max = 0;
|
||
switch (i) {
|
||
case 0: max = resources.maxComputeWorkGroupSizeX; break;
|
||
case 1: max = resources.maxComputeWorkGroupSizeY; break;
|
||
case 2: max = resources.maxComputeWorkGroupSizeZ; break;
|
||
default: break;
|
||
}
|
||
if (intermediate.getLocalSize(i) > (unsigned int)max)
|
||
error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
|
||
|
||
// Fix the existing constant gl_WorkGroupSize with this new information.
|
||
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
|
||
workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
|
||
}
|
||
if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
|
||
intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
|
||
// Set the workgroup built-in variable as a specialization constant
|
||
TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
|
||
workGroupSize->getWritableType().getQualifier().specConstant = true;
|
||
}
|
||
}
|
||
if (publicType.shaderQualifiers.earlyFragmentTests)
|
||
intermediate.setEarlyFragmentTests();
|
||
|
||
const TQualifier& qualifier = publicType.qualifier;
|
||
|
||
switch (qualifier.storage) {
|
||
case EvqUniform:
|
||
if (qualifier.hasMatrix())
|
||
globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
|
||
if (qualifier.hasPacking())
|
||
globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
|
||
break;
|
||
case EvqBuffer:
|
||
if (qualifier.hasMatrix())
|
||
globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
|
||
if (qualifier.hasPacking())
|
||
globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
|
||
break;
|
||
case EvqVaryingIn:
|
||
break;
|
||
case EvqVaryingOut:
|
||
if (qualifier.hasStream())
|
||
globalOutputDefaults.layoutStream = qualifier.layoutStream;
|
||
if (qualifier.hasXfbBuffer())
|
||
globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
|
||
if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
|
||
if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
|
||
error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
|
||
qualifier.layoutXfbBuffer);
|
||
}
|
||
break;
|
||
default:
|
||
error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
|
||
return;
|
||
}
|
||
}
|
||
|
||
//
|
||
// Take the sequence of statements that has been built up since the last case/default,
|
||
// put it on the list of top-level nodes for the current (inner-most) switch statement,
|
||
// and follow that by the case/default we are on now. (See switch topology comment on
|
||
// TIntermSwitch.)
|
||
//
|
||
void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
|
||
{
|
||
TIntermSequence* switchSequence = switchSequenceStack.back();
|
||
|
||
if (statements) {
|
||
statements->setOperator(EOpSequence);
|
||
switchSequence->push_back(statements);
|
||
}
|
||
if (branchNode) {
|
||
// check all previous cases for the same label (or both are 'default')
|
||
for (unsigned int s = 0; s < switchSequence->size(); ++s) {
|
||
TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
|
||
if (prevBranch) {
|
||
TIntermTyped* prevExpression = prevBranch->getExpression();
|
||
TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
|
||
if (prevExpression == nullptr && newExpression == nullptr)
|
||
error(branchNode->getLoc(), "duplicate label", "default", "");
|
||
else if (prevExpression != nullptr &&
|
||
newExpression != nullptr &&
|
||
prevExpression->getAsConstantUnion() &&
|
||
newExpression->getAsConstantUnion() &&
|
||
prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
|
||
newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
|
||
error(branchNode->getLoc(), "duplicated value", "case", "");
|
||
}
|
||
}
|
||
switchSequence->push_back(branchNode);
|
||
}
|
||
}
|
||
|
||
//
|
||
// Turn the top-level node sequence built up of wrapupSwitchSubsequence
|
||
// into a switch node.
