diff --git a/include/llvm-c/Transforms/IPO.h b/include/llvm-c/Transforms/IPO.h index 3af7425dd26..7705b1864dc 100644 --- a/include/llvm-c/Transforms/IPO.h +++ b/include/llvm-c/Transforms/IPO.h @@ -34,6 +34,9 @@ void LLVMAddArgumentPromotionPass(LLVMPassManagerRef PM); /** See llvm::createConstantMergePass function. */ void LLVMAddConstantMergePass(LLVMPassManagerRef PM); +/** See llvm::createCalledValuePropagationPass function. */ +void LLVMAddCalledValuePropagationPass(LLVMPassManagerRef PM); + /** See llvm::createDeadArgEliminationPass function. */ void LLVMAddDeadArgEliminationPass(LLVMPassManagerRef PM); diff --git a/include/llvm/InitializePasses.h b/include/llvm/InitializePasses.h index bf54b6471f4..6b0e6acadad 100644 --- a/include/llvm/InitializePasses.h +++ b/include/llvm/InitializePasses.h @@ -93,6 +93,7 @@ void initializeCallGraphViewerPass(PassRegistry&); void initializeCallGraphWrapperPassPass(PassRegistry&); void initializeCodeGenPreparePass(PassRegistry&); void initializeConstantHoistingLegacyPassPass(PassRegistry&); +void initializeCalledValuePropagationLegacyPassPass(PassRegistry &); void initializeConstantMergeLegacyPassPass(PassRegistry&); void initializeConstantPropagationPass(PassRegistry&); void initializeCorrelatedValuePropagationPass(PassRegistry&); diff --git a/include/llvm/LinkAllPasses.h b/include/llvm/LinkAllPasses.h index 29314617177..abc3bac9367 100644 --- a/include/llvm/LinkAllPasses.h +++ b/include/llvm/LinkAllPasses.h @@ -80,6 +80,7 @@ namespace { (void) llvm::createCFLSteensAAWrapperPass(); (void) llvm::createStructurizeCFGPass(); (void) llvm::createLibCallsShrinkWrapPass(); + (void) llvm::createCalledValuePropagationPass(); (void) llvm::createConstantMergePass(); (void) llvm::createConstantPropagationPass(); (void) llvm::createCostModelAnalysisPass(); diff --git a/include/llvm/Transforms/IPO.h b/include/llvm/Transforms/IPO.h index 39ceb19525b..ce20a726b78 100644 --- a/include/llvm/Transforms/IPO.h +++ b/include/llvm/Transforms/IPO.h @@ -216,6 +216,10 @@ ModulePass *createMetaRenamerPass(); /// manager. ModulePass *createBarrierNoopPass(); +/// createCalledValuePropagationPass - Attach metadata to indirct call sites +/// indicating the set of functions they may target at run-time. +ModulePass *createCalledValuePropagationPass(); + /// What to do with the summary when running passes that operate on it. enum class PassSummaryAction { None, ///< Do nothing. diff --git a/include/llvm/Transforms/IPO/CalledValuePropagation.h b/include/llvm/Transforms/IPO/CalledValuePropagation.h new file mode 100644 index 00000000000..352bdc7ac17 --- /dev/null +++ b/include/llvm/Transforms/IPO/CalledValuePropagation.h @@ -0,0 +1,35 @@ +//===- CalledValuePropagation.h - Propagate called values -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a transformation that attaches !callees metadata to +// indirect call sites. For a given call site, the metadata, if present, +// indicates the set of functions the call site could possibly target at +// run-time. This metadata is added to indirect call sites when the set of +// possible targets can be determined by analysis and is known to be small. The +// analysis driving the transformation is similar to constant propagation and +// makes uses of the generic sparse propagation solver. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TRANSFORMS_IPO_CALLEDVALUEPROPAGATION_H +#define LLVM_TRANSFORMS_IPO_CALLEDVALUEPROPAGATION_H + +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" + +namespace llvm { + +class CalledValuePropagationPass + : public PassInfoMixin { +public: + PreservedAnalyses run(Module &M, ModuleAnalysisManager &); +}; +} // namespace llvm + +#endif // LLVM_TRANSFORMS_IPO_CALLEDVALUEPROPAGATION_H diff --git a/lib/Passes/PassBuilder.cpp b/lib/Passes/PassBuilder.cpp index 219c3835f47..8796ff56e5e 100644 --- a/lib/Passes/PassBuilder.cpp +++ b/lib/Passes/PassBuilder.cpp @@ -63,6 +63,7 @@ #include "llvm/Transforms/GCOVProfiler.h" #include "llvm/Transforms/IPO/AlwaysInliner.h" #include "llvm/Transforms/IPO/ArgumentPromotion.h" +#include "llvm/Transforms/IPO/CalledValuePropagation.h" #include "llvm/Transforms/IPO/ConstantMerge.h" #include "llvm/Transforms/IPO/CrossDSOCFI.h" #include "llvm/Transforms/IPO/DeadArgumentElimination.h" @@ -580,6 +581,10 @@ PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level, // years, it should be re-analyzed. MPM.addPass(IPSCCPPass()); + // Attach metadata to indirect call sites indicating the set of functions + // they may target at run-time. This should follow IPSCCP. + MPM.addPass(CalledValuePropagationPass()); + // Optimize globals to try and fold them into constants. MPM.addPass(GlobalOptPass()); @@ -921,6 +926,10 @@ ModulePassManager PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level, // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. MPM.addPass(IPSCCPPass()); + + // Attach metadata to indirect call sites indicating the set of functions + // they may target at run-time. This should follow IPSCCP. + MPM.addPass(CalledValuePropagationPass()); } // Now deduce any function attributes based in the current code. diff --git a/lib/Passes/PassRegistry.def b/lib/Passes/PassRegistry.def index bfe3dd782c1..20d1220ac33 100644 --- a/lib/Passes/PassRegistry.def +++ b/lib/Passes/PassRegistry.def @@ -39,6 +39,7 @@ MODULE_ALIAS_ANALYSIS("globals-aa", GlobalsAA()) #define MODULE_PASS(NAME, CREATE_PASS) #endif MODULE_PASS("always-inline", AlwaysInlinerPass()) +MODULE_PASS("called-value-propagation", CalledValuePropagationPass()) MODULE_PASS("constmerge", ConstantMergePass()) MODULE_PASS("cross-dso-cfi", CrossDSOCFIPass()) MODULE_PASS("deadargelim", DeadArgumentEliminationPass()) diff --git a/lib/Transforms/IPO/CMakeLists.txt b/lib/Transforms/IPO/CMakeLists.txt index 67f18a307b9..397561746f8 100644 --- a/lib/Transforms/IPO/CMakeLists.txt +++ b/lib/Transforms/IPO/CMakeLists.txt @@ -2,6 +2,7 @@ add_llvm_library(LLVMipo AlwaysInliner.cpp ArgumentPromotion.cpp BarrierNoopPass.cpp + CalledValuePropagation.cpp ConstantMerge.cpp CrossDSOCFI.cpp DeadArgumentElimination.cpp diff --git a/lib/Transforms/IPO/CalledValuePropagation.cpp b/lib/Transforms/IPO/CalledValuePropagation.cpp new file mode 100644 index 00000000000..2d2701c5899 --- /dev/null +++ b/lib/Transforms/IPO/CalledValuePropagation.cpp @@ -0,0 +1,422 @@ +//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a transformation that attaches !callees metadata to +// indirect call sites. For a given call site, the metadata, if present, +// indicates the set of functions the call site could possibly target at +// run-time. This metadata is added to indirect call sites when the set of +// possible targets can be determined by analysis and is known to be small. The +// analysis driving the transformation is similar to constant propagation and +// makes uses of the generic sparse propagation solver. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/CalledValuePropagation.h" +#include "llvm/Analysis/SparsePropagation.h" +#include "llvm/Analysis/ValueLatticeUtils.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/Transforms/IPO.h" +using namespace llvm; + +#define DEBUG_TYPE "called-value-propagation" + +/// The maximum number of functions to track per lattice value. Once the number +/// of functions a call site can possibly target exceeds this threshold, it's +/// lattice value becomes overdefined. The number of possible lattice values is +/// bounded by Ch(F, M), where F is the number of functions in the module and M +/// is MaxFunctionsPerValue. As such, this value should be kept very small. We +/// likely can't do anything useful for call sites with a large number of +/// possible targets, anyway. +static cl::opt MaxFunctionsPerValue( + "cvp-max-functions-per-value", cl::Hidden, cl::init(4), + cl::desc("The maximum number of functions to track per lattice value")); + +namespace { +/// To enable interprocedural analysis, we assign LLVM values to the following +/// groups. The register group represents SSA registers, the return group +/// represents the return values of functions, and the memory group represents +/// in-memory values. An LLVM Value can technically be in more than one group. +/// It's necessary to distinguish these groups so we can, for example, track a +/// global variable separately from the value stored at its location. +enum class IPOGrouping { Register, Return, Memory }; + +/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. +using CVPLatticeKey = PointerIntPair; + +/// The lattice value type used by our custom lattice function. It holds the +/// lattice state, and a set of functions. +class CVPLatticeVal { +public: + /// The states of the lattice values. Only the FunctionSet state is + /// interesting. It indicates the set of functions to which an LLVM value may + /// refer. + enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; + + /// Comparator for sorting the functions set. We want to keep the order + /// deterministic for testing, etc. + struct Compare { + bool operator()(const Function *LHS, const Function *RHS) const { + return LHS->getName() < RHS->getName(); + } + }; + + CVPLatticeVal() : LatticeState(Undefined) {} + CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} + CVPLatticeVal(std::set &&Functions) + : LatticeState(FunctionSet), Functions(Functions) {} + + /// Get a reference to the functions held by this lattice value. The number + /// of functions will be zero for states other than FunctionSet. + const std::set &getFunctions() const { + return Functions; + } + + /// Returns true if the lattice value is in the FunctionSet state. + bool isFunctionSet() const { return LatticeState == FunctionSet; } + + bool operator==(const CVPLatticeVal &RHS) const { + return LatticeState == RHS.LatticeState && Functions == RHS.Functions; + } + + bool operator!=(const CVPLatticeVal &RHS) const { + return LatticeState != RHS.LatticeState || Functions != RHS.Functions; + } + +private: + /// Holds the state this lattice value is in. + CVPLatticeStateTy LatticeState; + + /// Holds functions indicating the possible targets of call sites. This set + /// is empty for lattice values in the undefined, overdefined, and untracked + /// states. The maximum size of the set is controlled by + /// MaxFunctionsPerValue. Since most LLVM values are expected to be in + /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be + /// small and efficiently copyable. + std::set Functions; +}; + +/// The custom lattice function used by the generic sparse propagation solver. +/// It handles merging lattice values and computing new lattice values for +/// constants, arguments, values returned from trackable functions, and values +/// located in trackable global variables. It also computes the lattice values +/// that change as a result of executing instructions. +class CVPLatticeFunc + : public AbstractLatticeFunction { +public: + CVPLatticeFunc() + : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), + CVPLatticeVal(CVPLatticeVal::Overdefined), + CVPLatticeVal(CVPLatticeVal::Untracked)) {} + + /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. + CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { + switch (Key.getInt()) { + case IPOGrouping::Register: + if (isa(Key.getPointer())) { + return getUndefVal(); + } else if (auto *A = dyn_cast(Key.getPointer())) { + if (canTrackArgumentsInterprocedurally(A->getParent())) + return getUndefVal(); + } else if (auto *C = dyn_cast(Key.getPointer())) { + return computeConstant(C); + } + return getOverdefinedVal(); + case IPOGrouping::Memory: + case IPOGrouping::Return: + if (auto *GV = dyn_cast(Key.getPointer())) { + if (canTrackGlobalVariableInterprocedurally(GV)) + return computeConstant(GV->getInitializer()); + } else if (auto *F = cast(Key.getPointer())) + if (canTrackReturnsInterprocedurally(F)) + return getUndefVal(); + } + return getOverdefinedVal(); + } + + /// Merge the two given lattice values. The