[Orc] Re-commit r266581 with fixes for MSVC, and format cleanups.

Fixes:

(1) Removes constexpr (unsupported in MSVC)
(2) Move constructors (remove explicitly defaulted ones)
(3) <future> - Add warning suppression for MSVC.

llvm-svn: 266663
This commit is contained in:
Lang Hames 2016-04-18 19:55:43 +00:00
parent 2ca1c20043
commit 7f7e42c67c
12 changed files with 876 additions and 467 deletions

View File

@ -26,7 +26,8 @@ enum class OrcErrorCode : int {
RemoteMProtectAddrUnrecognized,
RemoteIndirectStubsOwnerDoesNotExist,
RemoteIndirectStubsOwnerIdAlreadyInUse,
UnexpectedRPCCall
UnexpectedRPCCall,
UnexpectedRPCResponse,
};
std::error_code orcError(OrcErrorCode ErrCode);

View File

@ -36,6 +36,7 @@ namespace remote {
template <typename ChannelT>
class OrcRemoteTargetClient : public OrcRemoteTargetRPCAPI {
public:
/// Remote memory manager.
class RCMemoryManager : public RuntimeDyld::MemoryManager {
public:
@ -105,11 +106,13 @@ public:
DEBUG(dbgs() << "Allocator " << Id << " reserved:\n");
if (CodeSize != 0) {
std::error_code EC = Client.reserveMem(Unmapped.back().RemoteCodeAddr,
Id, CodeSize, CodeAlign);
if (auto AddrOrErr = Client.reserveMem(Id, CodeSize, CodeAlign))
Unmapped.back().RemoteCodeAddr = *AddrOrErr;
else {
// FIXME; Add error to poll.
assert(!EC && "Failed reserving remote memory.");
(void)EC;
assert(!AddrOrErr.getError() && "Failed reserving remote memory.");
}
DEBUG(dbgs() << " code: "
<< format("0x%016x", Unmapped.back().RemoteCodeAddr)
<< " (" << CodeSize << " bytes, alignment " << CodeAlign
@ -117,11 +120,13 @@ public:
}
if (RODataSize != 0) {
std::error_code EC = Client.reserveMem(Unmapped.back().RemoteRODataAddr,
Id, RODataSize, RODataAlign);
if (auto AddrOrErr = Client.reserveMem(Id, RODataSize, RODataAlign))
Unmapped.back().RemoteRODataAddr = *AddrOrErr;
else {
// FIXME; Add error to poll.
assert(!EC && "Failed reserving remote memory.");
(void)EC;
assert(!AddrOrErr.getError() && "Failed reserving remote memory.");
}
DEBUG(dbgs() << " ro-data: "
<< format("0x%016x", Unmapped.back().RemoteRODataAddr)
<< " (" << RODataSize << " bytes, alignment "
@ -129,11 +134,13 @@ public:
}
if (RWDataSize != 0) {
std::error_code EC = Client.reserveMem(Unmapped.back().RemoteRWDataAddr,
Id, RWDataSize, RWDataAlign);
if (auto AddrOrErr = Client.reserveMem(Id, RWDataSize, RWDataAlign))
Unmapped.back().RemoteRWDataAddr = *AddrOrErr;
else {
// FIXME; Add error to poll.
assert(!EC && "Failed reserving remote memory.");
(void)EC;
assert(!AddrOrErr.getError() && "Failed reserving remote memory.");
}
DEBUG(dbgs() << " rw-data: "
<< format("0x%016x", Unmapped.back().RemoteRWDataAddr)
<< " (" << RWDataSize << " bytes, alignment "
@ -431,8 +438,10 @@ public:
TargetAddress PtrBase;
unsigned NumStubsEmitted;
Remote.emitIndirectStubs(StubBase, PtrBase, NumStubsEmitted, Id,
NewStubsRequired);
if (auto StubInfoOrErr = Remote.emitIndirectStubs(Id, NewStubsRequired))
std::tie(StubBase, PtrBase, NumStubsEmitted) = *StubInfoOrErr;
else
return StubInfoOrErr.getError();
unsigned NewBlockId = RemoteIndirectStubsInfos.size();
RemoteIndirectStubsInfos.push_back({StubBase, PtrBase, NumStubsEmitted});
@ -484,8 +493,12 @@ public:
void grow() override {
TargetAddress BlockAddr = 0;
uint32_t NumTrampolines = 0;
auto EC = Remote.emitTrampolineBlock(BlockAddr, NumTrampolines);
assert(!EC && "Failed to create trampolines");
if (auto TrampolineInfoOrErr = Remote.emitTrampolineBlock())
std::tie(BlockAddr, NumTrampolines) = *TrampolineInfoOrErr;
else {
// FIXME: Return error.
llvm_unreachable("Failed to create trampolines");
}
uint32_t TrampolineSize = Remote.getTrampolineSize();
for (unsigned I = 0; I < NumTrampolines; ++I)
@ -503,53 +516,33 @@ public:
OrcRemoteTargetClient H(Channel, EC);
if (EC)
return EC;
return H;
return ErrorOr<OrcRemoteTargetClient>(std::move(H));
}
/// Call the int(void) function at the given address in the target and return
/// its result.
std::error_code callIntVoid(int &Result, TargetAddress Addr) {
ErrorOr<int> callIntVoid(TargetAddress Addr) {
DEBUG(dbgs() << "Calling int(*)(void) " << format("0x%016x", Addr) << "\n");
if (auto EC = call<CallIntVoid>(Channel, Addr))
return EC;
unsigned NextProcId;
if (auto EC = listenForCompileRequests(NextProcId))
return EC;
if (NextProcId != CallIntVoidResponseId)
return orcError(OrcErrorCode::UnexpectedRPCCall);
return handle<CallIntVoidResponse>(Channel, [&](int R) {
Result = R;
DEBUG(dbgs() << "Result: " << R << "\n");
return std::error_code();
});
auto Listen =
[&](RPCChannel &C, uint32_t Id) {
return listenForCompileRequests(C, Id);
};