|
||
//
|
||
TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
|
||
TIntermAggregate* lastStatements, TSelectionControl control)
|
||
{
|
||
wrapupSwitchSubsequence(lastStatements, nullptr);
|
||
|
||
if (expression == nullptr ||
|
||
(expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
|
||
expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
|
||
error(loc, "condition must be a scalar integer expression", "switch", "");
|
||
|
||
// If there is nothing to do, drop the switch but still execute the expression
|
||
TIntermSequence* switchSequence = switchSequenceStack.back();
|
||
if (switchSequence->size() == 0)
|
||
return expression;
|
||
|
||
if (lastStatements == nullptr) {
|
||
// emulate a break for error recovery
|
||
lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
|
||
lastStatements->setOperator(EOpSequence);
|
||
switchSequence->push_back(lastStatements);
|
||
}
|
||
|
||
TIntermAggregate* body = new TIntermAggregate(EOpSequence);
|
||
body->getSequence() = *switchSequenceStack.back();
|
||
body->setLoc(loc);
|
||
|
||
TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
|
||
switchNode->setLoc(loc);
|
||
switchNode->setSelectionControl(control);
|
||
|
||
return switchNode;
|
||
}
|
||
|
||
// Make a new symbol-table level that is made out of the members of a structure.
|
||
// This should be done as an anonymous struct (name is "") so that the symbol table
|
||
// finds the members with no explicit reference to a 'this' variable.
|
||
void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
|
||
{
|
||
// member variables
|
||
TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
|
||
symbolTable.pushThis(thisVariable);
|
||
|
||
// member functions
|
||
for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
|
||
// member should have a prefix matching currentTypePrefix.back()
|
||
// but, symbol lookup within the class scope will just use the
|
||
// unprefixed name. Hence, there are two: one fully prefixed and
|
||
// one with no prefix.
|
||
TFunction& member = *it->function->clone();
|
||
member.removePrefix(currentTypePrefix.back());
|
||
symbolTable.insert(member);
|
||
}
|
||
}
|
||
|
||
// Track levels of class/struct/namespace nesting with a prefix string using
|
||
// the type names separated by the scoping operator. E.g., two levels
|
||
// would look like:
|
||
//
|
||
// outer::inner
|
||
//
|
||
// The string is empty when at normal global level.
|
||
//
|
||
void HlslParseContext::pushNamespace(const TString& typeName)
|
||
{
|
||
// make new type prefix
|
||
TString newPrefix;
|
||
if (currentTypePrefix.size() > 0)
|
||
newPrefix = currentTypePrefix.back();
|
||
newPrefix.append(typeName);
|
||
newPrefix.append(scopeMangler);
|
||
currentTypePrefix.push_back(newPrefix);
|
||
}
|
||
|
||
// Opposite of pushNamespace(), see above
|
||
void HlslParseContext::popNamespace()
|
||
{
|
||
currentTypePrefix.pop_back();
|
||
}
|
||
|
||
// Use the class/struct nesting string to create a global name for
|
||
// a member of a class/struct.
|
||
void HlslParseContext::getFullNamespaceName(const TString*& name) const
|
||
{
|
||
if (currentTypePrefix.size() == 0)
|
||
return;
|
||
|
||
TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
|
||
fullName->append(*name);
|
||
name = fullName;
|
||
}
|
||
|
||
// Helper function to add the namespace scope mangling syntax to a string.
|
||
void HlslParseContext::addScopeMangler(TString& name)
|
||
{
|
||
name.append(scopeMangler);
|
||
}
|
||
|
||
// Potentially rename shader entry point function
|
||
void HlslParseContext::renameShaderFunction(const TString*& name) const
|
||
{
|
||
// Replace the entry point name given in the shader with the real entry point name,
|
||
// if there is a substitution.
|
||
if (name != nullptr && *name == sourceEntryPointName)
|
||
name = NewPoolTString(intermediate.getEntryPointName().c_str());
|
||
}
|
||
|
||
// Return true if this has uniform-interface like decorations.
|
||
bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
|
||
{
|
||
return qualifier.hasUniformLayout() ||
|
||
qualifier.layoutPushConstant;
|
||
}
|
||
|
||
// Potentially not the opposite of hasUniform(), as if some characteristic is
|
||
// ever used for more than one thing (e.g., uniform or input), hasUniform() should
|
||
// say it exists, but clearUniform() should leave it in place.