interesting cases are merging two + /// FunctionSet values and a FunctionSet value with an Undefined value. For + /// these cases, we simply union the function sets. If the size of the union + /// is greater than the maximum functions we track, the merged value is + /// overdefined. + CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { + if (X == getOverdefinedVal() || Y == getOverdefinedVal()) + return getOverdefinedVal(); + if (X == getUndefVal() && Y == getUndefVal()) + return getUndefVal(); + std::set Union; + std::set_union(X.getFunctions().begin(), X.getFunctions().end(), + Y.getFunctions().begin(), Y.getFunctions().end(), + std::inserter(Union, Union.begin())); + if (Union.size() > MaxFunctionsPerValue) + return getOverdefinedVal(); + return CVPLatticeVal(std::move(Union)); + } + + /// Compute the lattice values that change as a result of executing the given + /// instruction. The changed values are stored in \p ChangedValues. We handle + /// just a few kinds of instructions since we're only propagating values that + /// can be called. + void ComputeInstructionState( + Instruction &I, DenseMap &ChangedValues, + SparseSolver &SS) override { + switch (I.getOpcode()) { + case Instruction::Call: + return visitCallSite(cast(&I), ChangedValues, SS); + case Instruction::Invoke: + return visitCallSite(cast(&I), ChangedValues, SS); + case Instruction::Load: + return visitLoad(*cast(&I), ChangedValues, SS); + case Instruction::Ret: + return visitReturn(*cast(&I), ChangedValues, SS); + case Instruction::Select: + return visitSelect(*cast(&I), ChangedValues, SS); + case Instruction::Store: + return visitStore(*cast(&I), ChangedValues, SS); + default: + return visitInst(I, ChangedValues, SS); + } + } + + /// Print the given CVPLatticeVal to the specified stream. + void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { + if (LV == getUndefVal()) + OS << "Undefined "; + else if (LV == getOverdefinedVal()) + OS << "Overdefined"; + else if (LV == getUntrackedVal()) + OS << "Untracked "; + else + OS << "FunctionSet"; + } + + /// Print the given CVPLatticeKey to the specified stream. + void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { + if (Key.getInt() == IPOGrouping::Register) + OS << " "; + else if (Key.getInt() == IPOGrouping::Memory) + OS << " "; + else if (Key.getInt() == IPOGrouping::Return) + OS << " "; + if (isa(Key.getPointer())) + OS << Key.getPointer()->getName(); + else + OS << *Key.getPointer(); + } + + /// We collect a set of indirect calls when visiting call sites. This method + /// returns a reference to that set. + SmallPtrSetImpl &getIndirectCalls() { return IndirectCalls; } + +private: + /// Holds the indirect calls we encounter during the analysis. We will attach + /// metadata to these calls after the analysis indicating the functions the + /// calls can possibly target. + SmallPtrSet IndirectCalls; + + /// Compute a new lattice value for the given constant. The constant, after + /// stripping any pointer casts, should be a Function. We ignore null + /// pointers as an optimization, since calling these values is undefined + /// behavior. + CVPLatticeVal computeConstant(Constant *C) { + if (isa(C)) + return CVPLatticeVal(CVPLatticeVal::FunctionSet); + if (auto *F = dyn_cast(C->stripPointerCasts())) + return CVPLatticeVal({F}); + return getOverdefinedVal(); + } + + /// Handle return instructions. The function's return state is the merge of + /// the returned value state and the function's return state. + void visitReturn(ReturnInst &I, + DenseMap &ChangedValues, + SparseSolver &SS) { + Function *F = I.getParent()->getParent(); + if (F->getReturnType()->isVoidTy()) + return; + auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); + auto RetF = CVPLatticeKey(F, IPOGrouping::Return); + ChangedValues[RetF] = + MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); + } + + /// Handle call sites. The state of a called function's formal arguments is + /// the merge of the argument state