Merge HasVEXPrefix/HasEVEXPrefix/HasXOPPrefix into a 2-bit 'encoding' field in TSFlags.

llvm-svn: 200624
This commit is contained in:
Craig Topper 2014-02-02 07:08:01 +00:00
parent c649b3ff57
commit 75deac3bc2
8 changed files with 200 additions and 171 deletions

View File

@ -445,40 +445,56 @@ namespace X86II {
// 0 means normal, non-SSE instruction.
SSEDomainShift = REPShift + 1,
OpcodeShift = SSEDomainShift + 2,
// Encoding
EncodingShift = SSEDomainShift + 2,
EncodingMask = 0x3 << EncodingShift,
// VEX - encoding using 0xC4/0xC5
VEX = 1,
/// XOP - Opcode prefix used by XOP instructions.
XOP = 2,
// VEX_EVEX - Specifies that this instruction use EVEX form which provides
// syntax support up to 32 512-bit register operands and up to 7 16-bit
// mask operands as well as source operand data swizzling/memory operand
// conversion, eviction hint, and rounding mode.
EVEX = 3,
// Opcode
OpcodeShift = EncodingShift + 2,
//===------------------------------------------------------------------===//
/// VEX - The opcode prefix used by AVX instructions
VEXShift = OpcodeShift + 8,
VEX = 1U << 0,
/// VEX_W - Has a opcode specific functionality, but is used in the same
/// way as REX_W is for regular SSE instructions.
VEX_W = 1U << 1,
VEX_W = 1U << 0,
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
/// address instructions in SSE are represented as 3 address ones in AVX
/// and the additional register is encoded in VEX_VVVV prefix.
VEX_4V = 1U << 2,
VEX_4V = 1U << 1,
/// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
/// operand 3 with VEX.vvvv.
VEX_4VOp3 = 1U << 3,
VEX_4VOp3 = 1U << 2,
/// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
/// must be encoded in the i8 immediate field. This usually happens in
/// instructions with 4 operands.
VEX_I8IMM = 1U << 4,
VEX_I8IMM = 1U << 3,
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
/// instruction uses 256-bit wide registers. This is usually auto detected
/// if a VR256 register is used, but some AVX instructions also have this
/// field marked when using a f256 memory references.
VEX_L = 1U << 5,
VEX_L = 1U << 4,
// VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
// prefix. Usually used for scalar instructions. Needed by disassembler.
VEX_LIG = 1U << 6,
VEX_LIG = 1U << 5,
// TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
// with following encoding:
@ -488,26 +504,20 @@ namespace X86II {
// - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
// this will save 1 tsflag bit
// VEX_EVEX - Specifies that this instruction use EVEX form which provides
// syntax support up to 32 512-bit register operands and up to 7 16-bit
// mask operands as well as source operand data swizzling/memory operand
// conversion, eviction hint, and rounding mode.
EVEX = 1U << 7,
// EVEX_K - Set if this instruction requires masking
EVEX_K = 1U << 8,
EVEX_K = 1U << 6,
// EVEX_Z - Set if this instruction has EVEX.Z field set.
EVEX_Z = 1U << 9,
EVEX_Z = 1U << 7,
// EVEX_L2 - Set if this instruction has EVEX.L' field set.
EVEX_L2 = 1U << 10,
EVEX_L2 = 1U << 8,
// EVEX_B - Set if this instruction has EVEX.B field set.
EVEX_B = 1U << 11,
EVEX_B = 1U << 9,
// EVEX_CD8E - compressed disp8 form, element-size
EVEX_CD8EShift = VEXShift + 12,
EVEX_CD8EShift = VEXShift + 10,
EVEX_CD8EMask = 3,
// EVEX_CD8V - compressed disp8 form, vector-width
@ -520,17 +530,14 @@ namespace X86II {
/// storing a classifier in the imm8 field. To simplify our implementation,
/// we handle this by storeing the classifier in the opcode field and using
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Has3DNow0F0FOpcode = 1U << 17,
Has3DNow0F0FOpcode = 1U << 15,
/// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
/// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
MemOp4 = 1U << 18,
/// XOP - Opcode prefix used by XOP instructions.
XOP = 1U << 19,
MemOp4 = 1U << 16,
/// Explicitly specified rounding control
EVEX_RC = 1U << 20
EVEX_RC = 1U << 17
};
// getBaseOpcodeFor - This function returns the "base" X86 opcode for the
@ -651,8 +658,7 @@ namespace X86II {
case X86II::MRMSrcMem: {
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
unsigned FirstMemOp = 1;
if (HasVEX_4V)
++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).

