mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-13 06:29:59 +00:00
[GenericDomTree] Change GenericDomTree to use NodeRef in GraphTraits. NFC.
Summary: Looking at the implementation, GenericDomTree has more specific requirements on NodeRef, e.g. NodeRefObject->getParent() should compile, and NodeRef should be a pointer. We can remove the pointer requirement, but it seems to have little gain, given the limited use cases. Also changed GraphTraits<Inverse<Inverse<T>> to be more accurate. Reviewers: dblaikie, chandlerc Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D23593 llvm-svn: 278961
This commit is contained in:
parent
193a85966d
commit
41fe248b16
@ -88,23 +88,7 @@ struct Inverse {
|
||||
|
||||
// Provide a partial specialization of GraphTraits so that the inverse of an
|
||||
// inverse falls back to the original graph.
|
||||
template<class T>
|
||||
struct GraphTraits<Inverse<Inverse<T> > > {
|
||||
typedef typename GraphTraits<T>::NodeType NodeType;
|
||||
typedef typename GraphTraits<T>::ChildIteratorType ChildIteratorType;
|
||||
|
||||
static NodeType *getEntryNode(Inverse<Inverse<T> > *G) {
|
||||
return GraphTraits<T>::getEntryNode(G->Graph.Graph);
|
||||
}
|
||||
|
||||
static ChildIteratorType child_begin(NodeType* N) {
|
||||
return GraphTraits<T>::child_begin(N);
|
||||
}
|
||||
|
||||
static ChildIteratorType child_end(NodeType* N) {
|
||||
return GraphTraits<T>::child_end(N);
|
||||
}
|
||||
};
|
||||
template <class T> struct GraphTraits<Inverse<Inverse<T>>> : GraphTraits<T> {};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
|
@ -33,9 +33,9 @@ extern template class DomTreeNodeBase<BasicBlock>;
|
||||
extern template class DominatorTreeBase<BasicBlock>;
|
||||
|
||||
extern template void Calculate<Function, BasicBlock *>(
|
||||
DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
|
||||
DominatorTreeBaseByGraphTraits<GraphTraits<BasicBlock *>> &DT, Function &F);
|
||||
extern template void Calculate<Function, Inverse<BasicBlock *>>(
|
||||
DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
|
||||
DominatorTreeBaseByGraphTraits<GraphTraits<Inverse<BasicBlock *>>> &DT,
|
||||
Function &F);
|
||||
|
||||
typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
|
||||
|
@ -13,6 +13,12 @@
|
||||
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
|
||||
/// graph types.
|
||||
///
|
||||
/// Unlike ADT/* graph algorithms, generic dominator tree has more reuiqrement
|
||||
/// on the graph's NodeRef. The NodeRef should be a pointer and, depending on
|
||||
/// the implementation, e.g. NodeRef->getParent() return the parent node.
|
||||
///
|
||||
/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
|
||||
@ -30,6 +36,23 @@
|
||||
|
||||
namespace llvm {
|
||||
|
||||
template <class NodeT> class DominatorTreeBase;
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <typename GT> struct DominatorTreeBaseTraits {
|
||||
static_assert(std::is_pointer<typename GT::NodeRef>::value,
|
||||
"Currently NodeRef must be a pointer type.");
|
||||
using type = DominatorTreeBase<
|
||||
typename std::remove_pointer<typename GT::NodeRef>::type>;
|
||||
};
|
||||
|
||||
} // End namespace detail
|
||||
|
||||
template <typename GT>
|
||||
using DominatorTreeBaseByGraphTraits =
|
||||
typename detail::DominatorTreeBaseTraits<GT>::type;
|
||||
|
||||
/// \brief Base class that other, more interesting dominator analyses
|
||||
/// inherit from.
|
||||
template <class NodeT> class DominatorBase {
|
||||
@ -62,7 +85,6 @@ public:
|
||||
bool isPostDominator() const { return IsPostDominators; }
|
||||
};
|
||||
|
||||
template <class NodeT> class DominatorTreeBase;
|
||||
struct PostDominatorTree;
|
||||
|
||||
/// \brief Base class for the actual dominator tree node.
|
||||
@ -177,8 +199,7 @@ void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
|
||||
|
||||
// The calculate routine is provided in a separate header but referenced here.
|
||||
template <class FuncT, class N>
|
||||
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
|
||||
FuncT &F);
|
||||
void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<N>> &DT, FuncT &F);
|
||||
|
||||
/// \brief Core dominator tree base class.