|
||
void HlslParseContext::clearUniform(TQualifier& qualifier)
|
||
{
|
||
qualifier.clearUniformLayout();
|
||
qualifier.layoutPushConstant = false;
|
||
}
|
||
|
||
// Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
|
||
bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
|
||
{
|
||
switch (qualifier.builtIn) {
|
||
case EbvPosition:
|
||
case EbvPointSize:
|
||
return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
|
||
case EbvClipDistance:
|
||
case EbvCullDistance:
|
||
return language != EShLangVertex && language != EShLangCompute;
|
||
case EbvFragCoord:
|
||
case EbvFace:
|
||
case EbvHelperInvocation:
|
||
case EbvLayer:
|
||
case EbvPointCoord:
|
||
case EbvSampleId:
|
||
case EbvSampleMask:
|
||
case EbvSamplePosition:
|
||
case EbvViewportIndex:
|
||
return language == EShLangFragment;
|
||
case EbvGlobalInvocationId:
|
||
case EbvLocalInvocationIndex:
|
||
case EbvLocalInvocationId:
|
||
case EbvNumWorkGroups:
|
||
case EbvWorkGroupId:
|
||
case EbvWorkGroupSize:
|
||
return language == EShLangCompute;
|
||
case EbvInvocationId:
|
||
return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
|
||
case EbvPatchVertices:
|
||
return language == EShLangTessControl || language == EShLangTessEvaluation;
|
||
case EbvInstanceId:
|
||
case EbvInstanceIndex:
|
||
case EbvVertexId:
|
||
case EbvVertexIndex:
|
||
return language == EShLangVertex;
|
||
case EbvPrimitiveId:
|
||
return language == EShLangGeometry || language == EShLangFragment;
|
||
case EbvTessLevelInner:
|
||
case EbvTessLevelOuter:
|
||
return language == EShLangTessEvaluation;
|
||
case EbvTessCoord:
|
||
return language == EShLangTessEvaluation;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Return true if there are decorations to preserve for input-like storage.
|
||
bool HlslParseContext::hasInput(const TQualifier& qualifier) const
|
||
{
|
||
if (qualifier.hasAnyLocation())
|
||
return true;
|
||
|
||
if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
|
||
return true;
|
||
|
||
if (language == EShLangTessEvaluation && qualifier.patch)
|
||
return true;
|
||
|
||
if (isInputBuiltIn(qualifier))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
// Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
|
||
bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
|
||
{
|
||
switch (qualifier.builtIn) {
|
||
case EbvPosition:
|
||
case EbvPointSize:
|
||
case EbvClipVertex:
|
||
case EbvClipDistance:
|
||
case EbvCullDistance:
|
||
return language != EShLangFragment && language != EShLangCompute;
|
||
case EbvFragDepth:
|
||
case EbvFragDepthGreater:
|
||
case EbvFragDepthLesser:
|
||
case EbvSampleMask:
|
||
return language == EShLangFragment;
|
||
case EbvLayer:
|
||
case EbvViewportIndex:
|
||
return language == EShLangGeometry;
|
||
case EbvPrimitiveId:
|
||
return language == EShLangGeometry || language == EShLangTessControl || language == EShLangTessEvaluation;
|
||
case EbvTessLevelInner:
|
||
case EbvTessLevelOuter:
|
||
return language == EShLangTessControl;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Return true if there are decorations to preserve for output-like storage.
|
||
bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
|
||
{
|
||
if (qualifier.hasAnyLocation())
|
||
return true;
|
||
|
||
if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
|
||
return true;
|
||
|
||
if (language == EShLangTessControl && qualifier.patch)
|
||
return true;
|
||
|
||
if (language == EShLangGeometry && qualifier.hasStream())
|
||
return true;
|
||
|
||
if (isOutputBuiltIn(qualifier))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
// Make the IO decorations etc. be appropriate only for an input interface.
|
||
void HlslParseContext::correctInput(TQualifier& qualifier)
|
||
{
|
||
clearUniform(qualifier);
|
||
if (language == EShLangVertex)
|
||
qualifier.clearInterstage();
|
||
if (language != EShLangTessEvaluation)
|
||
qualifier.patch = false;
|
||
if (language != EShLangFragment) {
|
||
qualifier.clearInterpolation();
|
||
qualifier.sample = false;
|
||
}
|
||
|
||
if (isClipOrCullDistance(qualifier))
|
||
qualifier.layoutLocation = TQualifier::layoutLocationEnd;
|
||
|
||
qualifier.clearStreamLayout();
|
||
qualifier.clearXfbLayout();
|
||
|
||
if (! isInputBuiltIn(qualifier))
|
||
qualifier.builtIn = EbvNone;
|
||
}
|
||
|
||
// Make the IO decorations etc. be appropriate only for an output interface.