return callSTHandling<CallIntVoid>(Channel, Listen, Addr);
}
/// Call the int(int, char*[]) function at the given address in the target and
/// return its result.
std::error_code callMain(int &Result, TargetAddress Addr,
ErrorOr<int> callMain(TargetAddress Addr,
const std::vector<std::string> &Args) {
DEBUG(dbgs() << "Calling int(*)(int, char*[]) " << format("0x%016x", Addr)
<< "\n");
if (auto EC = call<CallMain>(Channel, Addr, Args))
return EC;
unsigned NextProcId;
if (auto EC = listenForCompileRequests(NextProcId))
return EC;
if (NextProcId != CallMainResponseId)
return orcError(OrcErrorCode::UnexpectedRPCCall);
return handle<CallMainResponse>(Channel, [&](int R) {
Result = R;
DEBUG(dbgs() << "Result: " << R << "\n");
return std::error_code();
});
auto Listen =
[&](RPCChannel &C, uint32_t Id) {
return listenForCompileRequests(C, Id);
};
return callSTHandling<CallMain>(Channel, Listen, Addr, Args);
}
/// Call the void() function at the given address in the target and wait for
@ -558,17 +551,11 @@ public:
DEBUG(dbgs() << "Calling void(*)(void) " << format("0x%016x", Addr)
<< "\n");
if (auto EC = call<CallVoidVoid>(Channel, Addr))
return EC;
unsigned NextProcId;
if (auto EC = listenForCompileRequests(NextProcId))
return EC;
if (NextProcId != CallVoidVoidResponseId)
return orcError(OrcErrorCode::UnexpectedRPCCall);
return handle<CallVoidVoidResponse>(Channel, doNothing);
auto Listen =
[&](RPCChannel &C, JITFuncId Id) {
return listenForCompileRequests(C, Id);
};
return callSTHandling<CallVoidVoid>(Channel, Listen, Addr);
}
/// Create an RCMemoryManager which will allocate its memory on the remote
@ -578,7 +565,7 @@ public:
assert(!MM && "MemoryManager should be null before creation.");
auto Id = AllocatorIds.getNext();
if (auto EC = call<CreateRemoteAllocator>(Channel, Id))
if (auto EC = callST<CreateRemoteAllocator>(Channel, Id))
return EC;
MM = llvm::make_unique<RCMemoryManager>(*this, Id);
return std::error_code();
@ -590,7 +577,7 @@ public:
createIndirectStubsManager(std::unique_ptr<RCIndirectStubsManager> &I) {
assert(!I && "Indirect stubs manager should be null before creation.");
auto Id = IndirectStubOwnerIds.getNext();
if (auto EC = call<CreateIndirectStubsOwner>(Channel, Id))
if (auto EC = callST<CreateIndirectStubsOwner>(Channel, Id))
return EC;
I = llvm::make_unique<RCIndirectStubsManager>(*this, Id);
return std::error_code();
@ -599,45 +586,39 @@ public:
/// Search for symbols in the remote process. Note: This should be used by
/// symbol resolvers *after* they've searched the local symbol table in the
/// JIT stack.
std::error_code getSymbolAddress(TargetAddress &Addr, StringRef Name) {
ErrorOr<TargetAddress> getSymbolAddress(StringRef Name) {
// Check for an 'out-of-band' error, e.g. from an MM destructor.
if (ExistingError)
return ExistingError;
// Request remote symbol address.
if (auto EC = call<GetSymbolAddress>(Channel, Name))
return EC;
return expect<GetSymbolAddressResponse>(Channel, [&](TargetAddress &A) {
Addr = A;
DEBUG(dbgs() << "Remote address lookup " << Name << " = "
<< format("0x%016x", Addr) << "\n");
return std::error_code();
});
return callST<GetSymbolAddress>(Channel, Name);
}
/// Get the triple for the remote target.
const std::string &getTargetTriple() const { return RemoteTargetTriple; }
std::error_code terminateSession() { return call<TerminateSession>(Channel); }
std::error_code terminateSession() {
return callST<TerminateSession>(Channel);
}
private:
OrcRemoteTargetClient(ChannelT &Channel, std::error_code &EC)
: Channel(Channel) {
if ((EC = call<GetRemoteInfo>(Channel)))
return;
EC = expect<GetRemoteInfoResponse>(
Channel, readArgs(RemoteTargetTriple, RemotePointerSize, RemotePageSize,
RemoteTrampolineSize, RemoteIndirectStubSize));
if (auto RIOrErr = callST<GetRemoteInfo>(Channel)) {
std::tie(RemoteTargetTriple, RemotePointerSize, RemotePageSize,
RemoteTrampolineSize, RemoteIndirectStubSize) =
*RIOrErr;
EC = std::error_code();
} else
EC = RIOrErr.getError();
}
std::error_code deregisterEHFrames(TargetAddress Addr, uint32_t Size) {
return call<RegisterEHFrames>(Channel, Addr, Size);
return callST<RegisterEHFrames>(Channel, Addr, Size);
}
void destroyRemoteAllocator(ResourceIdMgr::ResourceId Id) {
if (auto EC = call<DestroyRemoteAllocator>(Channel, Id)) {
if (auto EC = callST<DestroyRemoteAllocator>(Channel, Id)) {
// FIXME: This will be triggered by a removeModuleSet call: Propagate
// error return up through that.
llvm_unreachable("Failed to destroy remote allocator.");
@ -647,19 +628,13 @@ private:
std::error_code destroyIndirectStubsManager(ResourceIdMgr::ResourceId Id) {
