diff --git a/lib/CodeGen/ModuloScheduling/MSchedGraph.cpp b/lib/CodeGen/ModuloScheduling/MSchedGraph.cpp index b76a97fe642..6db099488e7 100644 --- a/lib/CodeGen/ModuloScheduling/MSchedGraph.cpp +++ b/lib/CodeGen/ModuloScheduling/MSchedGraph.cpp @@ -29,7 +29,7 @@ MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst, } void MSchedGraphNode::print(std::ostream &os) const { - os << "MSehedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n"; + os << "MSchedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n"; } MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) { @@ -41,9 +41,38 @@ MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) { return I.getEdge(); } assert(0 && "Should have found edge between this node and its predecessor!"); - + } +unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) { + //Loop over all the successors of our predecessor + //return the edge the corresponds to this in edge + int count = 0; + for(MSchedGraphNode::succ_iterator I = pred->succ_begin(), E = pred->succ_end(); + I != E; ++I) { + if(*I == this) + return count; + count++; + } + assert(0 && "Should have found edge between this node and its predecessor!"); + abort(); +} +bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) { + for(succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) + if(*I == succ) + return true; + return false; +} + + +bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) { + if(find( Predecessors.begin(), Predecessors.end(), pred) != Predecessors.end()) + return true; + else + return false; +} + + void MSchedGraph::addNode(const MachineInstr *MI, MSchedGraphNode *node) { @@ -92,12 +121,15 @@ void MSchedGraph::buildNodesAndEdges() { MachineOpCode MIopCode = MI->getOpcode(); int delay; +#if 0 // FIXME: LOOK INTO THIS //Check if subsequent instructions can be issued before //the result is ready, if so use min delay. if(MTI.hasResultInterlock(MIopCode)) delay = MTI.minLatency(MIopCode); else - delay = MTI.maxLatency(MIopCode); +#endif + /// FIxME: get this from the sched class. + delay = 7; //MTI.maxLatency(MIopCode); //Create new node for this machine instruction and add to the graph. //Create only if not a nop diff --git a/lib/CodeGen/ModuloScheduling/MSchedGraph.h b/lib/CodeGen/ModuloScheduling/MSchedGraph.h index 9fe6b52c47e..9680fc09944 100644 --- a/lib/CodeGen/ModuloScheduling/MSchedGraph.h +++ b/lib/CodeGen/ModuloScheduling/MSchedGraph.h @@ -99,6 +99,10 @@ namespace llvm { bool hasSuccessors() { return (Successors.size() > 0); } int getLatency() { return latency; } MSchedGraphEdge getInEdge(MSchedGraphNode *pred); + unsigned getInEdgeNum(MSchedGraphNode *pred); + + bool isSuccessor(MSchedGraphNode *); + bool isPredecessor(MSchedGraphNode *); //Debug support void print(std::ostream &os) const; diff --git a/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp b/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp index acc0276c920..508467eb976 100644 --- a/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp +++ b/lib/CodeGen/ModuloScheduling/ModuloScheduling.cpp @@ -20,12 +20,14 @@ #include "llvm/Target/TargetSchedInfo.h" #include "Support/Debug.h" #include "Support/GraphWriter.h" +#include "Support/StringExtras.h" #include #include #include #include #include + using namespace llvm; /// Create ModuloSchedulingPass @@ -88,14 +90,20 @@ namespace llvm { edgelabel = "Unknown"; break; } - if(I.getEdge().getIteDiff() > 0) - edgelabel += I.getEdge().getIteDiff(); - + + //FIXME + int iteDiff = I.getEdge().getIteDiff(); + std::string intStr = "(IteDiff: "; + intStr += itostr(iteDiff); + + intStr += ")"; + edgelabel += intStr; + return edgelabel; - } - - - + } + + + }; } @@ -114,7 +122,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) { MSchedGraph *MSG = new MSchedGraph(BI, target); //Write Graph out to file - DEBUG(WriteGraphToFile(std::cerr, "dependgraph", MSG)); + DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); //Print out BB for debugging DEBUG(BI->print(std::cerr)); @@ -122,9 +130,64 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) { //Calculate Resource II int ResMII = calculateResMII(BI); + //Calculate Recurrence II + int RecMII = calculateRecMII(MSG, ResMII); + + II = std::max(RecMII, ResMII); + + DEBUG(std::cerr << "II starts out as " << II << "\n"); + + //Calculate Node Properties calculateNodeAttributes(MSG, ResMII); + + //Dump node properties if in debug mode + for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I !=E; ++I) { + DEBUG(std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth << " Height: " << I->second.height << "\n"); + } + + //Put nodes in order to schedule them + computePartialOrder(); + + //Dump out partial order + for(std::vector >::iterator I = partialOrder.begin(), E = partialOrder.end(); I !