|
||
void HlslParseContext::correctOutput(TQualifier& qualifier)
|
||
{
|
||
clearUniform(qualifier);
|
||
if (language == EShLangFragment)
|
||
qualifier.clearInterstage();
|
||
if (language != EShLangGeometry)
|
||
qualifier.clearStreamLayout();
|
||
if (language == EShLangFragment)
|
||
qualifier.clearXfbLayout();
|
||
if (language != EShLangTessControl)
|
||
qualifier.patch = false;
|
||
|
||
switch (qualifier.builtIn) {
|
||
case EbvFragDepthGreater:
|
||
intermediate.setDepth(EldGreater);
|
||
qualifier.builtIn = EbvFragDepth;
|
||
break;
|
||
case EbvFragDepthLesser:
|
||
intermediate.setDepth(EldLess);
|
||
qualifier.builtIn = EbvFragDepth;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (! isOutputBuiltIn(qualifier))
|
||
qualifier.builtIn = EbvNone;
|
||
}
|
||
|
||
// Make the IO decorations etc. be appropriate only for uniform type interfaces.
|
||
void HlslParseContext::correctUniform(TQualifier& qualifier)
|
||
{
|
||
if (qualifier.declaredBuiltIn == EbvNone)
|
||
qualifier.declaredBuiltIn = qualifier.builtIn;
|
||
|
||
qualifier.builtIn = EbvNone;
|
||
qualifier.clearInterstage();
|
||
qualifier.clearInterstageLayout();
|
||
}
|
||
|
||
// Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
|
||
void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
|
||
{
|
||
clearUniform(qualifier);
|
||
correctUniform(qualifier);
|
||
}
|
||
|
||
|
||
// Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
|
||
TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
|
||
{
|
||
const auto it = builtInTessLinkageSymbols.find(biType);
|
||
if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr
|
||
return nullptr;
|
||
|
||
return intermediate.addSymbol(*it->second->getAsVariable());
|
||
}
|
||
|
||
// Finalization step: Add patch constant function invocation
|
||
void HlslParseContext::addPatchConstantInvocation()
|
||
{
|
||
TSourceLoc loc;
|
||
loc.init();
|
||
|
||
// If there's no patch constant function, or we're not a HS, do nothing.
|
||
if (patchConstantFunctionName.empty() || language != EShLangTessControl)
|
||
return;
|
||
|
||
if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
|
||
error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
const TString mangledName = patchConstantFunctionName + "(";
|
||
|
||
// create list of PCF candidates
|
||
TVector<const TFunction*> candidateList;
|
||
bool builtIn;
|
||
symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
|
||
|
||
// We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
|
||
// allow any disambiguation of overloads.
|
||
if (candidateList.empty()) {
|
||
error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
// Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
|
||
// HLSL picks the last one in shader source order. Since that isn't yet implemented here, error
|
||
// out if there is more than one candidate.
|
||
if (candidateList.size() > 1) {
|
||
error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
|
||
return;
|
||
}
|
||
|
||
// Look for built-in variables in a function's parameter list.
|
||
const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
|
||
for (int p=0; p<function.getParamCount(); ++p) {
|
||
TStorageQualifier storage = function[p].type->getQualifier().storage;
|
||
|
||
if (storage == EvqConstReadOnly) // treated identically to input
|
||
storage = EvqIn;
|
||
|
||
if (function[p].getDeclaredBuiltIn() != EbvNone)
|
||
builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
|
||
else
|
||
builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
|
||
}
|
||
};
|
||
|
||
// If we synthesize a built-in interface variable, we must add it to the linkage.