IndirectStubOwnerIds.release(Id);
return call<DestroyIndirectStubsOwner>(Channel, Id);
return callST<DestroyIndirectStubsOwner>(Channel, Id);
}
std::error_code emitIndirectStubs(TargetAddress &StubBase,
TargetAddress &PtrBase,
uint32_t &NumStubsEmitted,
ResourceIdMgr::ResourceId Id,
ErrorOr<std::tuple<TargetAddress, TargetAddress, uint32_t>>
emitIndirectStubs(ResourceIdMgr::ResourceId Id,
uint32_t NumStubsRequired) {
if (auto EC = call<EmitIndirectStubs>(Channel, Id, NumStubsRequired))
return EC;
return expect<EmitIndirectStubsResponse>(
Channel, readArgs(StubBase, PtrBase, NumStubsEmitted));
return callST<EmitIndirectStubs>(Channel, Id, NumStubsRequired);
}
std::error_code emitResolverBlock() {
@ -667,24 +642,16 @@ private:
if (ExistingError)
return ExistingError;
return call<EmitResolverBlock>(Channel);
return callST<EmitResolverBlock>(Channel);
}
std::error_code emitTrampolineBlock(TargetAddress &BlockAddr,
uint32_t &NumTrampolines) {
ErrorOr<std::tuple<TargetAddress, uint32_t>>
emitTrampolineBlock() {
// Check for an 'out-of-band' error, e.g. from an MM destructor.
if (ExistingError)
return ExistingError;
if (auto EC = call<EmitTrampolineBlock>(Channel))
return EC;
return expect<EmitTrampolineBlockResponse>(
Channel, [&](TargetAddress BAddr, uint32_t NTrampolines) {
BlockAddr = BAddr;
NumTrampolines = NTrampolines;
return std::error_code();
});
return callST<EmitTrampolineBlock>(Channel);
}
uint32_t getIndirectStubSize() const { return RemoteIndirectStubSize; }
@ -693,67 +660,46 @@ private:
uint32_t getTrampolineSize() const { return RemoteTrampolineSize; }
std::error_code listenForCompileRequests(uint32_t &NextId) {
std::error_code listenForCompileRequests(RPCChannel &C, uint32_t &Id) {
// Check for an 'out-of-band' error, e.g. from an MM destructor.
if (ExistingError)
return ExistingError;
if (auto EC = getNextProcId(Channel, NextId))
if (Id == RequestCompileId) {
if (auto EC = handle<RequestCompile>(C, CompileCallback))
return EC;
while (NextId == RequestCompileId) {
TargetAddress TrampolineAddr = 0;
if (auto EC = handle<RequestCompile>(Channel, readArgs(TrampolineAddr)))
return EC;
TargetAddress ImplAddr = CompileCallback(TrampolineAddr);
if (auto EC = call<RequestCompileResponse>(Channel, ImplAddr))
return EC;
if (auto EC = getNextProcId(Channel, NextId))
return EC;
}
return std::error_code();
}
// else
return orcError(OrcErrorCode::UnexpectedRPCCall);
}
std::error_code readMem(char *Dst, TargetAddress Src, uint64_t Size) {
ErrorOr<std::vector<char>> readMem(char *Dst, TargetAddress Src, uint64_t Size) {
// Check for an 'out-of-band' error, e.g. from an MM destructor.
if (ExistingError)
return ExistingError;
if (auto EC = call<ReadMem>(Channel, Src, Size))
return EC;
if (auto EC = expect<ReadMemResponse>(
Channel, [&]() { return Channel.readBytes(Dst, Size); }))
return EC;
return std::error_code();
return callST<ReadMem>(Channel, Src, Size);
}
std::error_code registerEHFrames(TargetAddress &RAddr, uint32_t Size) {
return call<RegisterEHFrames>(Channel, RAddr, Size);
return callST<RegisterEHFrames>(Channel, RAddr, Size);
}
std::error_code reserveMem(TargetAddress &RemoteAddr,
ResourceIdMgr::ResourceId Id, uint64_t Size,
ErrorOr<TargetAddress> reserveMem(ResourceIdMgr::ResourceId Id, uint64_t Size,
uint32_t Align) {
// Check for an 'out-of-band' error, e.g. from an MM destructor.
if (ExistingError)
return ExistingError;
if (std::error_code EC = call<ReserveMem>(Channel, Id, Size, Align))
return EC;
return expect<ReserveMemResponse>(Channel, readArgs(RemoteAddr));
return callST<ReserveMem>(Channel, Id, Size, Align);
}
std::error_code setProtections(ResourceIdMgr::ResourceId Id,
TargetAddress RemoteSegAddr,
unsigned ProtFlags) {
return call<SetProtections>(Channel, Id, RemoteSegAddr, ProtFlags);
return callST<SetProtections>(Channel, Id, RemoteSegAddr, ProtFlags);
}
std::error_code writeMem(TargetAddress Addr, const char *Src, uint64_t Size) {
@ -761,15 +707,7 @@ private:
if (ExistingError)
return ExistingError;
// Make the send call.
if (auto EC = call<WriteMem>(Channel, Addr, Size))
return EC;
// Follow this up with the section contents.
if (auto EC = Channel.appendBytes(Src, Size))
return EC;
return Channel.send();
return callST<WriteMem>(Channel, DirectBufferWriter(Src, Addr, Size));
}
std::error_code writePointer(TargetAddress Addr, TargetAddress PtrVal) {
@ -777,7 +715,7 @@ private:
if (ExistingError)
return ExistingError;
return call<WritePtr>(Channel, Addr, PtrVal);
return callST<WritePtr>(Channel, Addr, PtrVal);
}
static std::error_code doNothing() { return std::error_code(); }

