mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-11 21:45:16 +00:00
[llvm-mca] Updates comment in code, and remove some stale comments. NFC
Also, rename fields `TotalMappings` and `NumUsedMappings` in struct RegisterMappingTracker into `NumPhysRegs` and `NumUsedPhysRegs`. llvm-svn: 335219
This commit is contained in:
parent
e74f29c6a3
commit
371b1bd7b2
@ -36,25 +36,20 @@ class Backend;
|
||||
//
|
||||
// This class is responsible for the dispatch stage, in which instructions are
|
||||
// dispatched in groups to the Scheduler. An instruction can be dispatched if
|
||||
// functional units are available.
|
||||
// To be more specific, an instruction can be dispatched to the Scheduler if:
|
||||
// 1) There are enough entries in the reorder buffer (implemented by class
|
||||
// RetireControlUnit) to accommodate all opcodes.
|
||||
// the following conditions are met:
|
||||
// 1) There are enough entries in the reorder buffer (see class
|
||||
// RetireControlUnit) to write the opcodes associated with the instruction.
|
||||
// 2) There are enough temporaries to rename output register operands.
|
||||
// 3) There are enough entries available in the used buffered resource(s).
|
||||
//
|
||||
// The number of micro opcodes that can be dispatched in one cycle is limited by
|
||||
// the value of field 'DispatchWidth'. A "dynamic dispatch stall" occurs when
|
||||
// processor resources are not available (i.e. at least one of the
|
||||
// aforementioned checks fails). Dispatch stall events are counted during the
|
||||
// entire execution of the code, and displayed by the performance report when
|
||||
// flag '-verbose' is specified.
|
||||
// processor resources are not available. Dispatch stall events are counted
|
||||
// during the entire execution of the code, and displayed by the performance
|
||||
// report when flag '-dispatch-stats' is specified.
|
||||
//
|
||||
// If the number of micro opcodes of an instruction is bigger than
|
||||
// DispatchWidth, then it can only be dispatched at the beginning of one cycle.
|
||||
// The DispatchStage will still have to wait for a number of cycles (depending
|
||||
// on the DispatchWidth and the number of micro opcodes) before it can serve
|
||||
// other instructions.
|
||||
// If the number of micro opcodes exceedes DispatchWidth, then the instruction
|
||||
// is dispatched in multiple cycles.
|
||||
class DispatchStage : public Stage {
|
||||
unsigned DispatchWidth;
|
||||
unsigned AvailableEntries;
|
||||
|
@ -159,61 +159,7 @@ static void populateWrites(InstrDesc &ID, const MCInst &MCI,
|
||||
const MCInstrDesc &MCDesc,
|
||||
const MCSchedClassDesc &SCDesc,
|
||||
const MCSubtargetInfo &STI) {
|
||||
// This algorithm currently works under the strong (and potentially incorrect)
|
||||
// assumption that information related to register def/uses can be obtained
|
||||
// from MCInstrDesc.
|
||||
//
|
||||
// However class MCInstrDesc is used to describe MachineInstr objects and not
|
||||
// MCInst objects. To be more specific, MCInstrDesc objects are opcode
|
||||
// descriptors that are automatically generated via tablegen based on the
|
||||
// instruction set information available from the target .td files. That
|
||||
// means, the number of (explicit) definitions according to MCInstrDesc always
|
||||
// matches the cardinality of the `(outs)` set in tablegen.
|
||||
//
|
||||
// By constructions, definitions must appear first in the operand sequence of
|
||||
// a MachineInstr. Also, the (outs) sequence is preserved (example: the first
|
||||
// element in the outs set is the first operand in the corresponding
|
||||
// MachineInstr). That's the reason why MCInstrDesc only needs to declare the
|
||||
// total number of register definitions, and not where those definitions are
|
||||
// in the machine operand sequence.
|
||||
//
|
||||
// Unfortunately, it is not safe to use the information from MCInstrDesc to
|
||||
// also describe MCInst objects. An MCInst object can be obtained from a
|
||||
// MachineInstr through a lowering step which may restructure the operand
|
||||
// sequence (and even remove or introduce new operands). So, there is a high
|
||||
// risk that the lowering step breaks the assumptions that register
|
||||
// definitions are always at the beginning of the machine operand sequence.