|
||
const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
|
||
if (name == nullptr) {
|
||
error(loc, "unable to locate patch function parameter name", "", "");
|
||
return;
|
||
} else {
|
||
TVariable& variable = *new TVariable(name, type);
|
||
if (! symbolTable.insert(variable)) {
|
||
error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
|
||
return;
|
||
}
|
||
|
||
globalQualifierFix(loc, variable.getWritableType().getQualifier());
|
||
|
||
if (symbolNode != nullptr)
|
||
*symbolNode = intermediate.addSymbol(variable);
|
||
|
||
trackLinkage(variable);
|
||
}
|
||
};
|
||
|
||
const auto isOutputPatch = [this](TFunction& patchConstantFunction, int param) {
|
||
const TType& type = *patchConstantFunction[param].type;
|
||
const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
|
||
|
||
return type.isArray() && !type.isRuntimeSizedArray() && biType == EbvOutputPatch;
|
||
};
|
||
|
||
// We will perform these steps. Each is in a scoped block for separation: they could
|
||
// become separate functions to make addPatchConstantInvocation shorter.
|
||
//
|
||
// 1. Union the interfaces, and create built-ins for anything present in the PCF and
|
||
// declared as a built-in variable that isn't present in the entry point's signature.
|
||
//
|
||
// 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
|
||
// or the ones we created. Matching is based on built-in type. We may use synthesized
|
||
// variables from (1) above.
|
||
//
|
||
// 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
|
||
//
|
||
// 3. Create a return sequence: copy the return value (if any) from the PCF to a
|
||
// (non-sanitized) output variable. In case this may involve multiple copies, such as for
|
||
// an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
|
||
// indirections into a complex R-value coming from the call to the PCF.
|
||
//
|
||
// 4. Create a barrier.
|
||
//
|
||
// 5/5B. Call the PCF inside an if test for (invocation id == 0).
|
||
|
||
TFunction& patchConstantFunction = const_cast<TFunction&>(*candidateList[0]);
|
||
const int pcfParamCount = patchConstantFunction.getParamCount();
|
||
TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
|
||
TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
|
||
|
||
int outPatchParam = -1; // -1 means there isn't one.
|
||
|
||
// ================ Step 1A: Union Interfaces ================
|
||
// Our patch constant function.
|
||
{
|
||
std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins
|
||
std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins
|
||
|
||
assert(entryPointFunction);
|
||
assert(entryPointFunctionBody);
|
||
|
||
findBuiltIns(patchConstantFunction, pcfBuiltIns);
|
||
findBuiltIns(*entryPointFunction, epfBuiltIns);
|
||
|
||
// Find the set of built-ins in the PCF that are not present in the entry point.
|
||
std::set<tInterstageIoData> notInEntryPoint;
|
||
|
||
notInEntryPoint = pcfBuiltIns;
|
||
|
||
// std::set_difference not usable on unordered containers
|
||
for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
|
||
notInEntryPoint.erase(*bi);
|
||
|
||
// Now we'll add those to the entry and to the linkage.
|
||
for (int p=0; p<pcfParamCount; ++p) {
|
||
const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
|
||
TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
|
||
|
||
// Track whether there is an output patch param
|
||
if (isOutputPatch(patchConstantFunction, p)) {
|
||
if (outPatchParam >= 0) {
|
||
// Presently we only support one per ctrl pt input.
|
||
error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
|
||
return;
|
||
}
|
||
outPatchParam = p;
|
||
}
|
||
|
||
if (biType != EbvNone) {
|
||
TType* paramType = patchConstantFunction[p].type->clone();
|
||
|
||
if (storage == EvqConstReadOnly) // treated identically to input
|
||
storage = EvqIn;
|
||
|
||
// Presently, the only non-built-in we support is InputPatch, which is treated as
|
||
// a pseudo-built-in.
|
||
if (biType == EbvInputPatch) {
|
||
builtInTessLinkageSymbols[biType] = inputPatch;
|
||
} else if (biType == EbvOutputPatch) {
|
||
// Nothing...
|
||
} else {
|
||
// Use the original declaration type for the linkage
|
||
paramType->getQualifier().builtIn = biType;
|
||
|
||
if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
|
||
addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
|
||
}
|
||
}
|
||
}
|
||
|
||
// If we didn't find it because the shader made one, add our own.