|
||||
///
|
||||
@ -251,14 +272,14 @@ protected:
|
||||
// NewBB is split and now it has one successor. Update dominator tree to
|
||||
// reflect this change.
|
||||
template <class N, class GraphT>
|
||||
void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
||||
typename GraphT::NodeType *NewBB) {
|
||||
void Split(DominatorTreeBaseByGraphTraits<GraphT> &DT,
|
||||
typename GraphT::NodeRef NewBB) {
|
||||
assert(std::distance(GraphT::child_begin(NewBB),
|
||||
GraphT::child_end(NewBB)) == 1 &&
|
||||
"NewBB should have a single successor!");
|
||||
typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
|
||||
typename GraphT::NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
|
||||
|
||||
std::vector<typename GraphT::NodeType *> PredBlocks;
|
||||
std::vector<typename GraphT::NodeRef> PredBlocks;
|
||||
typedef GraphTraits<Inverse<N>> InvTraits;
|
||||
for (typename InvTraits::ChildIteratorType
|
||||
PI = InvTraits::child_begin(NewBB),
|
||||
@ -273,7 +294,7 @@ protected:
|
||||
PI = InvTraits::child_begin(NewBBSucc),
|
||||
E = InvTraits::child_end(NewBBSucc);
|
||||
PI != E; ++PI) {
|
||||
typename InvTraits::NodeType *ND = *PI;
|
||||
typename InvTraits::NodeRef ND = *PI;
|
||||
if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
|
||||
DT.isReachableFromEntry(ND)) {
|
||||
NewBBDominatesNewBBSucc = false;
|
||||
@ -627,18 +648,17 @@ public:
|
||||
|
||||
protected:
|
||||
template <class GraphT>
|
||||
friend typename GraphT::NodeType *
|
||||
Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
||||
typename GraphT::NodeType *V, unsigned LastLinked);
|
||||
friend typename GraphT::NodeRef
|
||||
Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT, typename GraphT::NodeRef V,
|
||||
unsigned LastLinked);
|
||||
|
||||
template <class GraphT>
|
||||
friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
||||
typename GraphT::NodeType *V, unsigned N);
|
||||
friend unsigned DFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT,
|
||||
typename GraphT::NodeRef V, unsigned N);
|
||||
|
||||
template <class FuncT, class N>
|
||||
friend void
|
||||
Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
|
||||
|
||||
friend void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<N>> &DT,
|
||||
FuncT &F);
|
||||
|
||||
DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
|
||||
if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
|
||||
|
@ -29,9 +29,9 @@
|
||||
|
||||
namespace llvm {
|
||||
|
||||
template<class GraphT>
|
||||
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
||||
typename GraphT::NodeType* V, unsigned N) {
|
||||
template <class GraphT>
|
||||
unsigned DFSPass(DominatorTreeBaseByGraphTraits<GraphT> &DT,
|
||||
typename GraphT::NodeRef V, unsigned N) {
|
||||
// This is more understandable as a recursive algorithm, but we can't use the
|
||||
// recursive algorithm due to stack depth issues. Keep it here for
|
||||
// documentation purposes.
|
||||
@ -52,15 +52,16 @@ unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
||||
#else
|
||||
bool IsChildOfArtificialExit = (N != 0);
|
||||
|
||||
SmallVector<std::pair<typename GraphT::NodeType*,
|
||||
typename GraphT::ChildIteratorType>, 32> Worklist;
|
||||
SmallVector<
|
||||
std::pair<typename GraphT::NodeRef, typename GraphT::ChildIteratorType>,
|
||||
32>
|
||||
Worklist;
|
||||
Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
|
||||
while (!Worklist.empty()) {
|
||||
typename GraphT::NodeType* BB = Worklist.back().first;
|
||||
typename GraphT::NodeRef BB = Worklist.back().first;
|
||||
typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
|
||||
|
||||
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
|
||||
DT.Info[BB];
|
||||
auto &BBInfo = DT.Info[BB];
|
||||
|
||||
// First time we visited this BB?
|
||||
if (NextSucc == GraphT::child_begin(BB)) {
|
||||
@ -89,10 +90,9 @@ unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
||||
++Worklist.back().second;
|
||||
|
||||
// Visit the successor next, if it isn't already visited.