|
||||
//
|
||||
// This is a fundamental problem, and it is still an open problem. Essentially
|
||||
// we have to find a way to correlate def/use operands of a MachineInstr to
|
||||
// operands of an MCInst. Otherwise, we cannot correctly reconstruct data
|
||||
// dependencies, nor we can correctly interpret the scheduling model, which
|
||||
// heavily uses machine operand indices to define processor read-advance
|
||||
// information, and to identify processor write resources. Essentially, we
|
||||
// either need something like a MCInstrDesc, but for MCInst, or a way
|
||||
// to map MCInst operands back to MachineInstr operands.
|
||||
//
|
||||
// Unfortunately, we don't have that information now. So, this prototype
|
||||
// currently work under the strong assumption that we can always safely trust
|
||||
// the content of an MCInstrDesc. For example, we can query a MCInstrDesc to
|
||||
// obtain the number of explicit and implicit register defintions. We also
|
||||
// assume that register definitions always come first in the operand sequence.
|
||||
// This last assumption usually makes sense for MachineInstr, where register
|
||||
// definitions always appear at the beginning of the operands sequence. In
|
||||
// reality, these assumptions could be broken by the lowering step, which can
|
||||
// decide to lay out operands in a different order than the original order of
|
||||
// operand as specified by the MachineInstr.
|
||||
//
|
||||
// Things get even more complicated in the presence of "optional" register
|
||||
// definitions. For MachineInstr, optional register definitions are always at
|
||||
// the end of the operand sequence. Some ARM instructions that may update the
|
||||
// status flags specify that register as a optional operand. Since we don't
|
||||
// have operand descriptors for MCInst, we assume for now that the optional
|
||||
// definition is always the last operand of a MCInst. Again, this assumption
|
||||
// may be okay for most targets. However, there is no guarantee that targets
|
||||
// would respect that.
|
||||
//
|
||||
// In conclusion: these are for now the strong assumptions made by the tool:
|
||||
// These are for now the (strong) assumptions made by this algorithm:
|
||||
// * The number of explicit and implicit register definitions in a MCInst
|
||||
// matches the number of explicit and implicit definitions according to
|
||||
// the opcode descriptor (MCInstrDesc).
|
||||
@ -227,8 +173,6 @@ static void populateWrites(InstrDesc &ID, const MCInst &MCI,
|
||||
// like x86. This is mainly because the vast majority of instructions is
|
||||
// expanded to MCInst using a straightforward lowering logic that preserves
|
||||
// the ordering of the operands.
|
||||
//
|
||||
// In the longer term, we need to find a proper solution for this issue.
|
||||
unsigned NumExplicitDefs = MCDesc.getNumDefs();
|
||||
unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
|
||||
unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
|
||||
|
@ -96,12 +96,12 @@ void RegisterFile::allocatePhysRegs(IndexPlusCostPairTy Entry,
|
||||
unsigned Cost = Entry.second;
|
||||
if (RegisterFileIndex) {
|
||||
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
||||
RMT.NumUsedMappings += Cost;
|
||||
RMT.NumUsedPhysRegs += Cost;
|
||||
UsedPhysRegs[RegisterFileIndex] += Cost;
|
||||
}
|
||||
|
||||
// Now update the default register mapping tracker.
|
||||
RegisterFiles[0].NumUsedMappings += Cost;
|
||||
RegisterFiles[0].NumUsedPhysRegs += Cost;
|
||||
UsedPhysRegs[0] += Cost;
|
||||
}
|
||||
|
||||
@ -111,12 +111,12 @@ void RegisterFile::freePhysRegs(IndexPlusCostPairTy Entry,
|
||||
unsigned Cost = Entry.second;
|
||||
if (RegisterFileIndex) {
|
||||
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
||||
RMT.NumUsedMappings -= Cost;
|
||||
RMT.NumUsedPhysRegs -= Cost;
|
||||
FreedPhysRegs[RegisterFileIndex] += Cost;
|
||||
}
|
||||
|
||||
// Now update the default register mapping tracker.
