diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 89daec8053e..cfaacd76309 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -4807,47 +4807,14 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { if (!AddRec || AddRec->getLoop() != L) return getCouldNotCompute(); - if (AddRec->isAffine()) { - // If this is an affine expression, the execution count of this branch is - // the minimum unsigned root of the following equation: - // - // Start + Step*N = 0 (mod 2^BW) - // - // equivalent to: - // - // Step*N = -Start (mod 2^BW) - // - // where BW is the common bit width of Start and Step. - - // Get the initial value for the loop. - const SCEV *Start = getSCEVAtScope(AddRec->getStart(), - L->getParentLoop()); - const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), - L->getParentLoop()); - - if (const SCEVConstant *StepC = dyn_cast(Step)) { - // For now we handle only constant steps. - - // First, handle unitary steps. - if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: - return getNegativeSCEV(Start); // N = -Start (as unsigned) - if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: - return Start; // N = Start (as unsigned) - - // Then, try to solve the above equation provided that Start is constant. - if (const SCEVConstant *StartC = dyn_cast(Start)) - return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), - -StartC->getValue()->getValue(), - *this); - } - } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { - // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of - // the quadratic equation to solve it. - std::pair Roots = SolveQuadraticEquation(AddRec, - *this); + // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of + // the quadratic equation to solve it. + if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { + std::pair Roots = + SolveQuadraticEquation(AddRec, *this); const SCEVConstant *R1 = dyn_cast(Roots.first); const SCEVConstant *R2 = dyn_cast(Roots.second); - if (R1) { + if (R1 && R2) { #if 0 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 << " sol#2: " << *R2 << "\n"; @@ -4855,10 +4822,10 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { // Pick the smallest positive root value. if (ConstantInt *CB = dyn_cast(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, - R1->getValue(), R2->getValue()))) { + R1->getValue(), R2->getValue()))) { if (CB->getZExtValue() == false) std::swap(R1, R2); // R1 is the minimum root now. - + // We can only use this value if the chrec ends up with an exact zero // value at this index. When solving for "X*X != 5", for example, we // should not accept a root of 2. @@ -4867,8 +4834,45 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { return R1; // We found a quadratic root! } } + return getCouldNotCompute(); } + // Otherwise we can only handle this if it is affine. + if (!AddRec->isAffine()) + return getCouldNotCompute(); + + // If this is an affine expression, the execution count of this branch is + // the minimum unsigned root of the following equation: + // + // Start + Step*N = 0 (mod 2^BW) + // + // equivalent to: + // + // Step*N = -Start (mod 2^BW) + // + // where BW is the common bit width of Start and Step. + + // Get the initial value for the loop. + const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); + const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); + + // For now we handle only constant steps. + const SCEVConstant *StepC = dyn_cast(Step); + if (StepC == 0) + return getCouldNotCompute(); + + // First, handle unitary steps. + if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: + return getNegativeSCEV(Start); // N = -Start (as unsigned) + + if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: + return Start; // N = Start (as unsigned) + + // Then, try to solve the above equation provided that Start is constant. + if (const SCEVConstant *StartC = dyn_cast(Start)) + return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), + -StartC->getValue()->getValue(), + *this); return getCouldNotCompute(); }