View File

@ -604,8 +604,9 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
int MemOperand, const MCInst &MI,
const MCInstrDesc &Desc,
raw_ostream &OS) const {
bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
X86II::EncodingShift;
bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
@ -638,9 +639,6 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// opcode extension, or ignored, depending on the opcode byte)
unsigned char VEX_W = 0;
// XOP: Use XOP prefix byte 0x8f instead of VEX.
bool XOP = (TSFlags >> X86II::VEXShift) & X86II::XOP;
// VEX_5M (VEX m-mmmmm field):
//
// 0b00000: Reserved for future use
@ -698,13 +696,13 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
VEX_L = 1;
if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
EVEX_L2 = 1;
if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
EVEX_z = 1;
if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
EVEX_b = 1;
switch (TSFlags & X86II::OpPrefixMask) {
@ -744,7 +742,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
X86::AddrIndexReg).getReg()))
VEX_X = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
X86::AddrIndexReg).getReg()))
EVEX_V2 = 0x0;
@ -755,7 +753,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@ -764,7 +762,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (MO.isReg()) {
if (X86II::isX86_64ExtendedReg(MO.getReg()))
VEX_R = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MO.getReg()))
if (X86II::is32ExtendedReg(MO.getReg()))
EVEX_R2 = 0x0;
}
break;
@ -781,7 +779,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_R = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_R2 = 0x0;
CurOp++;
@ -790,7 +788,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@ -801,8 +799,8 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (X86II::isX86_64ExtendedReg(
MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
VEX_X = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
X86::AddrIndexReg).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
X86::AddrIndexReg).getReg()))
EVEX_V2 = 0x0;
if (HasVEX_4VOp3)
@ -822,7 +820,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// src1(VEX_4V), MemAddr
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@ -849,7 +847,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_R = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_R2 = 0x0;
CurOp++;
@ -858,7 +856,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
@ -868,7 +866,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_B = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_X = 0x0;
CurOp++;
if (HasVEX_4VOp3)
@ -889,7 +887,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(ModR/M), src1(VEX_4V), src2(ModR/M)
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_B = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_X = 0x0;
CurOp++;
@ -898,14 +896,14 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_R = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_R2 = 0x0;
if (EVEX_b)
EncodeRC = true;
@ -918,21 +916,21 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// dst(VEX_4V), src(ModR/M), imm8
if (HasVEX_4V) {
VEX_4V = getVEXRegisterEncoding(MI, CurOp);
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
EVEX_V2 = 0x0;
CurOp++;
}
}
if (HasEVEX_K)
EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_B = 0x0;
if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
VEX_X = 0x0;
break;
}
if (!HasEVEX) {
if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
// VEX opcode prefix can have 2 or 3 bytes
//
// 3 bytes:
@ -944,19 +942,25 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
// | C5h | | R | vvvv | L | pp |
// +-----+ +-------------------+
//
// XOP uses a similar prefix:
// +-----+ +--------------+ +-------------------+
// | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
// +-----+ +--------------+ +-------------------+
unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
// Can we use the 2 byte VEX prefix?
if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
EmitByte(0xC5, CurByte, OS);
EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
return;
}
// 3 byte VEX prefix
EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
} else {
assert(Encoding == X86II::EVEX && "unknown encoding!");
// EVEX opcode prefix can have 4 bytes
//
// +-----+ +--------------+ +-------------------+ +------------------------+
@ -1187,8 +1191,9 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
// Keep track of the current byte being emitted.
unsigned CurByte = 0;
// Is this instruction encoded using the AVX VEX prefix?
bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
// Encoding type for this instruction.
unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
X86II::EncodingShift;
// It uses the VEX.VVVV field?
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
@ -1197,9 +1202,8 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
const unsigned MemOp4_I8IMMOperand = 2;
// It uses the EVEX.aaa field?
bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
bool HasEVEX_RC = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_RC);
bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
bool HasEVEX_RC = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_RC);
// Determine where the memory operand starts, if present.
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
@ -1248,7 +1252,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS,
if (need_address_override)
EmitByte(0x67, CurByte, OS);
if (!HasVEXPrefix)
if (Encoding == 0)
EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
else
EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);