|
||||
RegisterFiles[0].NumUsedMappings -= Cost;
|
||||
RegisterFiles[0].NumUsedPhysRegs -= Cost;
|
||||
FreedPhysRegs[0] += Cost;
|
||||
}
|
||||
|
||||
@ -215,13 +215,13 @@ unsigned RegisterFile::isAvailable(ArrayRef<unsigned> Regs) const {
|
||||
continue;
|
||||
|
||||
const RegisterMappingTracker &RMT = RegisterFiles[I];
|
||||
if (!RMT.TotalMappings) {
|
||||
if (!RMT.NumPhysRegs) {
|
||||
// The register file has an unbounded number of microarchitectural
|
||||
// registers.
|
||||
continue;
|
||||
}
|
||||
|
||||
if (RMT.TotalMappings < NumRegs) {
|
||||
if (RMT.NumPhysRegs < NumRegs) {
|
||||
// The current register file is too small. This may occur if the number of
|
||||
// microarchitectural registers in register file #0 was changed by the
|
||||
// users via flag -reg-file-size. Alternatively, the scheduling model
|
||||
@ -230,7 +230,7 @@ unsigned RegisterFile::isAvailable(ArrayRef<unsigned> Regs) const {
|
||||
"Not enough microarchitectural registers in the register file");
|
||||
}
|
||||
|
||||
if (RMT.TotalMappings < (RMT.NumUsedMappings + NumRegs))
|
||||
if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs))
|
||||
Response |= (1U << I);
|
||||
}
|
||||
|
||||
@ -252,8 +252,8 @@ void RegisterFile::dump() const {
|
||||
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
|
||||
dbgs() << "Register File #" << I;
|
||||
const RegisterMappingTracker &RMT = RegisterFiles[I];
|
||||
dbgs() << "\n TotalMappings: " << RMT.TotalMappings
|
||||
<< "\n NumUsedMappings: " << RMT.NumUsedMappings << '\n';
|
||||
dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs
|
||||
<< "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n';
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -26,94 +26,93 @@ namespace mca {
|
||||
class ReadState;
|
||||
class WriteState;
|
||||
|
||||
/// Manages hardware register files, and tracks data dependencies
|
||||
/// between registers.
|
||||
/// Manages hardware register files, and tracks register definitions for
|
||||
/// register renaming purposes.
|
||||
class RegisterFile {
|
||||
const llvm::MCRegisterInfo &MRI;
|
||||
|
||||
// Each register file is described by an instance of RegisterMappingTracker.
|
||||
// RegisterMappingTracker tracks the number of register mappings dynamically
|
||||
// allocated during the execution.
|
||||
// Each register file is associated with an instance of RegisterMappingTracker.
|
||||
// A RegisterMappingTracker keeps track of the number of physical registers
|
||||
// which have been dynamically allocated by the simulator.
|
||||
struct RegisterMappingTracker {
|
||||
// Total number of register mappings that are available for register
|
||||
// renaming. A value of zero for this field means: this register file has
|
||||
// an unbounded number of registers.
|
||||
const unsigned TotalMappings;
|
||||
// Number of mappings that are currently in use.
|
||||
unsigned NumUsedMappings;
|
||||
// The total number of physical registers that are available in this
|
||||
// register file for register renaming purpouses. A value of zero for this
|
||||
// field means: this register file has an unbounded number of physical
|
||||
// registers.
|
||||
const unsigned NumPhysRegs;
|
||||
// Number of physical registers that are currently in use.
|
||||
unsigned NumUsedPhysRegs;
|
||||
|
||||
RegisterMappingTracker(unsigned NumMappings)
|
||||
: TotalMappings(NumMappings), NumUsedMappings(0) {}
|
||||
RegisterMappingTracker(unsigned NumPhysRegisters)
|
||||
: NumPhysRegs(NumPhysRegisters), NumUsedPhysRegs(0) {}
|
||||
};
|
||||
|
||||
// This is where information related to the various register files is kept.
|
||||
// This set always contains at least one register file at index #0. That
|
||||
// register file "sees" all the physical registers declared by the target, and
|
||||
// (by default) it allows an unbounded number of mappings.
|
||||
// Users can limit the number of mappings that can be created by register file
|
||||
// #0 through the command line flag `-register-file-size`.