|
||
if (invocationIdSym == nullptr) {
|
||
TType invocationIdType(EbtUint, EvqIn, 1);
|
||
TString* invocationIdName = NewPoolTString("InvocationId");
|
||
invocationIdType.getQualifier().builtIn = EbvInvocationId;
|
||
addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
|
||
}
|
||
|
||
assert(invocationIdSym);
|
||
}
|
||
|
||
TIntermTyped* pcfArguments = nullptr;
|
||
TVariable* perCtrlPtVar = nullptr;
|
||
|
||
// ================ Step 1B: Argument synthesis ================
|
||
// Create pcfArguments for synthesis of patchconstantfunction invocation
|
||
// TODO: handle struct or array inputs
|
||
{
|
||
for (int p=0; p<pcfParamCount; ++p) {
|
||
TIntermSymbol* inputArg = nullptr;
|
||
|
||
if (p == outPatchParam) {
|
||
if (perCtrlPtVar == nullptr) {
|
||
perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
|
||
*patchConstantFunction[outPatchParam].type);
|
||
|
||
perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
|
||
}
|
||
inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
|
||
} else {
|
||
// find which built-in it is
|
||
const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
|
||
|
||
inputArg = findTessLinkageSymbol(biType);
|
||
|
||
if (inputArg == nullptr) {
|
||
error(loc, "unable to find patch constant function built-in variable", "", "");
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (pcfParamCount == 1)
|
||
pcfArguments = inputArg;
|
||
else
|
||
pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
|
||
}
|
||
}
|
||
|
||
// ================ Step 2: Synthesize call to PCF ================
|
||
TIntermAggregate* pcfCallSequence = nullptr;
|
||
TIntermTyped* pcfCall = nullptr;
|
||
|
||
{
|
||
// Create a function call to the patchconstantfunction
|
||
if (pcfArguments)
|
||
addInputArgumentConversions(patchConstantFunction, pcfArguments);
|
||
|
||
// Synthetic call.
|
||
pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
|
||
pcfCall->getAsAggregate()->setUserDefined();
|
||
pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
|
||
intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
|
||
patchConstantFunction.getMangledName());
|
||
|
||
if (pcfCall->getAsAggregate()) {
|
||
TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
|
||
for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
|
||
TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
|
||
qualifierList.push_back(qual);
|
||
}
|
||
pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
|
||
}
|
||
}
|
||
|
||
// ================ Step 2B: Per Control Point synthesis ================
|
||
// If there is per control point data, we must either emulate that with multiple
|
||
// invocations of the entry point to build up an array, or (TODO:) use a yet
|
||
// unavailable extension to look across the SIMD lanes. This is the former
|
||
// as a placeholder for the latter.
|
||
if (outPatchParam >= 0) {
|
||
// We must introduce a local temp variable of the type wanted by the PCF input.
|
||
const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
|
||
|
||
if (entryPointFunction->getType().getBasicType() == EbtVoid) {
|
||
error(loc, "entry point must return a value for use with patch constant function", "", "");
|
||
return;
|
||
}
|
||
|
||
// Create calls to wrapped main to fill in the array. We will substitute fixed values
|
||
// of invocation ID when calling the wrapped main.
|
||
|
||
// This is the type of the each member of the per ctrl point array.
|
||
const TType derefType(perCtrlPtVar->getType(), 0);
|
||
|
||
for (int cpt = 0; cpt < arraySize; ++cpt) {
|
||
// TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
|
||
// for this function.