|
||||
typename GraphT::NodeType* Succ = *NextSucc;
|
||||
typename GraphT::NodeRef Succ = *NextSucc;
|
||||
|
||||
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
|
||||
DT.Info[Succ];
|
||||
auto &SuccVInfo = DT.Info[Succ];
|
||||
if (SuccVInfo.Semi == 0) {
|
||||
SuccVInfo.Parent = BBDFSNum;
|
||||
Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
|
||||
@ -103,25 +103,23 @@ unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
||||
}
|
||||
|
||||
template <class GraphT>
|
||||
typename GraphT::NodeType *
|
||||
Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
||||
typename GraphT::NodeType *VIn, unsigned LastLinked) {
|
||||
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
|
||||
DT.Info[VIn];
|
||||
typename GraphT::NodeRef Eval(DominatorTreeBaseByGraphTraits<GraphT> &DT,
|
||||
typename GraphT::NodeRef VIn,
|
||||
unsigned LastLinked) {
|
||||
auto &VInInfo = DT.Info[VIn];
|
||||
if (VInInfo.DFSNum < LastLinked)
|
||||
return VIn;
|
||||
|
||||
SmallVector<typename GraphT::NodeType*, 32> Work;
|
||||
SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
|
||||
SmallVector<typename GraphT::NodeRef, 32> Work;
|
||||
SmallPtrSet<typename GraphT::NodeRef, 32> Visited;
|
||||
|
||||
if (VInInfo.Parent >= LastLinked)
|
||||
Work.push_back(VIn);
|
||||
|
||||
while (!Work.empty()) {
|
||||
typename GraphT::NodeType* V = Work.back();
|
||||
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
|
||||
DT.Info[V];
|
||||
typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
|
||||
typename GraphT::NodeRef V = Work.back();
|
||||
auto &VInfo = DT.Info[V];
|
||||
typename GraphT::NodeRef VAncestor = DT.Vertex[VInfo.Parent];
|
||||
|
||||
// Process Ancestor first
|
||||
if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
|
||||
@ -134,10 +132,9 @@ Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
||||
if (VInfo.Parent < LastLinked)
|
||||
continue;
|
||||
|
||||
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
|
||||
DT.Info[VAncestor];
|
||||
typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
|
||||
typename GraphT::NodeType* VLabel = VInfo.Label;
|
||||
auto &VAInfo = DT.Info[VAncestor];
|
||||
typename GraphT::NodeRef VAncestorLabel = VAInfo.Label;
|
||||
typename GraphT::NodeRef VLabel = VInfo.Label;
|
||||
if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
|
||||
VInfo.Label = VAncestorLabel;
|
||||
VInfo.Parent = VAInfo.Parent;
|
||||
@ -146,16 +143,18 @@ Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
||||
return VInInfo.Label;
|
||||
}
|
||||
|
||||
template<class FuncT, class NodeT>
|
||||
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
|
||||
FuncT& F) {
|
||||
template <class FuncT, class NodeT>
|
||||
void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
|
||||
FuncT &F) {
|
||||
typedef GraphTraits<NodeT> GraphT;
|
||||
static_assert(std::is_pointer<typename GraphT::NodeRef>::value,
|
||||
"NodeRef should be pointer type");
|
||||
typedef typename std::remove_pointer<typename GraphT::NodeRef>::type NodeType;
|
||||
|
||||
unsigned N = 0;
|
||||
bool MultipleRoots = (DT.Roots.size() > 1);
|
||||
if (MultipleRoots) {
|
||||
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
|
||||
DT.Info[nullptr];
|
||||
auto &BBInfo = DT.Info[nullptr];
|
||||
BBInfo.DFSNum = BBInfo.Semi = ++N;
|
||||
BBInfo.Label = nullptr;
|
||||
|
||||
@ -188,14 +187,13 @@ void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
|
||||
Buckets[i] = i;
|
||||
|
||||
for (unsigned i = N; i >= 2; --i) {
|
||||
typename GraphT::NodeType* W = DT.Vertex[i];
|
||||
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
|
||||
DT.Info[W];
|
||||
typename GraphT::NodeRef W = DT.Vertex[i];
|
||||
auto &WInfo = DT.Info[W];
|
||||
|
||||
// Step #2: Implicitly define the immediate dominator of vertices
|
||||
for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
|
||||
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
|
||||
typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
|
||||
typename GraphT::NodeRef V = DT.Vertex[Buckets[j]];
|
||||
typename GraphT::NodeRef U = Eval<GraphT>(DT, V, i + 1);
|
||||
DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
|
||||
}
|
||||
|
||||
@ -207,7 +205,7 @@ void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
|
||||
for (typename InvTraits::ChildIteratorType CI =
|
||||
InvTraits::child_begin(W),
|
||||
E = InvTraits::child_end(W); CI != E; ++CI) {
|
||||
typename InvTraits::NodeType *N = *CI;
|
||||
typename InvTraits::NodeRef N = *CI;
|
||||
if (DT.Info.count(N)) { // Only if this predecessor is reachable!