|
||||
// A vector of register file descriptors. This set always contains at least
|
||||
// one entry. Entry at index #0 is reserved. That entry describes a register
|
||||
// file with an unbounded number of physical registers that "sees" all the
|
||||
// hardware registers declared by the target (i.e. all the register
|
||||
// definitions in the target specific `XYZRegisterInfo.td` - where `XYZ` is
|
||||
// the target name).
|
||||
//
|
||||
// Users can limit the number of physical registers that are available in
|
||||
// regsiter file #0 specifying command line flag `-register-file-size=<uint>`.
|
||||
llvm::SmallVector<RegisterMappingTracker, 4> RegisterFiles;
|
||||
|
||||
// This pair is used to identify the owner of a physical register, as well as
|
||||
// the cost of using that register file.
|
||||
// This pair is used to identify the owner of a register, as well as
|
||||
// the "register cost". Register cost is defined as the number of physical
|
||||
// registers required to allocate a user register.
|
||||
// For example: on X86 BtVer2, a YMM register consumes 2 128-bit physical
|
||||
// registers. So, the cost of allocating a YMM register in BtVer2 is 2.
|
||||
using IndexPlusCostPairTy = std::pair<unsigned, unsigned>;
|
||||
|
||||
// RegisterMapping objects are mainly used to track physical register
|
||||
// definitions. A WriteState object describes a register definition, and it is
|
||||
// used to track RAW dependencies (see Instruction.h). A RegisterMapping
|
||||
// object also specifies the set of register files. The mapping between
|
||||
// physreg and register files is done using a "register file mask".
|
||||
//
|
||||
// A register file index identifies a user defined register file.
|
||||
// There is one index per RegisterMappingTracker, and index #0 is reserved to
|
||||
// the default unified register file.
|
||||
// definitions. There is a RegisterMapping for every register defined by the
|
||||
// Target. For each register, a RegisterMapping pair contains a descriptor of
|
||||
// the last register write (in the form of a WriteState object), as well as a
|
||||
// IndexPlusCostPairTy to quickly identify owning register files.
|
||||
//
|
||||
// This implementation does not allow overlapping register files. The only
|
||||
// register file that is allowed to overlap with other register files is
|
||||
// register file #0.
|
||||
// register file #0. If we exclude register #0, every register is "owned" by
|
||||
// at most one register file.
|
||||
using RegisterMapping = std::pair<WriteState *, IndexPlusCostPairTy>;
|
||||
|
||||
// This map contains one entry for each physical register defined by the
|
||||
// processor scheduling model.
|
||||
// This map contains one entry for each register defined by the target.
|
||||
std::vector<RegisterMapping> RegisterMappings;
|
||||
|
||||
// This method creates a new RegisterMappingTracker for a register file that
|
||||
// contains all the physical registers specified by the register classes in
|
||||
// the 'RegisterClasses' set.
|
||||
// This method creates a new register file descriptor.
|
||||
// The new register file owns all of the registers declared by register
|
||||
// classes in the 'RegisterClasses' set.
|
||||
//
|
||||
// The long term goal is to let scheduling models optionally describe register
|
||||
// files via tablegen definitions. This is still a work in progress.
|
||||
// For example, here is how a tablegen definition for a x86 FP register file
|
||||
// that features AVX might look like:
|
||||
// Processor models allow the definition of RegisterFile(s) via tablegen. For
|
||||
// example, this is a tablegen definition for a x86 register file for
|
||||
// XMM[0-15] and YMM[0-15], that allows up to 60 renames (each rename costs 1
|
||||
// physical register).
|
||||
//
|
||||
// def FPRegisterFile : RegisterFile<[VR128RegClass, VR256RegClass], 60>
|
||||
// def FPRegisterFile : RegisterFile<60, [VR128RegClass, VR256RegClass]>
|
||||
//
|
||||
// Here FPRegisterFile contains all the registers defined by register class
|
||||
// VR128RegClass and VR256RegClass. FPRegisterFile implements 60
|
||||
// registers which can be used for register renaming purpose.
|
||||
//
|
||||
// The list of register classes is then converted by the tablegen backend into
|
||||
// a list of register class indices. That list, along with the number of
|
||||
// available mappings, is then used to create a new RegisterMappingTracker.