with the call sites corresponding actual + /// argument state. The call site state is the merge of the call site state + /// with the returned value state of the called function. + void visitCallSite(CallSite CS, + DenseMap &ChangedValues, + SparseSolver &SS) { + Function *F = CS.getCalledFunction(); + Instruction *I = CS.getInstruction(); + auto RegI = CVPLatticeKey(I, IPOGrouping::Register); + + // If this is an indirect call, save it so we can quickly revisit it when + // attaching metadata. + if (!F) + IndirectCalls.insert(I); + + // If we can't track the function's return values, there's nothing to do. + if (!F || !canTrackReturnsInterprocedurally(F)) { + ChangedValues[RegI] = getOverdefinedVal(); + return; + } + + // Inform the solver that the called function is executable, and perform + // the merges for the arguments and return value. + SS.MarkBlockExecutable(&F->front()); + auto RetF = CVPLatticeKey(F, IPOGrouping::Return); + for (Argument &A : F->args()) { + auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); + auto RegActual = + CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); + ChangedValues[RegFormal] = + MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); + } + ChangedValues[RegI] = + MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); + } + + /// Handle select instructions. The select instruction state is the merge the + /// true and false value states. + void visitSelect(SelectInst &I, + DenseMap &ChangedValues, + SparseSolver &SS) { + auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); + auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); + auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); + ChangedValues[RegI] = + MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); + } + + /// Handle load instructions. If the pointer operand of the load is a global + /// variable, we attempt to track the value. The loaded value state is the + /// merge of the loaded value state with the global variable state. + void visitLoad(LoadInst &I, + DenseMap &ChangedValues, + SparseSolver &SS) { + auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); + if (auto *GV = dyn_cast(I.getPointerOperand())) { + auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); + ChangedValues[RegI] = + MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); + } else { + ChangedValues[RegI] = getOverdefinedVal(); + } + } + + /// Handle store instructions. If the pointer operand of the store is a + /// global variable, we attempt to track the value. The global variable state + /// is the merge of the stored value state with the global variable state. + void visitStore(StoreInst &I, + DenseMap &ChangedValues, + SparseSolver &SS) { + auto *GV = dyn_cast(I.getPointerOperand()); + if (!GV) + return; + auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); + auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); + ChangedValues[MemGV] = + MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); + } + + /// Handle all other instructions. All other instructions are marked + /// overdefined. + void visitInst(Instruction &I, + DenseMap &ChangedValues, + SparseSolver &SS) { + auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); + ChangedValues[RegI] = getOverdefinedVal(); + } +}; +} // namespace + +namespace llvm { +/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver +/// must translate between LatticeKeys and LLVM Values when adding Values to +/// its work list and inspecting the state of control-flow related values. +template <> struct LatticeKeyInfo { + static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { + return Key.getPointer(); + } + static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { + return CVPLatticeKey(V, IPOGrouping::Register); + } +}; +} // namespace llvm + +static bool runCVP(Module &M) { + // Our custom lattice function and generic sparse propagation solver. + CVPLatticeFunc Lattice; + SparseSolver Solver(&Lattice); + + // For each function in