=E; ++I) { + DEBUG(std::cerr << "Start set in PO\n"); + for(std::vector::iterator J = I->begin(), JE = I->end(); J != JE; ++J) + DEBUG(std::cerr << "PO:" << **J << "\n"); + } + + orderNodes(); + + //Dump out order of nodes + for(std::vector::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) + DEBUG(std::cerr << "FO:" << **I << "\n"); + + + //Finally schedule nodes + computeSchedule(); + + + //Dump out final schedule + //std::cerr << "FINALSCHEDULE\n"; + //Dump out current schedule + /*for(std::map > >::iterator J = schedule.begin(), + JE = schedule.end(); J != JE; ++J) { + std::cerr << "Cycle " << J->first << ":\n"; + for(std::vector >::iterator VI = J->second.begin(), VE = J->second.end(); VI != VE; ++VI) + std::cerr << "Resource ID: " << VI->first << " by node " << *(VI->second) << "\n"; + } + std::cerr << "END FINAL SCHEDULE\n"; + + DEBUG(std::cerr << "II ends up as " << II << "\n"); + */ + + + nodeToAttributesMap.clear(); + partialOrder.clear(); + recurrenceList.clear(); + FinalNodeOrder.clear(); + schedule.clear(); + } - } } @@ -201,8 +264,8 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { //Find maximum usage count - //Get max number of instructions that can be issued at once. - int issueSlots = msi.maxNumIssueTotal; + //Get max number of instructions that can be issued at once. (FIXME) + int issueSlots = 1; // msi.maxNumIssueTotal; for(std::map::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { //Get the total number of the resources in our cpu @@ -228,10 +291,34 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { } DEBUG(std::cerr << "Final Resource MII: " << ResMII << "\n"); + return ResMII; } +int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { + std::vector vNodes; + //Loop over all nodes in the graph + for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { + findAllReccurrences(I->second, vNodes, MII); + vNodes.clear(); + } + + int RecMII = 0; + + for(std::set > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { + std::cerr << "Recurrence: \n"; + for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { + std::cerr << **N << "\n"; + } + RecMII = std::max(RecMII, I->first); + std::cerr << "End Recurrence with RecMII: " << I->first << "\n"; + } + DEBUG(std::cerr << "RecMII: " << RecMII << "\n"); + + return MII; +} + void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { //Loop over the nodes and add them to the map @@ -245,114 +332,135 @@ void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) //Create set to deal with reccurrences std::set visitedNodes; - std::vector vNodes; + //Now Loop over map and calculate the node attributes for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - // calculateASAP(I->first, (I->second), MII, visitedNodes); - findAllReccurrences(I->first, vNodes); - vNodes.clear(); + calculateASAP(I->first, MII, (MSchedGraphNode*) 0); visitedNodes.clear(); } + int maxASAP = findMaxASAP(); //Calculate ALAP which depends on ASAP being totally calculated - /*for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - calculateALAP(I->first, (I->second), MII, MII, visitedNodes); + for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); visitedNodes.clear(); - }*/ + } //Calculate MOB which depends on ASAP being totally calculated, also do depth and height - /*for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - (I->second).MOB = (I->second).ALAP - (I->second).ASAP; + for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); + DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); - calculateDepth(I->first, (I->second), visitedNodes); - visitedNodes.clear(); - calculateHeight(I->first, (I->second), visitedNodes); - visitedNodes.clear(); - }*/ + calculateDepth(I->first, (MSchedGraphNode*) 0); + calculateHeight(I->first, (MSchedGraphNode*) 0); + } } -void ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, MSNodeAttributes &attributes, - int MII, std::set &visitedNodes) { +bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { + if(destNode == 0 || srcNode ==0) + return false; + + bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); + DEBUG(std::cerr << "Ignore Edge from " << *srcNode << " to " << *destNode << "? " << findEdge << "\n"); + return findEdge; +} + +int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); - if(attributes.ASAP != -1 || (visitedNodes.find(node) != visitedNodes.end())) { - visitedNodes.erase(node); - return; - } - if(node->hasPredecessors()) { - int maxPredValue = 0; + //Get current node attributes + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.ASAP != -1) + return attributes.ASAP; + + int maxPredValue = 0; + + //Iterate over all of the predecessors and find max + for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - - //Get that nodes ASAP - MSNodeAttributes predAttributes = nodeToAttributesMap.find(*P)->second; - if(predAttributes.ASAP == -1) { - //Put into set before you recurse - visitedNodes.insert(node); - calculateASAP(*P, predAttributes, MII, visitedNodes); - predAttributes = nodeToAttributesMap.find(*P)->second; - } + //Only process if we are not ignoring the edge + if(!ignoreEdge(*P, node)) { + int predASAP = -1; + predASAP = calculateASAP(*P, MII, node); + + assert(predASAP != -1 && "ASAP has not been calculated"); int iteDiff = node->getInEdge(*P).getIteDiff(); - - int currentPredValue = predAttributes.ASAP + node->getLatency() - iteDiff * MII; - DEBUG(std::cerr << "Current ASAP pred: " << currentPredValue << "\n"); + + int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); + DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); maxPredValue = std::max(maxPredValue, currentPredValue); } - visitedNodes.erase(node); - attributes.ASAP = maxPredValue; - } - else { - visitedNodes.erase(node); - attributes.ASAP = 0; } + + attributes.ASAP = maxPredValue; DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); + + return maxPredValue; } -void ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, MSNodeAttributes &attributes, - int MII, int maxASAP, - std::set &visitedNodes) { +int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, + int maxASAP, MSchedGraphNode *srcNode) { - DEBUG(std::cerr << "Calculating AlAP for " << *node << "\n"); + DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); - if(attributes.ALAP != -1|| (visitedNodes.find(node) != visitedNodes.end())) { - visitedNodes.erase(node); - return; - } + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; + + if(attributes.ALAP != -1) + return attributes.ALAP; + if(node->hasSuccessors()) { - int minSuccValue = 0; + + //Trying to deal with the issue where the node has successors, but + //we are ignoring all of the edges to them. So this is my hack for + //now.. there is probably a more elegant way of doing this (FIXME) + bool processedOneEdge = false; + + //FIXME, set to something high to start + int minSuccValue = 9999999; //Iterate over all of the predecessors and fine max for(MSchedGraphNode::succ_iterator P = node->succ_begin(), E = node->succ_end(); P != E; ++P) { - - MSNodeAttributes succAttributes = nodeToAttributesMap.find(*P)->second; - if(succAttributes.ASAP == -1) { + + //Only process if we are not ignoring the edge + if(!ignoreEdge(node, *P)) { + processedOneEdge = true; + int succALAP = -1; + succALAP = calculateALAP(*P, MII, maxASAP, node); - //Put into set before recursing - visitedNodes.insert(node); + assert(succALAP != -1 && "Successors ALAP should have been caclulated"); + + int iteDiff = P.getEdge().getIteDiff(); + + int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; + + DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); - calculateALAP(*P, succAttributes, MII, maxASAP, visitedNodes); - succAttributes = nodeToAttributesMap.find(*P)->second; - assert(succAttributes.ASAP == -1 && "Successors ALAP should have been caclulated"); + minSuccValue = std::min(minSuccValue, currentSuccValue); } - int iteDiff = P.getEdge().getIteDiff(); - int currentSuccValue = succAttributes.ALAP + node->getLatency() + iteDiff * MII; - minSuccValue = std::min(minSuccValue, currentSuccValue); } - visitedNodes.erase(node); - attributes.ALAP = minSuccValue; + + if(processedOneEdge) + attributes.ALAP = minSuccValue; + + else + attributes.ALAP = maxASAP; } - else { - visitedNodes.erase(node); + else attributes.ALAP = maxASAP; - } + DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); + + if(attributes.ALAP < 0) + attributes.ALAP = 0; + + return attributes.ALAP; } int ModuloSchedulingPass::findMaxASAP() { @@ -365,127 +473,303 @@ int ModuloSchedulingPass::findMaxASAP() { } -void ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node, - MSNodeAttributes &attributes, - std::set &visitedNodes) { +int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { + + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - if(attributes.depth != -1 || (visitedNodes.find(node) != visitedNodes.end())) { - //Remove from map before returning - visitedNodes.erase(node); - return; - } + if(attributes.height != -1) + return attributes.height; - if(node->hasSuccessors()) { - int maxHeight = 0; + int maxHeight = 0; - //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { + //Iterate over all of the predecessors and find max + for(MSchedGraphNode::succ_iterator P = node->succ_begin(), + E = node->succ_end(); P != E; ++P) { + + + if(!ignoreEdge(node, *P)) { + int succHeight = calculateHeight(*P, node); - MSNodeAttributes succAttributes = nodeToAttributesMap.find(*P)->second; - if(succAttributes.height == -1) { - - //Put into map before recursing - visitedNodes.insert(node); + assert(succHeight != -1 && "Successors Height should have been caclulated"); - calculateHeight(*P, succAttributes, visitedNodes); - succAttributes = nodeToAttributesMap.find(*P)->second; - assert(succAttributes.height == -1 && "Successors Height should have been caclulated"); - } - int currentHeight = succAttributes.height + node->getLatency(); + int currentHeight = succHeight + node->getLatency(); maxHeight = std::max(maxHeight, currentHeight); } - visitedNodes.erase(node); - attributes.height = maxHeight; } - else { - visitedNodes.erase(node); - attributes.height = 0; - } - - DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); + attributes.height = maxHeight; + DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); + return maxHeight; } -void ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, - MSNodeAttributes &attributes, - std::set &visitedNodes) { - - if(attributes.depth != -1 || (visitedNodes.find(node) != visitedNodes.end())) { - //Remove from map before returning - visitedNodes.erase(node); - return; - } +int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, + MSchedGraphNode *destNode) { - if(node->hasPredecessors()) { - int maxDepth = 0; - - //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - //Get that nodes depth - MSNodeAttributes predAttributes = nodeToAttributesMap.find(*P)->second; - if(predAttributes.depth == -1) { - - //Put into set before recursing - visitedNodes.insert(node); - - calculateDepth(*P, predAttributes, visitedNodes); - predAttributes = nodeToAttributesMap.find(*P)->second; - assert(predAttributes.depth == -1 && "Predecessors ASAP should have been caclulated"); - } - int currentDepth = predAttributes.depth + node->getLatency(); + if(attributes.depth != -1) + return attributes.depth; + + int maxDepth = 0; + + //Iterate over all of the predecessors and fine max + for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { + + if(!ignoreEdge(*P, node)) { + int predDepth = -1; + predDepth = calculateDepth(*P, node); + + assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); + + int currentDepth = predDepth + (*P)->getLatency(); maxDepth = std::max(maxDepth, currentDepth); } - - //Remove from map before returning - visitedNodes.erase(node); - - attributes.height = maxDepth; } - else { - //Remove from map before returning - visitedNodes.erase(node); - attributes.depth = 0; - } - + attributes.depth = maxDepth; + DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); - + return maxDepth; } -void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, - std::vector &visitedNodes) { + +void ModuloSchedulingPass::addReccurrence(std::vector &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { + //Check to make sure that this recurrence is unique + bool same = false; + + + //Loop over all recurrences already in our list + for(std::set > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { + + bool all_same = true; + //First compare size + if(R->second.size() == recurrence.size()) { + + for(std::vector::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { + if(find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { + all_same = all_same && false; + break; + } + else + all_same = all_same && true; + } + if(all_same) { + same = true; + break; + } + } + } + if(!same) { + //if(srcBENode == 0 || destBENode == 0) { + srcBENode = recurrence.back(); + destBENode = recurrence.front(); + //} + DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); + edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); + recurrenceList.insert(std::make_pair(II, recurrence)); + } + +} + +void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, + std::vector &visitedNodes, + int II) { + if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { - //DUMP out recurrence - DEBUG(std::cerr << "Reccurrence:\n"); + std::vector recurrence; bool first = true; + int delay = 0; + int distance = 0; + int RecMII = II; //Starting value + MSchedGraphNode *last = node; + MSchedGraphNode *srcBackEdge; + MSchedGraphNode *destBackEdge; + + + for(std::vector::iterator I = visitedNodes.begin(), E = visitedNodes.end(); I !=E; ++I) { - if(*I == node) + + if(*I == node) first = false; if(first) continue; - DEBUG(std::cerr << **I << "\n"); + + delay = delay + (*I)->getLatency(); + + if(*I != node) { + int diff = (*I)->getInEdge(last).getIteDiff(); + distance += diff; + if(diff > 0) { + srcBackEdge = last; + destBackEdge = *I; + } + } + + recurrence.push_back(*I); + last = *I; } - DEBUG(std::cerr << "End Reccurrence:\n"); + + + + //Get final distance calc + distance += node->getInEdge(last).getIteDiff(); + + + //Adjust II until we get close to the inequality delay - II*distance <= 0 + + int value = delay-(RecMII * distance); + int lastII = II; + while(value <= 0) { + + lastII = RecMII; + RecMII--; + value = delay-(RecMII * distance); + } + + + DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); + addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); + assert(distance != 0 && "Recurrence distance should not be zero"); return; } for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { visitedNodes.push_back(node); - findAllReccurrences(*I, visitedNodes); + findAllReccurrences(*I, visitedNodes, II); visitedNodes.pop_back(); } - } +void ModuloSchedulingPass::computePartialOrder() { + + + //Loop over all recurrences and add to our partial order + //be sure to remove nodes that are already in the partial order in + //a different recurrence and don't add empty recurrences. + for(std::set > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { + + //Add nodes that connect this recurrence to the previous recurrence + + //If this is the first recurrence in the partial order, add all predecessors + for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { + } + + + std::vector new_recurrence; + //Loop through recurrence and remove any nodes already in the partial order + for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { + bool found = false; + for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { + if(find(PO->begin(), PO->end(), *N) != PO->end()) + found = true; + } + if(!found) { + new_recurrence.push_back(*N); + + if(partialOrder.size() == 0) + //For each predecessors, add it to this recurrence ONLY if it is not already in it + for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), + PE = (*N)->pred_end(); P != PE; ++P) { + + //Check if we are supposed to ignore this edge or not + if(!ignoreEdge(*P, *N)) + //Check if already in this recurrence + if(find(I->second.begin(), I->second.end(), *P) == I->second.end()) { + //Also need to check if in partial order + bool predFound = false; + for(std::vector >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) { + if(find(PO->begin(), PO->end(), *P) != PO->end()) + predFound = true; + } + + if(!predFound) + if(find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end()) + new_recurrence.push_back(*P); + + } + } + } + } + + + if(new_recurrence.size() > 0) + partialOrder.push_back(new_recurrence); + } + + //Add any nodes that are not already in the partial order + std::vector lastNodes; + for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { + bool found = false; + //Check if its already in our partial order, if not add it to the final vector + for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { + if(find(PO->begin(), PO->end(), I->first) != PO->end()) + found = true; + } + if(!found) + lastNodes.push_back(I->first); + } + + if(lastNodes.size() > 0) + partialOrder.push_back(lastNodes); + +} + + +void ModuloSchedulingPass::predIntersect(std::vector &CurrentSet, std::vector &IntersectResult) { + + //Sort CurrentSet so we can use lowerbound + sort(CurrentSet.begin(), CurrentSet.end()); + + for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { + for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), + E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { + + //Check if we are supposed to ignore this edge or not + if(ignoreEdge(*P,FinalNodeOrder[j])) + continue; + + if(find(CurrentSet.begin(), + CurrentSet.end(), *P) != CurrentSet.end()) + if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.push_back(*P); + } + } +} + +void ModuloSchedulingPass::succIntersect(std::vector &CurrentSet, std::vector &IntersectResult) { + + //Sort CurrentSet so we can use lowerbound + sort(CurrentSet.begin(), CurrentSet.end()); + + for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { + for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), + E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { + + //Check if we are supposed to ignore this edge or not + if(ignoreEdge(FinalNodeOrder[j],*P)) + continue; + + if(find(CurrentSet.begin(), + CurrentSet.end(), *P) != CurrentSet.end()) + if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) + IntersectResult.push_back(*P); + } + } +} + +void dumpIntersection(std::vector &IntersectCurrent) { + std::cerr << "Intersection ("; + for(std::vector::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) + std::cerr << **I << ", "; + std::cerr << ")\n"; +} @@ -494,124 +778,112 @@ void ModuloSchedulingPass::orderNodes() { int BOTTOM_UP = 0; int TOP_DOWN = 1; - //FIXME: Group nodes into sets and order all the sets based on RecMII - typedef std::vector NodeVector; - typedef std::pair NodeSet; - - std::vector NodeSetsToOrder; - - //Order the resulting sets - NodeVector FinalNodeOrder; + //Set default order + int order = BOTTOM_UP; + //Loop over all the sets and place them in the final node order - for(unsigned i=0; i < NodeSetsToOrder.size(); ++i) { + for(std::vector >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { - //Set default order - int order = BOTTOM_UP; + DEBUG(std::cerr << "Processing set in S\n"); + dumpIntersection(*CurrentSet); + //Result of intersection + std::vector IntersectCurrent; - //Get Nodes in Current set - NodeVector CurrentSet = NodeSetsToOrder[i].second; - - //Loop through the predecessors for each node in the final order - //and only keeps nodes both in the pred_set and currentset - NodeVector IntersectCurrent; - - //Sort CurrentSet so we can use lowerbound - sort(CurrentSet.begin(), CurrentSet.end()); - - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), - E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { - if(lower_bound(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) - IntersectCurrent.push_back(*P); - } - } + predIntersect(*CurrentSet, IntersectCurrent); //If the intersection of predecessor and current set is not empty //sort nodes bottom up - if(IntersectCurrent.size() != 0) + if(IntersectCurrent.size() != 0) { + DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); order = BOTTOM_UP; - + } //If empty, use successors else { + DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), - E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { - if(lower_bound(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) - IntersectCurrent.push_back(*P); - } - } + succIntersect(*CurrentSet, IntersectCurrent); //sort top-down - if(IntersectCurrent.size() != 0) + if(IntersectCurrent.size() != 0) { + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); order = TOP_DOWN; - + } else { + DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); //Find node with max ASAP in current Set MSchedGraphNode *node; int maxASAP = 0; - for(unsigned j=0; j < CurrentSet.size(); ++j) { + DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); + for(unsigned j=0; j < CurrentSet->size(); ++j) { //Get node attributes - MSNodeAttributes nodeAttr= nodeToAttributesMap.find(CurrentSet[j])->second; + MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second; //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); - + DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n"); if(maxASAP < nodeAttr.ASAP) { maxASAP = nodeAttr.ASAP; - node = CurrentSet[j]; + node = (*CurrentSet)[j]; } } + assert(node != 0 && "In node ordering node should not be