View File

@ -24,8 +24,48 @@ namespace llvm {
namespace orc {
namespace remote {
class DirectBufferWriter {
public:
DirectBufferWriter() = default;
DirectBufferWriter(const char *Src, TargetAddress Dst, uint64_t Size)
: Src(Src), Dst(Dst), Size(Size) {}
const char *getSrc() const { return Src; }
TargetAddress getDst() const { return Dst; }
uint64_t getSize() const { return Size; }
private:
const char *Src;
TargetAddress Dst;
uint64_t Size;
};
inline std::error_code serialize(RPCChannel &C,
const DirectBufferWriter &DBW) {
if (auto EC = serialize(C, DBW.getDst()))
return EC;
if (auto EC = serialize(C, DBW.getSize()))
return EC;
return C.appendBytes(DBW.getSrc(), DBW.getSize());
}
inline std::error_code deserialize(RPCChannel &C,
DirectBufferWriter &DBW) {
TargetAddress Dst;
if (auto EC = deserialize(C, Dst))
return EC;
uint64_t Size;
if (auto EC = deserialize(C, Size))
return EC;
char *Addr = reinterpret_cast<char*>(static_cast<uintptr_t>(Dst));
DBW = DirectBufferWriter(0, Dst, Size);
return C.readBytes(Addr, Size);
}
class OrcRemoteTargetRPCAPI : public RPC<RPCChannel> {
protected:
class ResourceIdMgr {
public:
typedef uint64_t ResourceId;
@ -45,146 +85,111 @@ protected:
};
public:
enum JITProcId : uint32_t {
InvalidId = 0,
CallIntVoidId,
CallIntVoidResponseId,
enum JITFuncId : uint32_t {
InvalidId = RPCFunctionIdTraits<JITFuncId>::InvalidId,
CallIntVoidId = RPCFunctionIdTraits<JITFuncId>::FirstValidId,
CallMainId,
CallMainResponseId,
CallVoidVoidId,
CallVoidVoidResponseId,
CreateRemoteAllocatorId,
CreateIndirectStubsOwnerId,
DeregisterEHFramesId,
DestroyRemoteAllocatorId,
DestroyIndirectStubsOwnerId,
EmitIndirectStubsId,
EmitIndirectStubsResponseId,
EmitResolverBlockId,
EmitTrampolineBlockId,
EmitTrampolineBlockResponseId,
GetSymbolAddressId,
GetSymbolAddressResponseId,
GetRemoteInfoId,
GetRemoteInfoResponseId,
ReadMemId,
ReadMemResponseId,
RegisterEHFramesId,
ReserveMemId,
ReserveMemResponseId,
RequestCompileId,
RequestCompileResponseId,
SetProtectionsId,
TerminateSessionId,
WriteMemId,
WritePtrId
};
static const char *getJITProcIdName(JITProcId Id);
static const char *getJITFuncIdName(JITFuncId Id);
typedef Procedure<CallIntVoidId, void(TargetAddress Addr)> CallIntVoid;
typedef Function<CallIntVoidId, int32_t(TargetAddress Addr)> CallIntVoid;
typedef Procedure<CallIntVoidResponseId, void(int Result)>
CallIntVoidResponse;
typedef Procedure<CallMainId, void(TargetAddress Addr,
typedef Function<CallMainId, int32_t(TargetAddress Addr,
std::vector<std::string> Args)>
CallMain;
typedef Procedure<CallMainResponseId, void(int Result)> CallMainResponse;
typedef Function<CallVoidVoidId, void(TargetAddress FnAddr)> CallVoidVoid;
typedef Procedure<CallVoidVoidId, void(TargetAddress FnAddr)> CallVoidVoid;
typedef Procedure<CallVoidVoidResponseId, void()> CallVoidVoidResponse;
typedef Procedure<CreateRemoteAllocatorId,
typedef Function<CreateRemoteAllocatorId,
void(ResourceIdMgr::ResourceId AllocatorID)>
CreateRemoteAllocator;
typedef Procedure<CreateIndirectStubsOwnerId,
typedef Function<CreateIndirectStubsOwnerId,
void(ResourceIdMgr::ResourceId StubOwnerID)>
CreateIndirectStubsOwner;
typedef Procedure<DeregisterEHFramesId,
typedef Function<DeregisterEHFramesId,
void(TargetAddress Addr, uint32_t Size)>
DeregisterEHFrames;
typedef Procedure<DestroyRemoteAllocatorId,
typedef Function<DestroyRemoteAllocatorId,
void(ResourceIdMgr::ResourceId AllocatorID)>
DestroyRemoteAllocator;
typedef Procedure<DestroyIndirectStubsOwnerId,
typedef Function<DestroyIndirectStubsOwnerId,
void(ResourceIdMgr::ResourceId StubsOwnerID)>
DestroyIndirectStubsOwner;
typedef Procedure<EmitIndirectStubsId,
void(ResourceIdMgr::ResourceId StubsOwnerID,
/// EmitIndirectStubs result is (StubsBase, PtrsBase, NumStubsEmitted).
typedef Function<EmitIndirectStubsId,
std::tuple<TargetAddress, TargetAddress, uint32_t>(
ResourceIdMgr::ResourceId StubsOwnerID,
uint32_t NumStubsRequired)>
EmitIndirectStubs;
typedef Procedure<EmitIndirectStubsResponseId,
void(TargetAddress StubsBaseAddr,
TargetAddress PtrsBaseAddr,
uint32_t NumStubsEmitted)>
EmitIndirectStubsResponse;
typedef Function<EmitResolverBlockId, void()> EmitResolverBlock;
typedef Procedure<EmitResolverBlockId, void()> EmitResolverBlock;
/// EmitTrampolineBlock result is (BlockAddr, NumTrampolines).
typedef Function<EmitTrampolineBlockId,
std::tuple<TargetAddress, uint32_t>()> EmitTrampolineBlock;
typedef Procedure<EmitTrampolineBlockId, void()> EmitTrampolineBlock;
typedef Procedure<EmitTrampolineBlockResponseId,
void(TargetAddress BlockAddr, uint32_t NumTrampolines)>
EmitTrampolineBlockResponse;
typedef Procedure<GetSymbolAddressId, void(std::string SymbolName)>
typedef Function<GetSymbolAddressId, TargetAddress(std::string SymbolName)>
GetSymbolAddress;
typedef Procedure<GetSymbolAddressResponseId, void(uint64_t SymbolAddr)>
GetSymbolAddressResponse;
/// GetRemoteInfo result is (Triple, PointerSize, PageSize, TrampolineSize,
/// IndirectStubsSize).
typedef Function<GetRemoteInfoId,
std::tuple<std::string, uint32_t, uint32_t, uint32_t,
uint32_t>()> GetRemoteInfo;
typedef Procedure<GetRemoteInfoId, void()> GetRemoteInfo;
typedef Procedure<GetRemoteInfoResponseId,
void(std::string Triple, uint32_t PointerSize,
uint32_t PageSize, uint32_t TrampolineSize,
uint32_t IndirectStubSize)>
GetRemoteInfoResponse;
typedef Procedure<ReadMemId, void(TargetAddress Src, uint64_t Size)>
typedef Function<ReadMemId,
std::vector<char>(TargetAddress Src, uint64_t Size)>
ReadMem;
typedef Procedure<ReadMemResponseId, void()> ReadMemResponse;
typedef Procedure<RegisterEHFramesId,
typedef Function<RegisterEHFramesId,
void(TargetAddress Addr, uint32_t Size)>
RegisterEHFrames;
typedef Procedure<ReserveMemId,
void(ResourceIdMgr::ResourceId AllocID, uint64_t Size,
uint32_t Align)>
typedef Function<ReserveMemId,
TargetAddress(ResourceIdMgr::ResourceId AllocID,
uint64_t Size, uint32_t Align)>
ReserveMem;
typedef Procedure<ReserveMemResponseId, void(TargetAddress Addr)>
ReserveMemResponse;
typedef Procedure<RequestCompileId, void(TargetAddress TrampolineAddr)>
typedef Function<RequestCompileId,
TargetAddress(TargetAddress TrampolineAddr)>
RequestCompile;
typedef Procedure<RequestCompileResponseId, void(TargetAddress ImplAddr)>
RequestCompileResponse;
typedef Procedure<SetProtectionsId,
typedef Function<SetProtectionsId,
void(ResourceIdMgr::ResourceId AllocID, TargetAddress Dst,
uint32_t ProtFlags)>
SetProtections;
typedef Procedure<TerminateSessionId, void()> TerminateSession;
typedef Function<TerminateSessionId, void()> TerminateSession;
typedef Procedure<WriteMemId,
void(TargetAddress Dst, uint64_t Size /* Data to follow */)>
typedef Function<WriteMemId, void(DirectBufferWriter DB)>
WriteMem;
typedef Procedure<WritePtrId, void(TargetAddress Dst, TargetAddress Val)>
typedef Function<WritePtrId, void(TargetAddress Dst, TargetAddress Val)>
WritePtr;
};