View File

@ -758,6 +758,8 @@ void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
int MemOperand,
const MachineInstr &MI,
const MCInstrDesc *Desc) const {
unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
X86II::EncodingShift;
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
@ -788,9 +790,6 @@ void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
// opcode extension, or ignored, depending on the opcode byte)
unsigned char VEX_W = 0;
// XOP: Use XOP prefix byte 0x8f instead of VEX.
bool XOP = (TSFlags >> X86II::VEXShift) & X86II::XOP;
// VEX_5M (VEX m-mmmmm field):
//
// 0b00000: Reserved for future use
@ -995,16 +994,21 @@ void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
// | C5h | | R | vvvv | L | pp |
// +-----+ +-------------------+
//
// XOP uses a similar prefix:
// +-----+ +--------------+ +-------------------+
// | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
// +-----+ +--------------+ +-------------------+
unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
// Can this use the 2 byte VEX prefix?
if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
MCE.emitByte(0xC5);
MCE.emitByte(LastByte | (VEX_R << 7));
return;
}
// 3 byte VEX prefix
MCE.emitByte(XOP ? 0x8F : 0xC4);
MCE.emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4);
MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
MCE.emitByte(LastByte | (VEX_W << 7));
}
@ -1054,8 +1058,10 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
uint64_t TSFlags = Desc->TSFlags;
// Is this instruction encoded using the AVX VEX prefix?
bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
// Encoding type for this instruction.
unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
X86II::EncodingShift;
// It uses the VEX.VVVV field?
bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
@ -1094,7 +1100,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
if (need_address_override)
MCE.emitByte(0x67);
if (!HasVEXPrefix)
if (Encoding == 0)
emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
else
emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);