null"); + IntersectCurrent.push_back(node); order = BOTTOM_UP; } } //Repeat until all nodes are put into the final order from current set - /*while(IntersectCurrent.size() > 0) { - + while(IntersectCurrent.size() > 0) { + if(order == TOP_DOWN) { + DEBUG(std::cerr << "Order is TOP DOWN\n"); + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); + + int MOB = 0; + int height = 0; + MSchedGraphNode *highestHeightNode = IntersectCurrent[0]; + + //Find node in intersection with highest heigh and lowest MOB + for(std::vector::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + + //Get current nodes properties + MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - //FIXME - //Get node attributes - MSNodeAttributes nodeAttr= nodeToAttributesMap.find(IntersectCurrent[0])->second; - assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); - - //Get node with highest height, if a tie, use one with lowest - //MOB - int MOB = nodeAttr.MBO; - int height = nodeAttr.height; - ModuloSchedGraphNode *V = IntersectCurrent[0]; - - for(unsigned j=0; j < IntersectCurrent.size(); ++j) { - int temp = IntersectCurrent[j]->getHeight(); - if(height < temp) { - V = IntersectCurrent[j]; - height = temp; - MOB = V->getMobility(); + if(height < nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; } - else if(height == temp) { - if(MOB > IntersectCurrent[j]->getMobility()) { - V = IntersectCurrent[j]; - height = temp; - MOB = V->getMobility(); + else if(height == nodeAttr.height) { + if(MOB > nodeAttr.height) { + highestHeightNode = *I; + height = nodeAttr.height; + MOB = nodeAttr.MOB; } } } - //Append V to the NodeOrder - NodeOrder.push_back(V); + //Append our node with greatest height to the NodeOrder + if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); + FinalNodeOrder.push_back(highestHeightNode); + } //Remove V from IntersectOrder IntersectCurrent.erase(find(IntersectCurrent.begin(), - IntersectCurrent.end(), V)); + IntersectCurrent.end(), highestHeightNode)); + //Intersect V's successors with CurrentSet - for(mod_succ_iterator P = succ_begin(V), - E = succ_end(V); P != E; ++P) { - if(lower_bound(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) { + for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), + E = highestHeightNode->succ_end(); P != E; ++P) { + //if(lower_bound(CurrentSet->begin(), + // CurrentSet->end(), *P) != CurrentSet->end()) { + if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { + if(ignoreEdge(highestHeightNode, *P)) + continue; //If not already in Intersect, add if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) IntersectCurrent.push_back(*P); @@ -624,81 +896,299 @@ void ModuloSchedulingPass::orderNodes() { //Reset Intersect to reflect changes in OrderNodes IntersectCurrent.clear(); - for(unsigned j=0; j < NodeOrder.size(); ++j) { - for(mod_pred_iterator P = pred_begin(NodeOrder[j]), - E = pred_end(NodeOrder[j]); P != E; ++P) { - if(lower_bound(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) - IntersectCurrent.push_back(*P); - } - } + predIntersect(*CurrentSet, IntersectCurrent); + } //End If TOP_DOWN //Begin if BOTTOM_UP - else { - while(IntersectCurrent.size() > 0) { - //Get node with highest depth, if a tie, use one with lowest - //MOB - int MOB = IntersectCurrent[0]->getMobility(); - int depth = IntersectCurrent[0]->getDepth(); - ModuloSchedGraphNode *V = IntersectCurrent[0]; + else { + DEBUG(std::cerr << "Order is BOTTOM UP\n"); + while(IntersectCurrent.size() > 0) { + DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); + + //dump intersection + DEBUG(dumpIntersection(IntersectCurrent)); + //Get node with highest depth, if a tie, use one with lowest + //MOB + int MOB = 0; + int depth = 0; + MSchedGraphNode *highestDepthNode = IntersectCurrent[0]; + + for(std::vector::iterator I = IntersectCurrent.begin(), + E = IntersectCurrent.end(); I != E; ++I) { + //Find node attribute in graph + MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - for(unsigned j=0; j < IntersectCurrent.size(); ++j) { - int temp = IntersectCurrent[j]->getDepth(); - if(depth < temp) { - V = IntersectCurrent[j]; - depth = temp; - MOB = V->getMobility(); - } - else if(depth == temp) { - if(MOB > IntersectCurrent[j]->getMobility()) { - V = IntersectCurrent[j]; - depth = temp; - MOB = V->getMobility(); - } + if(depth < nodeAttr.depth) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; + } + else if(depth == nodeAttr.depth) { + if(MOB > nodeAttr.MOB) { + highestDepthNode = *I; + depth = nodeAttr.depth; + MOB = nodeAttr.MOB; } } - - //Append V to the NodeOrder - NodeOrder.push_back(V); - - //Remove V from IntersectOrder - IntersectCurrent.erase(find(IntersectCurrent.begin(), - IntersectCurrent.end(),V)); - - //Intersect V's pred with CurrentSet - for(mod_pred_iterator P = pred_begin(V), - E = pred_end(V); P != E; ++P) { - if(lower_bound(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) { - //If not already in Intersect, add - if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) - IntersectCurrent.push_back(*P); - } - } - } //End while loop over Intersect Size + } - //Change order - order = TOP_DOWN; - //Reset IntersectCurrent to reflect changes in OrderNodes - IntersectCurrent.clear(); - for(unsigned j=0; j < NodeOrder.size(); ++j) { - for(mod_succ_iterator