View File

@ -45,14 +45,10 @@ public:
EHFramesRegister(std::move(EHFramesRegister)),
EHFramesDeregister(std::move(EHFramesDeregister)) {}
std::error_code getNextProcId(JITProcId &Id) {
return deserialize(Channel, Id);
}
std::error_code handleKnownProcedure(JITProcId Id) {
std::error_code handleKnownFunction(JITFuncId Id) {
typedef OrcRemoteTargetServer ThisT;
DEBUG(dbgs() << "Handling known proc: " << getJITProcIdName(Id) << "\n");
DEBUG(dbgs() << "Handling known proc: " << getJITFuncIdName(Id) << "\n");
switch (Id) {
case CallIntVoidId:
@ -111,27 +107,17 @@ public:
llvm_unreachable("Unhandled JIT RPC procedure Id.");
}
std::error_code requestCompile(TargetAddress &CompiledFnAddr,
TargetAddress TrampolineAddr) {
if (auto EC = call<RequestCompile>(Channel, TrampolineAddr))
return EC;
ErrorOr<TargetAddress> requestCompile(TargetAddress TrampolineAddr) {
auto Listen =
[&](RPCChannel &C, uint32_t Id) {
return handleKnownFunction(static_cast<JITFuncId>(Id));
};
while (1) {
JITProcId Id = InvalidId;
if (auto EC = getNextProcId(Id))
return EC;
switch (Id) {
case RequestCompileResponseId:
return handle<RequestCompileResponse>(Channel,
readArgs(CompiledFnAddr));
default:
if (auto EC = handleKnownProcedure(Id))
return EC;
}
return callSTHandling<RequestCompile>(Channel, Listen, TrampolineAddr);
}
llvm_unreachable("Fell through request-compile command loop.");
void handleTerminateSession() {
handle<TerminateSession>(Channel, [](){ return std::error_code(); });
}
private:
@ -175,18 +161,16 @@ private:
static std::error_code doNothing() { return std::error_code(); }
static TargetAddress reenter(void *JITTargetAddr, void *TrampolineAddr) {
TargetAddress CompiledFnAddr = 0;
auto T = static_cast<OrcRemoteTargetServer *>(JITTargetAddr);
auto EC = T->requestCompile(
CompiledFnAddr, static_cast<TargetAddress>(
auto AddrOrErr = T->requestCompile(
static_cast<TargetAddress>(
reinterpret_cast<uintptr_t>(TrampolineAddr)));
assert(!EC && "Compile request failed");
(void)EC;
return CompiledFnAddr;
// FIXME: Allow customizable failure substitution functions.
assert(AddrOrErr && "Compile request failed");
return *AddrOrErr;
}
std::error_code handleCallIntVoid(TargetAddress Addr) {
ErrorOr<int32_t> handleCallIntVoid(TargetAddress Addr) {
typedef int (*IntVoidFnTy)();
IntVoidFnTy Fn =
reinterpret_cast<IntVoidFnTy>(static_cast<uintptr_t>(Addr));
@ -195,10 +179,10 @@ private:
int Result = Fn();
DEBUG(dbgs() << " Result = " << Result << "\n");
return call<CallIntVoidResponse>(Channel, Result);
return Result;
}
std::error_code handleCallMain(TargetAddress Addr,
ErrorOr<int32_t> handleCallMain(TargetAddress Addr,
std::vector<std::string> Args) {
typedef int (*MainFnTy)(int, const char *[]);
@ -214,7 +198,7 @@ private:
int Result = Fn(ArgC, ArgV.get());
DEBUG(dbgs() << " Result = " << Result << "\n");
return call<CallMainResponse>(Channel, Result);
return Result;
}
std::error_code handleCallVoidVoid(TargetAddress Addr) {
@ -226,7 +210,7 @@ private:
Fn();
DEBUG(dbgs() << " Complete.\n");
return call<CallVoidVoidResponse>(Channel);
return std::error_code();
}
std::error_code handleCreateRemoteAllocator(ResourceIdMgr::ResourceId Id) {
@ -273,7 +257,8 @@ private:
return std::error_code();
}
std::error_code handleEmitIndirectStubs(ResourceIdMgr::ResourceId Id,
ErrorOr<std::tuple<TargetAddress, TargetAddress, uint32_t>>
handleEmitIndirectStubs(ResourceIdMgr::ResourceId Id,
uint32_t NumStubsRequired) {
DEBUG(dbgs() << " ISMgr " << Id << " request " << NumStubsRequired
<< " stubs.\n");
@ -296,8 +281,7 @@ private:
auto &BlockList = StubOwnerItr->second;
BlockList.push_back(std::move(IS));
return call<EmitIndirectStubsResponse>(Channel, StubsBase, PtrsBase,
NumStubsEmitted);
return std::make_tuple(StubsBase, PtrsBase, NumStubsEmitted);
}
std::error_code handleEmitResolverBlock() {
@ -316,7 +300,8 @@ private:
sys::Memory::MF_EXEC);
}
std::error_code handleEmitTrampolineBlock() {
ErrorOr<std::tuple<TargetAddress, uint32_t>>
handleEmitTrampolineBlock() {
std::error_code EC;
auto TrampolineBlock =
sys::OwningMemoryBlock(sys::Memory::allocateMappedMemory(
@ -325,7 +310,7 @@ private:
if (EC)
return EC;
unsigned NumTrampolines =
uint32_t NumTrampolines =
(sys::Process::getPageSize() - TargetT::PointerSize) /
TargetT::TrampolineSize;
@ -339,20 +324,21 @@ private:
TrampolineBlocks.push_back(std::move(TrampolineBlock));
return call<EmitTrampolineBlockResponse>(
Channel,
static_cast<TargetAddress>(reinterpret_cast<uintptr_t>(TrampolineMem)),
NumTrampolines);
auto TrampolineBaseAddr =
static_cast<TargetAddress>(reinterpret_cast<uintptr_t>(TrampolineMem));
return std::make_tuple(TrampolineBaseAddr, NumTrampolines);
}
std::error_code handleGetSymbolAddress(const std::string &Name) {
ErrorOr<TargetAddress> handleGetSymbolAddress(const std::string &Name) {
TargetAddress Addr = SymbolLookup(Name);
DEBUG(dbgs() << " Symbol '" << Name << "' = " << format("0x%016x", Addr)
<< "\n");
return call<GetSymbolAddressResponse>(Channel, Addr);
return Addr;
}
std::error_code handleGetRemoteInfo() {
ErrorOr<std::tuple<std::string, uint32_t, uint32_t, uint32_t, uint32_t>>
handleGetRemoteInfo() {
std::string ProcessTriple = sys::getProcessTriple();
uint32_t PointerSize = TargetT::PointerSize;
uint32_t PageSize = sys::Process::getPageSize();
@ -364,24 +350,23 @@ private:
<< " page size = " << PageSize << "\n"
<< " trampoline size = " << TrampolineSize << "\n"
<< " indirect stub size = " << IndirectStubSize << "\n");
return call<GetRemoteInfoResponse>(Channel, ProcessTriple, PointerSize,
PageSize, TrampolineSize,
return std::make_tuple(ProcessTriple, PointerSize, PageSize ,TrampolineSize,
IndirectStubSize);
}
std::error_code handleReadMem(TargetAddress RSrc, uint64_t Size) {
ErrorOr<std::vector<char>>
handleReadMem(TargetAddress RSrc, uint64_t Size) {
char *Src = reinterpret_cast<char *>(static_cast<uintptr_t>(RSrc));
DEBUG(dbgs() << " Reading " << Size << " bytes from "
<< format("0x%016x", RSrc) << "\n");
if (auto EC = call<ReadMemResponse>(Channel))
return EC;
std::vector<char> Buffer;
Buffer.resize(Size);
for (char *P = Src; Size != 0; --Size)
Buffer.push_back(*P++);
if (auto EC = Channel.appendBytes(Src, Size))
return EC;
return Channel.send();
return Buffer;
}
std::error_code handleRegisterEHFrames(TargetAddress TAddr, uint32_t Size) {
@ -392,7 +377,8 @@ private:
return std::error_code();
}
std::error_code handleReserveMem(ResourceIdMgr::ResourceId Id, uint64_t Size,
ErrorOr<TargetAddress>
handleReserveMem(ResourceIdMgr::ResourceId Id, uint64_t Size,
uint32_t Align) {
auto I = Allocators.find(Id);
if (I == Allocators.end())
@ -408,7 +394,7 @@ private:
TargetAddress AllocAddr =
static_cast<TargetAddress>(reinterpret_cast<uintptr_t>(LocalAllocAddr));
return call<ReserveMemResponse>(Channel, AllocAddr);
return AllocAddr;
}
std::error_code handleSetProtections(ResourceIdMgr::ResourceId Id,
@ -425,11 +411,10 @@ private:
return Allocator.setProtections(LocalAddr, Flags);
}
std::error_code handleWriteMem(TargetAddress RDst, uint64_t Size) {
char *Dst = reinterpret_cast<char *>(static_cast<uintptr_t>(RDst));
DEBUG(dbgs() << " Writing " << Size << " bytes to "
<< format("0x%016x", RDst) << "\n");
return Channel.readBytes(Dst, Size);
std::error_code handleWriteMem(DirectBufferWriter DBW) {
DEBUG(dbgs() << " Writing " << DBW.getSize() << " bytes to "
<< format("0x%016x", DBW.getDst()) << "\n");
return std::error_code();
}
std::error_code handleWritePtr(TargetAddress Addr, TargetAddress PtrVal) {