View File

@ -143,6 +143,15 @@ def DF : Map<14>;
def A6 : Map<15>;
def A7 : Map<16>;
// Class specifying the encoding
class Encoding<bits<2> val> {
bits<2> Value = val;
}
def EncNormal : Encoding<0>;
def EncVEX : Encoding<1>;
def EncXOP : Encoding<2>;
def EncEVEX : Encoding<3>;
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize { bit hasOpSizePrefix = 1; }
@ -175,15 +184,15 @@ class T8XD : T8 { Prefix OpPrefix = XD; }
class T8XS : T8 { Prefix OpPrefix = XS; }
class TAPD : TA { Prefix OpPrefix = PD; }
class TAXD : TA { Prefix OpPrefix = XD; }
class VEX { bit hasVEXPrefix = 1; }
class VEX { Encoding OpEnc = EncVEX; }
class VEX_W { bit hasVEX_WPrefix = 1; }
class VEX_4V : VEX { bit hasVEX_4VPrefix = 1; }
class VEX_4VOp3 : VEX { bit hasVEX_4VOp3Prefix = 1; }
class VEX_4V : VEX { bit hasVEX_4V = 1; }
class VEX_4VOp3 : VEX { bit hasVEX_4VOp3 = 1; }
class VEX_I8IMM { bit hasVEX_i8ImmReg = 1; }
class VEX_L { bit hasVEX_L = 1; }
class VEX_LIG { bit ignoresVEX_L = 1; }
class EVEX : VEX { bit hasEVEXPrefix = 1; }
class EVEX_4V : VEX_4V { bit hasEVEXPrefix = 1; }
class EVEX : VEX { Encoding OpEnc = EncEVEX; }
class EVEX_4V : VEX_4V { Encoding OpEnc = EncEVEX; }
class EVEX_K { bit hasEVEX_K = 1; }
class EVEX_KZ : EVEX_K { bit hasEVEX_Z = 1; }
class EVEX_B { bit hasEVEX_B = 1; }
@ -198,7 +207,10 @@ class EVEX_CD8<int esize, CD8VForm form> {
}
class Has3DNow0F0FOpcode { bit has3DNow0F0FOpcode = 1; }
class MemOp4 { bit hasMemOp4Prefix = 1; }
class XOP { bit hasXOP_Prefix = 1; }
class XOP { Encoding OpEnc = EncXOP; }
class XOP_4V : XOP { bit hasVEX_4V = 1; }
class XOP_4VOp3 : XOP { bit hasVEX_4VOp3 = 1; }
class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
string AsmStr,
InstrItinClass itin,
@ -238,16 +250,15 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix?
Domain ExeDomain = d;
bit hasREPPrefix = 0; // Does this inst have a REP prefix?
bit hasVEXPrefix = 0; // Does this inst require a VEX prefix?
Encoding OpEnc = EncNormal; // Encoding used by this instruction
bit hasVEX_WPrefix = 0; // Does this inst set the VEX_W field?
bit hasVEX_4VPrefix = 0; // Does this inst require the VEX.VVVV field?
bit hasVEX_4VOp3Prefix = 0; // Does this inst require the VEX.VVVV field to
// encode the third operand?
bit hasVEX_4V = 0; // Does this inst require the VEX.VVVV field?
bit hasVEX_4VOp3 = 0; // Does this inst require the VEX.VVVV field to
// encode the third operand?
bit hasVEX_i8ImmReg = 0; // Does this inst require the last source register
// to be encoded in a immediate field?
bit hasVEX_L = 0; // Does this inst use large (256-bit) registers?
bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit
bit hasEVEXPrefix = 0; // Does this inst require EVEX form?
bit hasEVEX_K = 0; // Does this inst require masking?
bit hasEVEX_Z = 0; // Does this inst set the EVEX_Z field?
bit hasEVEX_L2 = 0; // Does this inst set the EVEX_L2 field?
@ -256,7 +267,6 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
bits<3> EVEX_CD8V = 0; // Compressed disp8 form - vector-width.
bit has3DNow0F0FOpcode =0;// Wacky 3dNow! encoding?
bit hasMemOp4Prefix = 0; // Same bit as VEX_W, but used for swapping operands
bit hasXOP_Prefix = 0; // Does this inst require an XOP prefix?
bit hasEVEX_RC = 0; // Explicitly specified rounding control in FP instruction.
// TSFlags layout should be kept in sync with X86InstrInfo.h.
@ -272,15 +282,14 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
let TSFlags{24} = hasLockPrefix;
let TSFlags{25} = hasREPPrefix;
let TSFlags{27-26} = ExeDomain.Value;
let TSFlags{35-28} = Opcode;
let TSFlags{36} = hasVEXPrefix;
let TSFlags{37} = hasVEX_WPrefix;
let TSFlags{38} = hasVEX_4VPrefix;
let TSFlags{39} = hasVEX_4VOp3Prefix;
let TSFlags{40} = hasVEX_i8ImmReg;
let TSFlags{41} = hasVEX_L;
let TSFlags{42} = ignoresVEX_L;
let TSFlags{43} = hasEVEXPrefix;
let TSFlags{29-28} = OpEnc.Value;
let TSFlags{37-30} = Opcode;
let TSFlags{38} = hasVEX_WPrefix;
let TSFlags{39} = hasVEX_4V;
let TSFlags{40} = hasVEX_4VOp3;
let TSFlags{41} = hasVEX_i8ImmReg;
let TSFlags{42} = hasVEX_L;
let TSFlags{43} = ignoresVEX_L;