|
||
const TString origName = entryPointFunction->getName().substr(1);
|
||
TFunction callee(&origName, TType(EbtVoid));
|
||
TIntermTyped* callingArgs = nullptr;
|
||
|
||
for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
|
||
TParameter& param = (*entryPointFunction)[i];
|
||
TType& paramType = *param.type;
|
||
|
||
if (paramType.getQualifier().isParamOutput()) {
|
||
error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
|
||
return;
|
||
}
|
||
|
||
if (paramType.getQualifier().isParamInput()) {
|
||
TIntermTyped* arg = nullptr;
|
||
if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
|
||
// substitute invocation ID with the array element ID
|
||
arg = intermediate.addConstantUnion(cpt, loc);
|
||
} else {
|
||
TVariable* argVar = makeInternalVariable(*param.name, *param.type);
|
||
argVar->getWritableType().getQualifier().makeTemporary();
|
||
arg = intermediate.addSymbol(*argVar);
|
||
}
|
||
|
||
handleFunctionArgument(&callee, callingArgs, arg);
|
||
}
|
||
}
|
||
|
||
// Call and assign to per ctrl point variable
|
||
currentCaller = intermediate.getEntryPointMangledName().c_str();
|
||
TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
|
||
TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
|
||
TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
|
||
TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
|
||
element->setType(derefType);
|
||
element->setLoc(loc);
|
||
|
||
pcfCallSequence = intermediate.growAggregate(pcfCallSequence,
|
||
handleAssign(loc, EOpAssign, element, callReturn));
|
||
}
|
||
}
|
||
|
||
// ================ Step 3: Create return Sequence ================
|
||
// Return sequence: copy PCF result to a temporary, then to shader output variable.
|
||
if (pcfCall->getBasicType() != EbtVoid) {
|
||
const TType* retType = &patchConstantFunction.getType(); // return type from the PCF
|
||
TType outType; // output type that goes with the return type.
|
||
outType.shallowCopy(*retType);
|
||
|
||
// substitute the output type
|
||
const auto newLists = ioTypeMap.find(retType->getStruct());
|
||
if (newLists != ioTypeMap.end())
|
||
outType.setStruct(newLists->second.output);
|
||
|
||
// Substitute the top level type's built-in type
|
||
if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
|
||
outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
|
||
|
||
outType.getQualifier().patch = true; // make it a per-patch variable
|
||
|
||
TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
|
||
pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
|
||
|
||
if (pcfOutput->getType().containsBuiltIn())
|
||
split(*pcfOutput);
|
||
|
||
assignToInterface(*pcfOutput);
|
||
|
||
TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
|
||
|
||
// The call to the PCF is a complex R-value: we want to store it in a temp to avoid
|
||
// repeated calls to the PCF:
|
||
TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
|
||
pcfCallResult->getWritableType().getQualifier().makeTemporary();
|
||
|
||
TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
|
||
TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
|
||
TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
|
||
intermediate.addSymbol(*pcfCallResult, loc));
|
||
|
||
pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
|
||
pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
|
||
} else {
|
||
pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
|
||
}
|
||
|
||
// ================ Step 4: Barrier ================
|
||
TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
|
||
barrier->setLoc(loc);
|
||
barrier->setType(TType(EbtVoid));
|
||
epBodySeq.insert(epBodySeq.end(), barrier);
|
||
|
||
// ================ Step 5: Test on invocation ID ================
|
||
TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
|
||
TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
|
||
|
||
|
||
// ================ Step 5B: Create if statement on Invocation ID == 0 ================
|
||
intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
|
||
TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
|
||
invocationIdTest->setLoc(loc);
|
||
|
||
// add our test sequence before the return.
|
||
epBodySeq.insert(epBodySeq.end(), invocationIdTest);
|
||
}
|
||
|
||
// Finalization step: remove unused buffer blocks from linkage (we don't know until the
|
||
// shader is entirely compiled)
|
||
void HlslParseContext::removeUnusedStructBufferCounters()
|
||
{
|
||
const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
|
||
[this](const TSymbol* sym) {
|
||
const auto sbcIt = structBufferCounter.find(sym->getName());
|
||
return sbcIt != structBufferCounter.end() && !sbcIt->second;
|
||
});
|
||
|
||
linkageSymbols.erase(endIt, linkageSymbols.end());
|
||
}
|
||
|
||
// post-processing
|
||
void HlslParseContext::finish()
|
||
{
|
||
// Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so
|
||
// cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful.
|
||
if (! mipsOperatorMipArg.empty()) {
|
||
error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
|
||
}
|
||
|
||
removeUnusedStructBufferCounters();
|
||
addPatchConstantInvocation();
|
||
|
||
TParseContextBase::finish();
|
||
}
|
||
|
||
} // end namespace glslang
|