View File

@ -5,8 +5,10 @@
#include "OrcError.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Endian.h"
#include <mutex>
#include <system_error>
namespace llvm {
@ -26,31 +28,68 @@ public:
/// Flush the stream if possible.
virtual std::error_code send() = 0;
/// Get the lock for stream reading.
std::mutex& getReadLock() { return readLock; }
/// Get the lock for stream writing.
std::mutex& getWriteLock() { return writeLock; }
private:
std::mutex readLock, writeLock;
};
/// Notify the channel that we're starting a message send.
/// Locks the channel for writing.
inline std::error_code startSendMessage(RPCChannel &C) {
C.getWriteLock().lock();
return std::error_code();
}
/// Notify the channel that we're ending a message send.
/// Unlocks the channel for writing.
inline std::error_code endSendMessage(RPCChannel &C) {
C.getWriteLock().unlock();
return std::error_code();
}
/// Notify the channel that we're starting a message receive.
/// Locks the channel for reading.
inline std::error_code startReceiveMessage(RPCChannel &C) {
C.getReadLock().lock();
return std::error_code();
}
/// Notify the channel that we're ending a message receive.
/// Unlocks the channel for reading.
inline std::error_code endReceiveMessage(RPCChannel &C) {
C.getReadLock().unlock();
return std::error_code();
}
/// RPC channel serialization for a variadic list of arguments.
template <typename T, typename... Ts>
std::error_code serialize_seq(RPCChannel &C, const T &Arg, const Ts &... Args) {
std::error_code serializeSeq(RPCChannel &C, const T &Arg, const Ts &... Args) {
if (auto EC = serialize(C, Arg))
return EC;
return serialize_seq(C, Args...);
return serializeSeq(C, Args...);
}
/// RPC channel serialization for an (empty) variadic list of arguments.
inline std::error_code serialize_seq(RPCChannel &C) {
inline std::error_code serializeSeq(RPCChannel &C) {
return std::error_code();
}
/// RPC channel deserialization for a variadic list of arguments.
template <typename T, typename... Ts>
std::error_code deserialize_seq(RPCChannel &C, T &Arg, Ts &... Args) {
std::error_code deserializeSeq(RPCChannel &C, T &Arg, Ts &... Args) {
if (auto EC = deserialize(C, Arg))
return EC;
return deserialize_seq(C, Args...);
return deserializeSeq(C, Args...);
}
/// RPC channel serialization for an (empty) variadic list of arguments.
inline std::error_code deserialize_seq(RPCChannel &C) {
inline std::error_code deserializeSeq(RPCChannel &C) {
return std::error_code();
}
@ -138,6 +177,34 @@ inline std::error_code deserialize(RPCChannel &C, std::string &S) {
return C.readBytes(&S[0], Count);
}
// Serialization helper for std::tuple.
template <typename TupleT, size_t... Is>
inline std::error_code serializeTupleHelper(RPCChannel &C,
const TupleT &V,
llvm::index_sequence<Is...> _) {
return serializeSeq(C, std::get<Is>(V)...);
}
/// RPC channel serialization for std::tuple.
template <typename... ArgTs>
inline std::error_code serialize(RPCChannel &C, const std::tuple<ArgTs...> &V) {
return serializeTupleHelper(C, V, llvm::index_sequence_for<ArgTs...>());
}
// Serialization helper for std::tuple.
template <typename TupleT, size_t... Is>
inline std::error_code deserializeTupleHelper(RPCChannel &C,
TupleT &V,
llvm::index_sequence<Is...> _) {
return deserializeSeq(C, std::get<Is>(V)...);
}
/// RPC channel deserialization for std::tuple.
template <typename... ArgTs>
inline std::error_code deserialize(RPCChannel &C, std::tuple<ArgTs...> &V) {
return deserializeTupleHelper(C, V, llvm::index_sequence_for<ArgTs...>());
}
/// RPC channel serialization for ArrayRef<T>.
template <typename T>
std::error_code serialize(RPCChannel &C, const ArrayRef<T> &A) {