let TSFlags{44} = hasEVEX_K;
let TSFlags{45} = hasEVEX_Z;
let TSFlags{46} = hasEVEX_L2;
@ -289,8 +298,7 @@ class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins,
let TSFlags{52-50} = EVEX_CD8V;
let TSFlags{53} = has3DNow0F0FOpcode;
let TSFlags{54} = hasMemOp4Prefix;
let TSFlags{55} = hasXOP_Prefix;
let TSFlags{56} = hasEVEX_RC;
let TSFlags{55} = hasEVEX_RC;
}
class PseudoI<dag oops, dag iops, list<dag> pattern>
@ -385,56 +393,58 @@ class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm,
let CodeSize = 3;
}
def __xs : XS;
def __xd : XD;
def __pd : PD;
// SI - SSE 1 & 2 scalar instructions
class SI<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin> {
let Predicates = !if(hasEVEXPrefix /* EVEX */, [HasAVX512],
!if(hasVEXPrefix /* VEX */, [UseAVX],
!if(!eq(OpPrefix.Value, __xs.OpPrefix.Value), [UseSSE1],
!if(!eq(OpPrefix.Value, __xd.OpPrefix.Value), [UseSSE2],
!if(!eq(OpPrefix.Value, __pd.OpPrefix.Value), [UseSSE2],
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
!if(!eq(OpPrefix.Value, XD.Value), [UseSSE2],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])))));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(hasVEXPrefix, !strconcat("v", asm), asm);
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SIi8 - SSE 1 & 2 scalar instructions
class SIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin> {
let Predicates = !if(hasEVEXPrefix /* EVEX */, [HasAVX512],
!if(hasVEXPrefix /* VEX */, [UseAVX],
!if(!eq(OpPrefix.Value, __xs.OpPrefix.Value), [UseSSE1],
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [UseAVX],
!if(!eq(OpPrefix.Value, XS.Value), [UseSSE1],
[UseSSE2])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(hasVEXPrefix, !strconcat("v", asm), asm);
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// PI - SSE 1 & 2 packed instructions
class PI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
InstrItinClass itin, Domain d>
: I<o, F, outs, ins, asm, pattern, itin, d> {
let Predicates = !if(hasEVEXPrefix /* EVEX */, [HasAVX512],
!if(hasVEXPrefix /* VEX */, [HasAVX],
!if(!eq(OpPrefix.Value, __pd.OpPrefix.Value), [UseSSE2],
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(hasVEXPrefix, !strconcat("v", asm), asm);
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// MMXPI - SSE 1 & 2 packed instructions with MMX operands
class MMXPI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> pattern,
InstrItinClass itin, Domain d>
: I<o, F, outs, ins, asm, pattern, itin, d> {
let Predicates = !if(!eq(OpPrefix.Value, __pd.OpPrefix.Value), [HasSSE2],
let Predicates = !if(!eq(OpPrefix.Value, PD.Value), [HasSSE2],
[HasSSE1]);
}
@ -442,13 +452,15 @@ class MMXPI<bits<8> o, Format F, dag outs, dag ins, string asm, list<dag> patter
class PIi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin, Domain d>
: Ii8<o, F, outs, ins, asm, pattern, itin, d> {
let Predicates = !if(hasEVEXPrefix /* EVEX */, [HasAVX512],
!if(hasVEXPrefix /* VEX */, [HasAVX],
!if(!eq(OpPrefix.Value, __pd.OpPrefix.Value), [UseSSE2],
let Predicates = !if(!eq(OpEnc.Value, EncEVEX.Value), [HasAVX512],
!if(!eq(OpEnc.Value, EncVEX.Value), [HasAVX],
!if(!eq(OpPrefix.Value, PD.Value), [UseSSE2],
[UseSSE1])));
// AVX instructions have a 'v' prefix in the mnemonic
let AsmString = !if(hasVEXPrefix, !strconcat("v", asm), asm);
let AsmString = !if(!eq(OpEnc.Value, EncEVEX.Value), !strconcat("v", asm),
!if(!eq(OpEnc.Value, EncVEX.Value), !strconcat("v", asm),
asm));
}
// SSE1 Instruction Templates:
@ -761,13 +773,13 @@ class FMA4<bits<8> o, Format F, dag outs, dag ins, string asm,
class IXOP<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>,
XOP, XOP9, Requires<[HasXOP]>;
XOP9, Requires<[HasXOP]>;
// XOP 2, 3 and 4 Operand Instruction Templates with imm byte
class IXOPi8<bits<8> o, Format F, dag outs, dag ins, string asm,
list<dag> pattern, InstrItinClass itin = NoItinerary>
: Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>,
XOP, XOP8, Requires<[HasXOP]>;
XOP8, Requires<[HasXOP]>;
// XOP 5 operand instruction (VEX encoding!)
class IXOP5<bits<8> o, Format F, dag outs, dag ins, string asm,