P = succ_begin(NodeOrder[j]), - E = succ_end(NodeOrder[j]); P != E; ++P) { - if(lower_bound(CurrentSet.begin(), - CurrentSet.end(), *P) != CurrentSet.end()) + + //Append highest depth node to the NodeOrder + if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { + DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); + FinalNodeOrder.push_back(highestDepthNode); + } + //Remove heightestDepthNode from IntersectOrder + IntersectCurrent.erase(find(IntersectCurrent.begin(), + IntersectCurrent.end(),highestDepthNode)); + + + //Intersect heightDepthNode's pred with CurrentSet + for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), + E = highestDepthNode->pred_end(); P != E; ++P) { + //if(lower_bound(CurrentSet->begin(), + // CurrentSet->end(), *P) != CurrentSet->end()) { + if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { + + if(ignoreEdge(*P, highestDepthNode)) + continue; + + //If not already in Intersect, add + if(find(IntersectCurrent.begin(), + IntersectCurrent.end(), *P) == IntersectCurrent.end()) IntersectCurrent.push_back(*P); } - } + + } //End while loop over Intersect Size + + //Change order + order = TOP_DOWN; + + //Reset IntersectCurrent to reflect changes in OrderNodes + IntersectCurrent.clear(); + succIntersect(*CurrentSet, IntersectCurrent); } //End if BOTTOM_DOWN - }*/ -//End Wrapping while loop + } + //End Wrapping while loop - }//End for over all sets of nodes + }//End for over all sets of nodes - //Return final Order - //return FinalNodeOrder; + //Return final Order + //return FinalNodeOrder; +} + +void ModuloSchedulingPass::computeSchedule() { + + bool success = false; + + while(!success) { + + //Loop over the final node order and process each node + for(std::vector::iterator I = FinalNodeOrder.begin(), + E = FinalNodeOrder.end(); I != E; ++I) { + + //CalculateEarly and Late start + int EarlyStart = -1; + int LateStart = 99999; //Set to something higher then we would ever expect (FIXME) + bool hasSucc = false; + bool hasPred = false; + std::set seenNodes; + + for(std::map > > >::iterator J = schedule.begin(), + JE = schedule.end(); J != JE; ++J) { + + //For each resource with nodes scheduled, loop over the nodes and see if they + //are a predecessor or successor of this current node we are trying + //to schedule. + for(std::vector > >::iterator schedNodeVec = J->second.begin(), SNE = J->second.end(); schedNodeVec != SNE; ++schedNodeVec) { + + for(std::vector::iterator schedNode = schedNodeVec->second.begin(), schedNodeEnd = schedNodeVec->second.end(); schedNode != schedNodeEnd; ++schedNode) { + if((*I)->isPredecessor(*schedNode) && !seenNodes.count(*schedNode)) { + if(!ignoreEdge(*schedNode, *I)) { + int diff = (*I)->getInEdge(*schedNode).getIteDiff(); + int ES_Temp = J->first + (*schedNode)->getLatency() - diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << J->first << "\n"); + DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); + EarlyStart = std::max(EarlyStart, ES_Temp); + hasPred = true; + } + } + if((*I)->isSuccessor(*schedNode) && !seenNodes.count(*schedNode)) { + if(!ignoreEdge(*I,*schedNode)) { + int diff = (*schedNode)->getInEdge(*I).getIteDiff(); + int LS_Temp = J->first - (*I)->getLatency() + diff * II; + DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << J->first << "\n"); + DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); + LateStart = std::min(LateStart, LS_Temp); + hasSucc = true; + } + } + seenNodes.insert(*schedNode); + } + } + } + seenNodes.clear(); + + DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); + DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); + + //Check if the node has no pred or successors and set Early Start to its ASAP + if(!hasSucc && !hasPred) + EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; + + //Now, try to schedule this node depending upon its pred and successor in the schedule + //already + if(!hasSucc && hasPred) + success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); + else if(!hasPred && hasSucc) + success = scheduleNode(*I, LateStart, (LateStart - II +1)); + else if(hasPred && hasSucc) + success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); + else + success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); + + if(!success) { + ++II; + schedule.clear(); + break; + } + + } + } +} + + +bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, + int start, int end) { + bool success = false; + + DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); + + /*std::cerr << "CURRENT SCHEDULE\n"; + //Dump out current schedule + for(std::map > >::iterator J = schedule.begin(), + JE = schedule.end(); J != JE; ++J) { + std::cerr << "Cycle " << J->first << ":\n"; + for(std::vector >::iterator VI = J->second.begin(), VE = J->second.end(); VI != VE; ++VI) + std::cerr << "Resource ID: " << VI->first << " by node " << *(VI->second) << "\n"; + } + std::cerr << "END CURRENT SCHEDULE\n"; + */ + + //Make sure start and end are not negative + if(start < 0) + start = 0; + if(end < 0) + end = 0; + + bool forward = true; + if(start > end) + forward = false; + + const TargetSchedInfo & msi = target.getSchedInfo(); + + bool increaseSC = true; + + int cycle = start ; + + + while(increaseSC) { + + increaseSC = false; + + //Get the resource used by this instruction + //Get resource usage for this instruction + InstrRUsage rUsage = msi.getInstrRUsage(node->getInst()->getOpcode()); + std::vector > resources = rUsage.resourcesByCycle; + + //Loop over each resource and see if we can put it into the schedule + for(unsigned r=0; r < resources.size(); ++r) { + unsigned intermediateCycle = cycle + r; + + for(unsigned j=0; j < resources[r].size(); ++j) { + //Put it into the schedule + DEBUG(std::cerr << "Attempting to put resource " << resources[r][j] << " in schedule at cycle: " << intermediateCycle << "\n"); + + //Check if resource is free at this cycle + std::vector > > resourceForCycle = schedule[intermediateCycle]; + + //Vector of nodes using this resource + std::vector *nodesUsingResource; + + for(std::vector > >::iterator I = resourceForCycle.begin(), E= resourceForCycle.end(); I != E; ++I) { + + if(I->first == resources[r][j]) { + //Get the number of available for this resource + unsigned numResource = CPUResource::getCPUResource(resources[r][j])->maxNumUsers; + nodesUsingResource = &(I->second); + + //Check that there are enough of this resource, otherwise + //we need to increase/decrease the cycle + if(I->second.size() >= numResource) { + DEBUG(std::cerr << "No open spot for this resource in this cycle\n"); + increaseSC = true; + } + break; + + } + //safe to put into schedule + } + + if(increaseSC) + break; + + else { + DEBUG(std::cerr << "Found spot in schedule\n"); + //Add node to resource vector + if(nodesUsingResource == 0) { + nodesUsingResource = new std::vector; + resourceForCycle.push_back(std::make_pair(resources[r][j], *nodesUsingResource)); + } + + nodesUsingResource->push_back(node); + + schedule[intermediateCycle] = resourceForCycle; + } + } + if(increaseSC) { + /*for(unsigned x = 0; x < r; ++x) { + unsigned removeCycle = x + start; + for(unsigned j=0; j < resources[x].size(); ++j) { + std::vector > resourceForCycle = schedule[removeCycle]; + for(std::vector >::iterator I = resourceForCycle.begin(), E= resourceForCycle.end(); I != E; ++I) { + if(I->first == resources[x][j]) { + //remove it + resourceForCycle.erase(I); + } + } + //Put vector back + schedule[removeCycle] = resourceForCycle; + } + }*/ + + break; + } + } + if(!increaseSC) + return true; + + //Increment cycle to try again + if(forward) { + ++cycle; + DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); + if(cycle > end) + return false; + } + else { + --cycle; + DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); + if(cycle < end) + return false; + } + } + return success; } diff --git a/lib/CodeGen/ModuloScheduling/ModuloScheduling.h b/lib/CodeGen/ModuloScheduling/ModuloScheduling.h index 296d7054e20..b573b104868 100644 --- a/lib/CodeGen/ModuloScheduling/ModuloScheduling.h +++ b/lib/CodeGen/ModuloScheduling/ModuloScheduling.h @@ -41,22 +41,53 @@ namespace llvm { //Map that holds node to node attribute information std::map nodeToAttributesMap; + //Map to hold all reccurrences + std::set > > recurrenceList; + + //Set of edges to ignore, stored as src node and index into vector of successors + std::set > edgesToIgnore; + + //Vector containing the partial order + std::vector > partialOrder; + + //Vector containing the final node order + std::vector FinalNodeOrder; + + //Schedule table, key is the cycle number and the vector is resource, node pairs + std::map > > > schedule; + + //Current initiation interval + int II; + //Internal functions bool MachineBBisValid(const MachineBasicBlock *BI); int calculateResMII(const MachineBasicBlock *BI); + int calculateRecMII(MSchedGraph *graph, int MII); void calculateNodeAttributes(MSchedGraph *graph, int MII); - void calculateASAP(MSchedGraphNode *node, MSNodeAttributes &attributes, - int MII,std::set &visitedNodes); - void calculateALAP(MSchedGraphNode *node, MSNodeAttributes &attributes, int MII, - int maxASAP, std::set &visitedNodes); - void calculateHeight(MSchedGraphNode *node, - MSNodeAttributes &attributes, std::set &visitedNodes); - void calculateDepth(MSchedGraphNode *node, MSNodeAttributes &attributes, - std::set &visitedNodes); + + bool ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode); + + + int calculateASAP(MSchedGraphNode *node, int MII,MSchedGraphNode *destNode); + int calculateALAP(MSchedGraphNode *node, int MII, int maxASAP, MSchedGraphNode *srcNode); + + int calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode); + int calculateDepth(MSchedGraphNode *node, MSchedGraphNode *destNode); int findMaxASAP(); - void ModuloSchedulingPass::orderNodes(); - void findAllReccurrences(MSchedGraphNode *node, std::vector &visitedNodes); + void orderNodes(); + void findAllReccurrences(MSchedGraphNode *node, + std::vector &visitedNodes, int II); + void addReccurrence(std::vector &recurrence, int II, MSchedGraphNode*, MSchedGraphNode*); + + void computePartialOrder(); + void computeSchedule(); + bool scheduleNode(MSchedGraphNode *node, + int start, int end); + + void predIntersect(std::vector &CurrentSet, std::vector &IntersectResult); + void succIntersect(std::vector &CurrentSet, std::vector &IntersectResult); + public: ModuloSchedulingPass(TargetMachine &targ) : target(targ) {} virtual bool runOnFunction(Function &F);