the module, if we can't track its arguments, let the + // generic solver assume it is executable. + for (Function &F : M) + if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) + Solver.MarkBlockExecutable(&F.front()); + + // Solver our custom lattice. In doing so, we will also build a set of + // indirect call sites. + Solver.Solve(); + + // Attach metadata to the indirect call sites that were collected indicating + // the set of functions they can possibly target. + bool Changed = false; + MDBuilder MDB(M.getContext()); + for (Instruction *C : Lattice.getIndirectCalls()) { + CallSite CS(C); + auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); + CVPLatticeVal LV = Solver.getExistingValueState(RegI); + if (!LV.isFunctionSet() || LV.getFunctions().empty()) + continue; + MDNode *Callees = MDB.createCallees(SmallVector( + LV.getFunctions().begin(), LV.getFunctions().end())); + C->setMetadata(LLVMContext::MD_callees, Callees); + Changed = true; + } + + return Changed; +} + +PreservedAnalyses CalledValuePropagationPass::run(Module &M, + ModuleAnalysisManager &) { + runCVP(M); + return PreservedAnalyses::all(); +} + +namespace { +class CalledValuePropagationLegacyPass : public ModulePass { +public: + static char ID; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } + + CalledValuePropagationLegacyPass() : ModulePass(ID) { + initializeCalledValuePropagationLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M) override { + if (skipModule(M)) + return false; + return runCVP(M); + } +}; +} // namespace + +char CalledValuePropagationLegacyPass::ID = 0; +INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", + "Called Value Propagation", false, false) + +ModulePass *llvm::createCalledValuePropagationPass() { + return new CalledValuePropagationLegacyPass(); +} diff --git a/lib/Transforms/IPO/IPO.cpp b/lib/Transforms/IPO/IPO.cpp index 5bb305ca84d..d5d35ee89e0 100644 --- a/lib/Transforms/IPO/IPO.cpp +++ b/lib/Transforms/IPO/IPO.cpp @@ -25,6 +25,7 @@ using namespace llvm; void llvm::initializeIPO(PassRegistry &Registry) { initializeArgPromotionPass(Registry); + initializeCalledValuePropagationLegacyPassPass(Registry); initializeConstantMergeLegacyPassPass(Registry); initializeCrossDSOCFIPass(Registry); initializeDAEPass(Registry); @@ -67,6 +68,10 @@ void LLVMAddArgumentPromotionPass(LLVMPassManagerRef PM) { unwrap(PM)->add(createArgumentPromotionPass()); } +void LLVMAddCalledValuePropagationPass(LLVMPassManagerRef PM) { + unwrap(PM)->add(createCalledValuePropagationPass()); +} + void LLVMAddConstantMergePass(LLVMPassManagerRef PM) { unwrap(PM)->add(createConstantMergePass()); } diff --git a/lib/Transforms/IPO/PassManagerBuilder.cpp b/lib/Transforms/IPO/PassManagerBuilder.cpp index 4fa780fa22c..35ca107c325 100644 --- a/lib/Transforms/IPO/PassManagerBuilder.cpp +++ b/lib/Transforms/IPO/PassManagerBuilder.cpp @@ -460,6 +460,7 @@ void PassManagerBuilder::populateModulePassManager( addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); MPM.add(createIPSCCPPass()); // IP SCCP + MPM.add(createCalledValuePropagationPass()); MPM.add(createGlobalOptimizerPass()); // Optimize out global vars // Promote any localized global vars. MPM.add(createPromoteMemoryToRegisterPass()); @@ -703,6 +704,10 @@ void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); + + // Attach metadata to indirect call sites indicating the set of functions + // they may target at run-time. This should follow IPSCCP. + PM.add(createCalledValuePropagationPass()); } // Infer attributes about definitions. The readnone attribute in particular is diff --git a/test/Other/new-pm-defaults.ll b/test/Other/new-pm-defaults.ll index 6e5c679e3d9..816f75310e3 100644 --- a/test/Other/new-pm-defaults.ll +++ b/test/Other/new-pm-defaults.ll @@ -78,6 +78,7 @@ ; CHECK-O-NEXT: Running pass: LowerExpectIntrinsicPass ; CHECK-O-NEXT: Finished llvm::Function pass manager run. ; CHECK-O-NEXT: Running pass: IPSCCPPass +; CHECK-O-NEXT: Running pass: CalledValuePropagationPass ; CHECK-O-NEXT: Running pass: GlobalOptPass ; CHECK-O-NEXT: Running pass: ModuleToFunctionPassAdaptor<{{.