View File

@ -2089,13 +2089,13 @@ multiclass tbm_ternary_imm_intr<bits<8> opc, RegisterClass RC, string OpcodeStr,
!strconcat(OpcodeStr,
"\t{$cntl, $src1, $dst|$dst, $src1, $cntl}"),
[(set RC:$dst, (Int RC:$src1, immoperator:$cntl))]>,
XOP, XOPA, VEX;
XOP, XOPA;
def mi : Ii32<opc, MRMSrcMem, (outs RC:$dst),
(ins x86memop:$src1, immtype:$cntl),
!strconcat(OpcodeStr,
"\t{$cntl, $src1, $dst|$dst, $src1, $cntl}"),
[(set RC:$dst, (Int (ld_frag addr:$src1), immoperator:$cntl))]>,
XOP, XOPA, VEX;
XOP, XOPA;
}
defm BEXTRI32 : tbm_ternary_imm_intr<0x10, GR32, "bextr", i32mem, loadi32,
@ -2111,11 +2111,11 @@ multiclass tbm_binary_rm<bits<8> opc, Format FormReg, Format FormMem,
let hasSideEffects = 0 in {
def rr : I<opc, FormReg, (outs RC:$dst), (ins RC:$src),
!strconcat(OpcodeStr,"\t{$src, $dst|$dst, $src}"),
[]>, XOP, XOP9, VEX_4V;
[]>, XOP_4V, XOP9;
let mayLoad = 1 in
def rm : I<opc, FormMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr,"\t{$src, $dst|$dst, $src}"),
[]>, XOP, XOP9, VEX_4V;
[]>, XOP_4V, XOP9;
}
}