|
||||
unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
|
||||
if (SemiU < WInfo.Semi)
|
||||
@ -227,17 +225,17 @@ void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
|
||||
}
|
||||
|
||||
if (N >= 1) {
|
||||
typename GraphT::NodeType* Root = DT.Vertex[1];
|
||||
typename GraphT::NodeRef Root = DT.Vertex[1];
|
||||
for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
|
||||
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
|
||||
typename GraphT::NodeRef V = DT.Vertex[Buckets[j]];
|
||||
DT.IDoms[V] = Root;
|
||||
}
|
||||
}
|
||||
|
||||
// Step #4: Explicitly define the immediate dominator of each vertex
|
||||
for (unsigned i = 2; i <= N; ++i) {
|
||||
typename GraphT::NodeType* W = DT.Vertex[i];
|
||||
typename GraphT::NodeType*& WIDom = DT.IDoms[W];
|
||||
typename GraphT::NodeRef W = DT.Vertex[i];
|
||||
typename GraphT::NodeRef &WIDom = DT.IDoms[W];
|
||||
if (WIDom != DT.Vertex[DT.Info[W].Semi])
|
||||
WIDom = DT.IDoms[WIDom];
|
||||
}
|
||||
@ -248,34 +246,32 @@ void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
|
||||
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
|
||||
// which postdominates all real exits if there are multiple exit blocks, or
|
||||
// an infinite loop.
|
||||
typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : nullptr;
|
||||
typename GraphT::NodeRef Root = !MultipleRoots ? DT.Roots[0] : nullptr;
|
||||
|
||||
DT.RootNode =
|
||||
(DT.DomTreeNodes[Root] =
|
||||
llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
|
||||
Root, nullptr)).get();
|
||||
llvm::make_unique<DomTreeNodeBase<NodeType>>(Root, nullptr))
|
||||
.get();
|
||||
|
||||
// Loop over all of the reachable blocks in the function...
|
||||
for (unsigned i = 2; i <= N; ++i) {
|
||||
typename GraphT::NodeType* W = DT.Vertex[i];
|
||||
typename GraphT::NodeRef W = DT.Vertex[i];
|
||||
|
||||
// Don't replace this with 'count', the insertion side effect is important
|
||||
if (DT.DomTreeNodes[W])
|
||||
continue; // Haven't calculated this node yet?
|
||||
|
||||
typename GraphT::NodeType* ImmDom = DT.getIDom(W);
|
||||
typename GraphT::NodeRef ImmDom = DT.getIDom(W);
|
||||
|
||||
assert(ImmDom || DT.DomTreeNodes[nullptr]);
|
||||
|
||||
// Get or calculate the node for the immediate dominator
|
||||
DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
|
||||
DT.getNodeForBlock(ImmDom);
|
||||
DomTreeNodeBase<NodeType> *IDomNode = DT.getNodeForBlock(ImmDom);
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
DT.DomTreeNodes[W] = IDomNode->addChild(
|
||||
llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
|
||||
W, IDomNode));
|
||||
llvm::make_unique<DomTreeNodeBase<NodeType>>(W, IDomNode));
|
||||
}
|
||||
|
||||
// Free temporary memory used to construct idom's
|
||||
|
@ -64,9 +64,13 @@ template class llvm::DomTreeNodeBase<BasicBlock>;
|
||||
template class llvm::DominatorTreeBase<BasicBlock>;
|
||||
|
||||
template void llvm::Calculate<Function, BasicBlock *>(
|
||||
DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
|
||||
DominatorTreeBase<
|
||||
typename std::remove_pointer<GraphTraits<BasicBlock *>::NodeRef>::type>
|
||||
&DT,
|
||||
Function &F);
|
||||
template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
|
||||
DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
|
||||
DominatorTreeBase<typename std::remove_pointer<
|
||||
GraphTraits<Inverse<BasicBlock *>>::NodeRef>::type> &DT,
|
||||
Function &F);
|
||||
|
||||
// dominates - Return true if Def dominates a use in User. This performs
|
||||
|
Loading…
Reference in New Issue
Block a user