*}}PromotePass> ; CHECK-O-NEXT: Running pass: DeadArgumentEliminationPass diff --git a/test/Other/new-pm-lto-defaults.ll b/test/Other/new-pm-lto-defaults.ll index e450a8eeb3b..fc52f70ff4c 100644 --- a/test/Other/new-pm-lto-defaults.ll +++ b/test/Other/new-pm-lto-defaults.ll @@ -34,6 +34,7 @@ ; CHECK-O2-NEXT: Running analysis: InnerAnalysisManagerProxy<{{.*}}Function ; CHECK-O2-NEXT: Running analysis: OptimizationRemarkEmitterAnalysis ; CHECK-O2-NEXT: Running pass: IPSCCPPass +; CHECK-O2-NEXT: Running pass: CalledValuePropagationPass ; CHECK-O-NEXT: Running pass: ModuleToPostOrderCGSCCPassAdaptor<{{.*}}PostOrderFunctionAttrsPass> ; CHECK-O-NEXT: Running analysis: InnerAnalysisManagerProxy<{{.*}}SCC ; CHECK-O1-NEXT: Running analysis: InnerAnalysisManagerProxy<{{.*}}Function diff --git a/test/Other/new-pm-thinlto-defaults.ll b/test/Other/new-pm-thinlto-defaults.ll index 47074adbcb2..7d40ef3eea2 100644 --- a/test/Other/new-pm-thinlto-defaults.ll +++ b/test/Other/new-pm-thinlto-defaults.ll @@ -74,6 +74,7 @@ ; CHECK-O-NEXT: Running pass: LowerExpectIntrinsicPass ; CHECK-O-NEXT: Finished llvm::Function pass manager run. ; CHECK-O-NEXT: Running pass: IPSCCPPass +; CHECK-O-NEXT: Running pass: CalledValuePropagationPass ; CHECK-O-NEXT: Running pass: GlobalOptPass ; CHECK-O-NEXT: Running pass: ModuleToFunctionPassAdaptor<{{.*}}PromotePass> ; CHECK-O-NEXT: Running pass: DeadArgumentEliminationPass diff --git a/test/Transforms/CalledValuePropagation/simple-arguments.ll b/test/Transforms/CalledValuePropagation/simple-arguments.ll new file mode 100644 index 00000000000..34274f3b348 --- /dev/null +++ b/test/Transforms/CalledValuePropagation/simple-arguments.ll @@ -0,0 +1,83 @@ +; RUN: opt -called-value-propagation -S < %s | FileCheck %s + +target triple = "aarch64-unknown-linux-gnueabi" + + +; This test checks that we propagate the functions through arguments and attach +; !callees metadata to the call. Such metadata can enable optimizations of this +; code sequence. +; +; For example, the code below a illustrates a contrived sort-like algorithm +; that accepts a pointer to a comparison function. Since the indirect call to +; the comparison function has only two targets, the call can be promoted to two +; direct calls using an if-then-else. The loop can then be unswitched and the +; called functions inlined. This essentially produces two loops, once +; specialized for each comparison. +; +; CHECK: %tmp3 = call i1 %cmp(i64* %tmp1, i64* %tmp2), !callees ![[MD:[0-9]+]] +; CHECK: ![[MD]] = !{i1 (i64*, i64*)* @ugt, i1 (i64*, i64*)* @ule} +; +define void @test_argument(i64* %x, i64 %n, i1 %flag) { +entry: + %tmp0 = sub i64 %n, 1 + br i1 %flag, label %then, label %else + +then: + call void @arrange_data(i64* %x, i64 %tmp0, i1 (i64*, i64*)* @ugt) + br label %merge + +else: + call void @arrange_data(i64* %x, i64 %tmp0, i1 (i64*, i64*)* @ule) + br label %merge + +merge: + ret void +} + +define internal void @arrange_data(i64* %x, i64 %n, i1 (i64*, i64*)* %cmp) { +entry: + %tmp0 = icmp eq i64 %n, 1 + br i1 %tmp0, label %merge, label %for.body + +for.body: + %i = phi i64 [ 0, %entry ], [ %i.next, %cmp.false ] + %i.next = add nuw nsw i64 %i, 1 + %tmp1 = getelementptr inbounds i64, i64* %x, i64 %i + %tmp2 = getelementptr inbounds i64, i64* %x, i64 %i.next + %tmp3 = call i1 %cmp(i64* %tmp1, i64* %tmp2) + br i1 %tmp3, label %cmp.true, label %cmp.false + +cmp.true: + call void @swap(i64* %tmp1, i64* %tmp2) + br label %cmp.false + +cmp.false: + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + %tmp4 = sub i64 %n, 1 + call void @arrange_data(i64* %x, i64 %tmp4, i1 (i64*, i64*)* %cmp) + br label %merge + +merge: + ret void +} + +define internal i1 @ugt(i64* %a, i64* %b) { +entry: + %tmp0 = load i64, i64* %a + %tmp1 = load i64, i64* %b + %tmp2 = icmp ugt i64 %tmp0, %tmp1 + ret i1 %tmp2 +} + +define internal i1 @ule(i64* %a, i64* %b) { +entry: + %tmp0 = load i64, i64* %a + %tmp1 = load i64, i64* %b + %tmp2 = icmp ule i64 %tmp0, %tmp1 + ret i1 %tmp2 +} + +declare void @swap(i64*, i64*) diff --git a/test/Transforms/CalledValuePropagation/simple-memory.ll b/test/Transforms/CalledValuePropagation/simple-memory.ll new file mode 100644 index 00000000000..e42f10c1436 --- /dev/null +++ b/test/Transforms/CalledValuePropagation/simple-memory.ll @@ -0,0 +1,62 @@ +; RUN: opt -called-value-propagation -S < %s | FileCheck %s + +target triple = "aarch64-unknown-linux-gnueabi" + +@global_function = internal unnamed_addr global void ()* null, align 8 +@global_array = common unnamed_addr global i64* null, align 8 + +; This test checks that we propagate the functions through an internal global +; variable, and attach !callees metadata to the call. Such metadata can enable +; optimizations of this code sequence. +; +; For example, since both of the targeted functions have the "nounwind" and +; "readnone" function attributes, LICM can be made to move the call and the +; function pointer load outside the loop. This would then enable the loop +; vectorizer to vectorize the sum reduction. +; +; CHECK: call void %tmp0(), !callees ![[MD:[0-9]+]] +; CHECK: ![[MD]] = !{void ()* @invariant_1, void ()* @invariant_2} +; +define i64 @test_memory_entry(i64 %n, i1 %flag) { +entry: + br i1 %flag, label %then, label %else + +then: + store void ()* @invariant_1, void ()** @global_function + br label %merge + +else: + store void ()* @invariant_2, void ()** @global_function + br label %merge + +merge: + %tmp1 = call i64 @test_memory(i64 %n) + ret i64 %tmp1 +} + +define internal i64 @test_memory(i64 %n) { +entry: + %array = load i64*, i64** @global_array + br label %for.body + +for.body: + %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] + %r = phi i64 [ 0, %entry ], [ %tmp3, %for.body ] + %tmp0 = load void ()*, void ()** @global_function + call void %tmp0() + %tmp1 = getelementptr inbounds i64, i64* %array, i64 %i + %tmp2 = load i64, i64* %tmp1 + %tmp3 = add i64 %tmp2, %r + %i.next = add nuw nsw i64 %i, 1 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + %tmp4 = phi i64 [ %tmp3, %for.body ] + ret i64 %tmp4 +} + +declare void @invariant_1() #0 +declare void @invariant_2() #0 + +attributes #0 = { nounwind readnone } diff --git a/test/Transforms/CalledValuePropagation/simple-select.ll b/test/Transforms/CalledValuePropagation/simple-select.ll new file mode 100644 index 00000000000..3d6c7dad7c8 --- /dev/null +++ b/test/Transforms/CalledValuePropagation/simple-select.ll @@ -0,0 +1,39 @@ +; RUN: opt -called-value-propagation -S < %s | FileCheck %s + +target triple = "aarch64-unknown-linux-gnueabi" + +@global_function = internal unnamed_addr global void ()* null, align 8 +@global_scalar = internal unnamed_addr global i64 zeroinitializer + +; This test checks that we propagate the functions through a select +; instruction, and attach !callees metadata to the call. Such metadata can +; enable optimizations of this code sequence. +; +; For example, since both of the targeted functions have the "norecurse" +; attribute, the function attributes pass can be made to infer that +; "@test_select" is also norecurse. This would allow the globals optimizer to +; localize "@global_scalar". The function could then be further simplified to +; always return the constant "1", eliminating the load and store instructions. +; +; CHECK: call void %tmp0(), !callees ![[MD:[0-9]+]] +; CHECK: ![[MD]] = !{void ()* @norecurse_1, void ()* @norecurse_2} +; +define i64 @test_select_entry(i1 %flag) { +entry: + %tmp0 = call i64 @test_select(i1 %flag) + ret i64 %tmp0 +} + +define internal i64 @test_select(i1 %flag) { +entry: + %tmp0 = select i1 %flag, void ()* @norecurse_1, void ()* @norecurse_2 + store i64 1, i64* @global_scalar + call void %tmp0() + %tmp1 = load i64, i64* @global_scalar + ret i64 %tmp1 +} + +declare void @norecurse_1() #0 +declare void @norecurse_2() #0 + +attributes #0 = { norecurse }