View File

@ -14,10 +14,10 @@
multiclass xop2op<bits<8> opc, string OpcodeStr, Intrinsic Int, PatFrag memop> {
def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (Int VR128:$src))]>, VEX;
[(set VR128:$dst, (Int VR128:$src))]>, XOP;
def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (Int (bitconvert (memop addr:$src))))]>, VEX;
[(set VR128:$dst, (Int (bitconvert (memop addr:$src))))]>, XOP;
}
defm VPHSUBWD : xop2op<0xE2, "vphsubwd", int_x86_xop_vphsubwd, memopv2i64>;
@ -41,10 +41,10 @@ multiclass xop2opsld<bits<8> opc, string OpcodeStr, Intrinsic Int,
Operand memop, ComplexPattern mem_cpat> {
def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (Int VR128:$src))]>, VEX;
[(set VR128:$dst, (Int VR128:$src))]>, XOP;
def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst), (ins memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (Int (bitconvert mem_cpat:$src)))]>, VEX;
[(set VR128:$dst, (Int (bitconvert mem_cpat:$src)))]>, XOP;
}
defm VFRCZSS : xop2opsld<0x82, "vfrczss", int_x86_xop_vfrcz_ss,
@ -56,10 +56,10 @@ multiclass xop2op128<bits<8> opc, string OpcodeStr, Intrinsic Int,
PatFrag memop> {
def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (Int VR128:$src))]>, VEX;
[(set VR128:$dst, (Int VR128:$src))]>, XOP;
def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (Int (bitconvert (memop addr:$src))))]>, VEX;
[(set VR128:$dst, (Int (bitconvert (memop addr:$src))))]>, XOP;
}
defm VFRCZPS : xop2op128<0x80, "vfrczps", int_x86_xop_vfrcz_ps, memopv4f32>;
@ -69,10 +69,10 @@ multiclass xop2op256<bits<8> opc, string OpcodeStr, Intrinsic Int,
PatFrag memop> {
def rrY : IXOP<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (Int VR256:$src))]>, VEX, VEX_L;
[(set VR256:$dst, (Int VR256:$src))]>, XOP, VEX_L;
def rmY : IXOP<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (Int (bitconvert (memop addr:$src))))]>, VEX, VEX_L;
[(set VR256:$dst, (Int (bitconvert (memop addr:$src))))]>, XOP, VEX_L;
}
defm VFRCZPS : xop2op256<0x80, "vfrczps", int_x86_xop_vfrcz_ps_256, memopv8f32>;
@ -82,19 +82,19 @@ multiclass xop3op<bits<8> opc, string OpcodeStr, Intrinsic Int> {
def rr : IXOP<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (Int VR128:$src1, VR128:$src2))]>, VEX_4VOp3;
[(set VR128:$dst, (Int VR128:$src1, VR128:$src2))]>, XOP_4VOp3;
def rm : IXOP<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2))))]>,
VEX_4V, VEX_W;
XOP_4V, VEX_W;
def mr : IXOP<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(Int (bitconvert (memopv2i64 addr:$src1)), VR128:$src2))]>,
VEX_4VOp3;
XOP_4VOp3;
}
defm VPSHLW : xop3op<0x95, "vpshlw", int_x86_xop_vpshlw>;
@ -114,12 +114,12 @@ multiclass xop3opimm<bits<8> opc, string OpcodeStr, Intrinsic Int> {
def ri : IXOPi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (Int VR128:$src1, imm:$src2))]>, VEX;
[(set VR128:$dst, (Int VR128:$src1, imm:$src2))]>, XOP;
def mi : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst,
(Int (bitconvert (memopv2i64 addr:$src1)), imm:$src2))]>, VEX;
(Int (bitconvert (memopv2i64 addr:$src1)), imm:$src2))]>, XOP;
}
defm VPROTW : xop3opimm<0xC1, "vprotw", int_x86_xop_vprotwi>;
@ -134,14 +134,14 @@ multiclass xop4opm2<bits<8> opc, string OpcodeStr, Intrinsic Int> {
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(Int VR128:$src1, VR128:$src2, VR128:$src3))]>, VEX_4V, VEX_I8IMM;
(Int VR128:$src1, VR128:$src2, VR128:$src3))]>, XOP_4V, VEX_I8IMM;
def rm : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, VR128:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2)),
VR128:$src3))]>, VEX_4V, VEX_I8IMM;
VR128:$src3))]>, XOP_4V, VEX_I8IMM;
}
defm VPMADCSWD : xop4opm2<0xB6, "vpmadcswd", int_x86_xop_vpmadcswd>;
@ -164,14 +164,14 @@ multiclass xop4opimm<bits<8> opc, string OpcodeStr, Intrinsic Int> {
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst, (Int VR128:$src1, VR128:$src2, imm:$src3))]>,
VEX_4V;
XOP_4V;
def mi : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2)),
imm:$src3))]>, VEX_4V;
imm:$src3))]>, XOP_4V;
}
defm VPCOMB : xop4opimm<0xCC, "vpcomb", int_x86_xop_vpcomb>;
@ -190,7 +190,7 @@ multiclass xop4op<bits<8> opc, string OpcodeStr, Intrinsic Int> {
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst, (Int VR128:$src1, VR128:$src2, VR128:$src3))]>,
VEX_4V, VEX_I8IMM;
XOP_4V, VEX_I8IMM;
def rm : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i128mem:$src3),
!strconcat(OpcodeStr,
@ -198,7 +198,7 @@ multiclass xop4op<bits<8> opc, string OpcodeStr, Intrinsic Int> {
[(set VR128:$dst,
(Int VR128:$src1, VR128:$src2,
(bitconvert (memopv2i64 addr:$src3))))]>,
VEX_4V, VEX_I8IMM, VEX_W, MemOp4;
XOP_4V, VEX_I8IMM, VEX_W, MemOp4;
def mr : IXOPi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, VR128:$src3),
!strconcat(OpcodeStr,
@ -206,7 +206,7 @@ multiclass xop4op<bits<8> opc, string OpcodeStr, Intrinsic Int> {
[(set VR128:$dst,
(Int VR128:$src1, (bitconvert (memopv2i64 addr:$src2)),
VR128:$src3))]>,
VEX_4V, VEX_I8IMM;
XOP_4V, VEX_I8IMM;
}
defm VPPERM : xop4op<0xA3, "vpperm", int_x86_xop_vpperm>;
@ -218,7 +218,7 @@ multiclass xop4op256<bits<8> opc, string OpcodeStr, Intrinsic Int> {
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR256:$dst, (Int VR256:$src1, VR256:$src2, VR256:$src3))]>,
VEX_4V, VEX_I8IMM, VEX_L;
XOP_4V, VEX_I8IMM, VEX_L;
def rmY : IXOPi8<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i256mem:$src3),
!strconcat(OpcodeStr,
@ -226,7 +226,7 @@ multiclass xop4op256<bits<8> opc, string OpcodeStr, Intrinsic Int> {
[(set VR256:$dst,
(Int VR256:$src1, VR256:$src2,
(bitconvert (memopv4i64 addr:$src3))))]>,
VEX_4V, VEX_I8IMM, VEX_W, MemOp4, VEX_L;
XOP_4V, VEX_I8IMM, VEX_W, MemOp4, VEX_L;
def mrY : IXOPi8<opc, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, VR256:$src3),
!strconcat(OpcodeStr,
@ -234,7 +234,7 @@ multiclass xop4op256<bits<8> opc, string OpcodeStr, Intrinsic Int> {
[(set VR256:$dst,
(Int VR256:$src1, (bitconvert (memopv4i64 addr:$src2)),
VR256:$src3))]>,
VEX_4V, VEX_I8IMM, VEX_L;
XOP_4V, VEX_I8IMM, VEX_L;
}
defm VPCMOV : xop4op256<0xA2, "vpcmov", int_x86_xop_vpcmov_256>;