View File

@ -14,46 +14,207 @@
#ifndef LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H
#define LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include "llvm/Support/ErrorOr.h"
#ifdef _MSC_VER
// concrt.h depends on eh.h for __uncaught_exception declaration
// even if we disable exceptions.
#include <eh.h>
// Disable warnings from ppltasks.h transitively included by <future>.
#pragma warning(push)
#pragma warning(disable : 4530)
#pragma warning(disable : 4062)
#endif
#include <future>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <map>
namespace llvm {
namespace orc {
namespace remote {
/// Describes reserved RPC Function Ids.
///
/// The default implementation will serve for integer and enum function id
/// types. If you want to use a custom type as your FunctionId you can
/// specialize this class and provide unique values for InvalidId,
/// ResponseId and FirstValidId.
template <typename T> class RPCFunctionIdTraits {
public:
static const T InvalidId = static_cast<T>(0);
static const T ResponseId = static_cast<T>(1);
static const T FirstValidId = static_cast<T>(2);
};
// Base class containing utilities that require partial specialization.
// These cannot be included in RPC, as template class members cannot be
// partially specialized.
class RPCBase {
protected:
template <typename ProcedureIdT, ProcedureIdT ProcId, typename FnT>
class ProcedureHelper {
public:
static const ProcedureIdT Id = ProcId;
};
// RPC Function description type.
//
// This class provides the information and operations needed to support the
// RPC primitive operations (call, expect, etc) for a given function. It
// is specialized for void and non-void functions to deal with the differences
// betwen the two. Both specializations have the same interface:
//
// Id - The function's unique identifier.
// OptionalReturn - The return type for asyncronous calls.
// ErrorReturn - The return type for synchronous calls.
// optionalToErrorReturn - Conversion from a valid OptionalReturn to an
// ErrorReturn.
// readResult - Deserialize a result from a channel.
// abandon - Abandon a promised (asynchronous) result.
// respond - Retun a result on the channel.
template <typename FunctionIdT, FunctionIdT FuncId, typename FnT>
class FunctionHelper {};
template <typename ChannelT, typename Proc> class CallHelper;
template <typename ChannelT, typename ProcedureIdT, ProcedureIdT ProcId,
// RPC Function description specialization for non-void functions.
template <typename FunctionIdT, FunctionIdT FuncId, typename RetT,
typename... ArgTs>
class CallHelper<ChannelT,
ProcedureHelper<ProcedureIdT, ProcId, void(ArgTs...)>> {
class FunctionHelper<FunctionIdT, FuncId, RetT(ArgTs...)> {
public:
static std::error_code call(ChannelT &C, const ArgTs &... Args) {
if (auto EC = serialize(C, ProcId))
static_assert(FuncId != RPCFunctionIdTraits<FunctionIdT>::InvalidId &&
FuncId != RPCFunctionIdTraits<FunctionIdT>::ResponseId,
"Cannot define custom function with InvalidId or ResponseId. "
"Please use RPCFunctionTraits<FunctionIdT>::FirstValidId.");
static const FunctionIdT Id = FuncId;
typedef Optional<RetT> OptionalReturn;
typedef ErrorOr<RetT> ErrorReturn;
static ErrorReturn optionalToErrorReturn(OptionalReturn &&V) {
assert(V && "Return value not available");
return std::move(*V);
}
template <typename ChannelT>
static std::error_code readResult(ChannelT &C,
std::promise<OptionalReturn> &P) {
RetT Val;
auto EC = deserialize(C, Val);
// FIXME: Join error EC2 from endReceiveMessage with the deserialize
// error once we switch to using Error.
auto EC2 = endReceiveMessage(C);
(void)EC2;
if (EC) {
P.set_value(OptionalReturn());
return EC;
// If you see a compile-error on this line you're probably calling a
// function with the wrong signature.
return serialize_seq(C, Args...);
}
P.set_value(std::move(Val));
return std::error_code();
}
static void abandon(std::promise<OptionalReturn> &P) {
P.set_value(OptionalReturn());
}
template <typename ChannelT, typename SequenceNumberT>
static std::error_code respond(ChannelT &C, SequenceNumberT SeqNo,
const ErrorReturn &Result) {
FunctionIdT ResponseId = RPCFunctionIdTraits<FunctionIdT>::ResponseId;
// If the handler returned an error then bail out with that.
if (!Result)
return Result.getError();
// Otherwise open a new message on the channel and send the result.
if (auto EC = startSendMessage(C))
return EC;
if (auto EC = serializeSeq(C, ResponseId, SeqNo, *Result))
return EC;
return endSendMessage(C);
}
};
template <typename ChannelT, typename Proc> class HandlerHelper;
// RPC Function description specialization for void functions.
template <typename FunctionIdT, FunctionIdT FuncId, typename... ArgTs>
class FunctionHelper<FunctionIdT, FuncId, void(ArgTs...)> {
public:
static_assert(FuncId != RPCFunctionIdTraits<FunctionIdT>::InvalidId &&
FuncId != RPCFunctionIdTraits<FunctionIdT>::ResponseId,
"Cannot define custom function with InvalidId or ResponseId. "
"Please use RPCFunctionTraits<FunctionIdT>::FirstValidId.");
template <typename ChannelT, typename ProcedureIdT, ProcedureIdT ProcId,
typename... ArgTs>
class HandlerHelper<ChannelT,