|
||||
void
|
||||
addRegisterFile(llvm::ArrayRef<llvm::MCRegisterCostEntry> RegisterClasses,
|
||||
unsigned NumPhysRegs);
|
||||
|
||||
// Allocates register mappings in register file specified by the
|
||||
// IndexPlusCostPairTy object. This method is called from addRegisterMapping.
|
||||
// Consumes physical registers in each register file specified by the
|
||||
// `IndexPlusCostPairTy`. This method is called from `addRegisterMapping()`.
|
||||
void allocatePhysRegs(IndexPlusCostPairTy IPC,
|
||||
llvm::MutableArrayRef<unsigned> UsedPhysRegs);
|
||||
|
||||
// Removes a previously allocated mapping from the register file referenced
|
||||
// by the IndexPlusCostPairTy object. This method is called from
|
||||
// invalidateRegisterMapping.
|
||||
// Releases previously allocated physical registers from the register file(s)
|
||||
// referenced by the IndexPlusCostPairTy object. This method is called from
|
||||
// `invalidateRegisterMapping()`.
|
||||
void freePhysRegs(IndexPlusCostPairTy IPC,
|
||||
llvm::MutableArrayRef<unsigned> FreedPhysRegs);
|
||||
|
||||
// Create an instance of RegisterMappingTracker for every register file
|
||||
// specified by the processor model.
|
||||
// If no register file is specified, then this method creates a single
|
||||
// register file with an unbounded number of registers.
|
||||
// If no register file is specified, then this method creates a default
|
||||
// register file with an unbounded number of physical registers.
|
||||
void initialize(const llvm::MCSchedModel &SM, unsigned NumRegs);
|
||||
|
||||
public:
|
||||
@ -123,28 +122,26 @@ public:
|
||||
initialize(SM, NumRegs);
|
||||
}
|
||||
|
||||
// This method updates the data dependency graph by inserting a new register
|
||||
// definition. This method is also responsible for updating the number of used
|
||||
// physical registers in the register file(s). The number of physical
|
||||
// registers is updated only if flag ShouldAllocatePhysRegs is set.
|
||||
// This method updates the register mappings inserting a new register
|
||||
// definition. This method is also responsible for updating the number of
|
||||
// allocated physical registers in each register file modified by the write.
|
||||
// No physical regiser is allocated when flag ShouldAllocatePhysRegs is set.
|
||||
void addRegisterWrite(WriteState &WS,
|
||||
llvm::MutableArrayRef<unsigned> UsedPhysRegs,
|
||||
bool ShouldAllocatePhysRegs = true);
|
||||
|
||||
// Updates the data dependency graph by removing a write. It also updates the
|
||||
// internal state of the register file(s) by freeing physical registers.
|
||||
// The number of physical registers is updated only if flag ShouldFreePhysRegs
|
||||
// is set.
|
||||
// Removes write \param WS from the register mappings.
|
||||
// Physical registers may be released to reflect this update.
|
||||
void removeRegisterWrite(const WriteState &WS,
|
||||
llvm::MutableArrayRef<unsigned> FreedPhysRegs,
|
||||
bool ShouldFreePhysRegs = true);
|
||||
|
||||
// Checks if there are enough microarchitectural registers in the register
|
||||
// files. Returns a "response mask" where each bit is the response from a
|
||||
// RegisterMappingTracker.
|
||||
// For example: if all register files are available, then the response mask
|
||||
// is a bitmask of all zeroes. If Instead register file #1 is not available,
|
||||
// then the response mask is 0b10.
|
||||
// Checks if there are enough physical registers in the register files.
|
||||
// Returns a "response mask" where each bit represents the response from a
|
||||
// different register file. A mask of all zeroes means that all register
|
||||
// files are available. Otherwise, the mask can be used to identify which
|
||||
// register file was busy. This sematic allows us classify dispatch dispatch
|
||||
// stalls caused by the lack of register file resources.
|
||||
unsigned isAvailable(llvm::ArrayRef<unsigned> Regs) const;
|
||||
void collectWrites(llvm::SmallVectorImpl<WriteState *> &Writes,
|
||||
unsigned RegID) const;
|
||||
|
Loading…
Reference in New Issue
Block a user