View File

@ -85,6 +85,10 @@ namespace X86Local {
enum {
PD = 1, XS = 2, XD = 3
};
enum {
VEX = 1, XOP = 2, EVEX = 3
};
}
// If rows are added to the opcode extension tables, then corresponding entries
@ -228,18 +232,17 @@ RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
OpMap = byteFromRec(Rec->getValueAsDef("OpMap"), "Value");
Opcode = byteFromRec(Rec, "Opcode");
Form = byteFromRec(Rec, "FormBits");
Encoding = byteFromRec(Rec->getValueAsDef("OpEnc"), "Value");
HasOpSizePrefix = Rec->getValueAsBit("hasOpSizePrefix");
HasOpSize16Prefix = Rec->getValueAsBit("hasOpSize16Prefix");
HasAdSizePrefix = Rec->getValueAsBit("hasAdSizePrefix");
HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
HasVEXPrefix = Rec->getValueAsBit("hasVEXPrefix");
HasVEX_4VPrefix = Rec->getValueAsBit("hasVEX_4VPrefix");
HasVEX_4VOp3Prefix = Rec->getValueAsBit("hasVEX_4VOp3Prefix");
HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
HasVEX_4VOp3 = Rec->getValueAsBit("hasVEX_4VOp3");
HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix");
HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix");
IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
HasEVEXPrefix = Rec->getValueAsBit("hasEVEXPrefix");
HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
@ -300,7 +303,7 @@ void RecognizableInstr::processInstr(DisassemblerTables &tables,
InstructionContext RecognizableInstr::insnContext() const {
InstructionContext insnContext;
if (HasEVEXPrefix) {
if (Encoding == X86Local::EVEX) {
if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
@ -368,7 +371,7 @@ InstructionContext RecognizableInstr::insnContext() const {
else
insnContext = EVEX_KB(IC_EVEX);
/// eof EVEX
} else if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix|| HasVEXPrefix) {
} else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
if (HasVEX_LPrefix && HasVEX_WPrefix) {
if (HasOpSizePrefix || OpPrefix == X86Local::PD)
insnContext = IC_VEX_L_W_OPSIZE;
@ -624,7 +627,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
// Operand 2 is a register operand in the Reg/Opcode field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
if (HasVEX_4VPrefix)
if (HasVEX_4V)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
"Unexpected number of operands for MRMDestRegFrm with VEX_4V");
else
@ -633,7 +636,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
HANDLE_OPERAND(rmRegister)
if (HasVEX_4VPrefix)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
@ -646,7 +649,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
// Operand 2 is a register operand in the Reg/Opcode field.
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
if (HasVEX_4VPrefix)
if (HasVEX_4V)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
"Unexpected number of operands for MRMDestMemFrm with VEX_4V");
else
@ -657,7 +660,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4VPrefix)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
@ -672,7 +675,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
// Operand 3 (optional) is an immediate.
// Operand 4 (optional) is an immediate.
if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
if (HasVEX_4V || HasVEX_4VOp3)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
"Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
else
@ -684,7 +687,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4VPrefix)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
@ -694,7 +697,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
HANDLE_OPERAND(rmRegister)
if (HasVEX_4VOp3Prefix)
if (HasVEX_4VOp3)
HANDLE_OPERAND(vvvvRegister)
if (!HasMemOp4Prefix)
@ -708,7 +711,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
// - In AVX, there is a register operand in the VEX.vvvv field here -
// Operand 3 (optional) is an immediate.
if (HasVEX_4VPrefix || HasVEX_4VOp3Prefix)
if (HasVEX_4V || HasVEX_4VOp3)
assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 5 &&
"Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
else
@ -720,7 +723,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)
if (HasVEX_4VPrefix)
if (HasVEX_4V)
// FIXME: In AVX, the register below becomes the one encoded
// in ModRMVEX and the one above the one in the VEX.VVVV field
HANDLE_OPERAND(vvvvRegister)
@ -730,7 +733,7 @@ void RecognizableInstr::emitInstructionSpecifier() {
HANDLE_OPERAND(memory)
if (HasVEX_4VOp3Prefix)
if (HasVEX_4VOp3)
HANDLE_OPERAND(vvvvRegister)
if (!HasMemOp4Prefix)
@ -750,11 +753,11 @@ void RecognizableInstr::emitInstructionSpecifier() {
// Operand 2 (optional) is an immediate or relocation.
// Operand 3 (optional) is an immediate.
unsigned kOp = (HasEVEX_K) ? 1:0;
unsigned Op4v = (HasVEX_4VPrefix) ? 1:0;
unsigned Op4v = (HasVEX_4V) ? 1:0;
if (numPhysicalOperands > 3 + kOp + Op4v)
llvm_unreachable("Unexpected number of operands for MRMnr");
}
if (HasVEX_4VPrefix)
if (HasVEX_4V)
HANDLE_OPERAND(vvvvRegister)
if (HasEVEX_K)
@ -775,12 +778,12 @@ void RecognizableInstr::emitInstructionSpecifier() {
// Operand 1 is a memory operand (possibly SIB-extended)
// Operand 2 (optional) is an immediate or relocation.
unsigned kOp = (HasEVEX_K) ? 1:0;
unsigned Op4v = (HasVEX_4VPrefix) ? 1:0;
unsigned Op4v = (HasVEX_4V) ? 1:0;
if (numPhysicalOperands < 1 + kOp + Op4v ||
numPhysicalOperands > 2 + kOp + Op4v)
llvm_unreachable("Unexpected number of operands for MRMnm");
}
if (HasVEX_4VPrefix)
if (HasVEX_4V)
HANDLE_OPERAND(vvvvRegister)
if (HasEVEX_K)
HANDLE_OPERAND(writemaskRegister)

View File

@ -46,6 +46,8 @@ private:
uint8_t Opcode;
/// The form field from the record
uint8_t Form;
// The encoding field from the record
uint8_t Encoding;
/// The hasOpSizePrefix field from the record
bool HasOpSizePrefix;
/// The hasOpSize16Prefix field from the record
@ -54,12 +56,10 @@ private:
bool HasAdSizePrefix;
/// The hasREX_WPrefix field from the record
bool HasREX_WPrefix;
/// The hasVEXPrefix field from the record
bool HasVEXPrefix;
/// The hasVEX_4VPrefix field from the record
bool HasVEX_4VPrefix;
/// The hasVEX_4VOp3Prefix field from the record
bool HasVEX_4VOp3Prefix;
/// The hasVEX_4V field from the record
bool HasVEX_4V;
/// The hasVEX_4VOp3 field from the record
bool HasVEX_4VOp3;
/// The hasVEX_WPrefix field from the record
bool HasVEX_WPrefix;
/// Inferred from the operands; indicates whether the L bit in the VEX prefix is set
@ -68,8 +68,6 @@ private:
bool HasMemOp4Prefix;
/// The ignoreVEX_L field from the record
bool IgnoresVEX_L;
/// The hasEVEXPrefix field from the record
bool HasEVEXPrefix;
/// The hasEVEX_L2Prefix field from the record
bool HasEVEX_L2Prefix;
/// The hasEVEX_K field from the record