ProcedureHelper<ProcedureIdT, ProcId, void(ArgTs...)>> {
static const FunctionIdT Id = FuncId;
typedef bool OptionalReturn;
typedef std::error_code ErrorReturn;
static ErrorReturn optionalToErrorReturn(OptionalReturn &&V) {
assert(V && "Return value not available");
return std::error_code();
}
template <typename ChannelT>
static std::error_code readResult(ChannelT &C,
std::promise<OptionalReturn> &P) {
// Void functions don't have anything to deserialize, so we're good.
P.set_value(true);
return endReceiveMessage(C);
}
static void abandon(std::promise<OptionalReturn> &P) { P.set_value(false); }
template <typename ChannelT, typename SequenceNumberT>
static std::error_code respond(ChannelT &C, SequenceNumberT SeqNo,
const ErrorReturn &Result) {
const FunctionIdT ResponseId =
RPCFunctionIdTraits<FunctionIdT>::ResponseId;
// If the handler returned an error then bail out with that.
if (Result)
return Result;
// Otherwise open a new message on the channel and send the result.
if (auto EC = startSendMessage(C))
return EC;
if (auto EC = serializeSeq(C, ResponseId, SeqNo))
return EC;
return endSendMessage(C);
}
};
// Helper for the call primitive.
template <typename ChannelT, typename SequenceNumberT, typename Func>
class CallHelper;
template <typename ChannelT, typename SequenceNumberT, typename FunctionIdT,
FunctionIdT FuncId, typename RetT, typename... ArgTs>
class CallHelper<ChannelT, SequenceNumberT,
FunctionHelper<FunctionIdT, FuncId, RetT(ArgTs...)>> {
public:
static std::error_code call(ChannelT &C, SequenceNumberT SeqNo,
const ArgTs &... Args) {
if (auto EC = startSendMessage(C))
return EC;
if (auto EC = serializeSeq(C, FuncId, SeqNo, Args...))
return EC;
return endSendMessage(C);
}
};
// Helper for handle primitive.
template <typename ChannelT, typename SequenceNumberT, typename Func>
class HandlerHelper;
template <typename ChannelT, typename SequenceNumberT, typename FunctionIdT,
FunctionIdT FuncId, typename RetT, typename... ArgTs>
class HandlerHelper<ChannelT, SequenceNumberT,
FunctionHelper<FunctionIdT, FuncId, RetT(ArgTs...)>> {
public:
template <typename HandlerT>
static std::error_code handle(ChannelT &C, HandlerT Handler) {
@ -61,34 +222,45 @@ protected:
}
private:
typedef FunctionHelper<FunctionIdT, FuncId, RetT(ArgTs...)> Func;
template <typename HandlerT, size_t... Is>
static std::error_code readAndHandle(ChannelT &C, HandlerT Handler,
llvm::index_sequence<Is...> _) {
std::tuple<ArgTs...> RPCArgs;
SequenceNumberT SeqNo;
// GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning
// for RPCArgs. Void cast RPCArgs to work around this for now.
// FIXME: Remove this workaround once we can assume a working GCC version.
(void)RPCArgs;
if (auto EC = deserialize_seq(C, std::get<Is>(RPCArgs)...))
if (auto EC = deserializeSeq(C, SeqNo, std::get<Is>(RPCArgs)...))
return EC;
return Handler(std::get<Is>(RPCArgs)...);
// We've deserialized the arguments, so unlock the channel for reading
// before we call the handler. This allows recursive RPC calls.
if (auto EC = endReceiveMessage(C))
return EC;
return Func::template respond<ChannelT, SequenceNumberT>(
C, SeqNo, Handler(std::get<Is>(RPCArgs)...));
}
};
template <typename ClassT, typename... ArgTs> class MemberFnWrapper {
// Helper for wrapping member functions up as functors.
template <typename ClassT, typename RetT, typename... ArgTs>
class MemberFnWrapper {
public:
typedef std::error_code (ClassT::*MethodT)(ArgTs...);
typedef RetT (ClassT::*MethodT)(ArgTs...);
MemberFnWrapper(ClassT &Instance, MethodT Method)
: Instance(Instance), Method(Method) {}
std::error_code operator()(ArgTs &... Args) {
return (Instance.*Method)(Args...);
}
RetT operator()(ArgTs &... Args) { return (Instance.*Method)(Args...); }
private:
ClassT &Instance;
MethodT Method;
};
// Helper that provides a Functor for deserializing arguments.
template <typename... ArgTs> class ReadArgs {
public:
std::error_code operator()() { return std::error_code(); }
@ -112,7 +284,7 @@ protected:
/// Contains primitive utilities for defining, calling and handling calls to
/// remote procedures. ChannelT is a bidirectional stream conforming to the
/// RPCChannel interface (see RPCChannel.h), and ProcedureIdT is a procedure
/// RPCChannel interface (see RPCChannel.h), and FunctionIdT is a procedure
/// identifier type that must be serializable on ChannelT.
///
/// These utilities support the construction of very primitive RPC utilities.
@ -129,120 +301,172 @@ protected:
///
/// Overview (see comments individual types/methods for details):
///
/// Procedure<Id, Args...> :
/// Function<Id, Args...> :
///
/// associates a unique serializable id with an argument list.
///
///
/// call<Proc>(Channel, Args...) :
/// call<Func>(Channel, Args...) :
///
/// Calls the remote procedure 'Proc' by serializing Proc's id followed by its
/// Calls the remote procedure 'Func' by serializing Func's id followed by its
/// arguments and sending the resulting bytes to 'Channel'.
///
///
/// handle<Proc>(Channel, <functor matching std::error_code(Args...)> :
/// handle<Func>(Channel, <functor matching std::error_code(Args...)> :
///
/// Handles a call to 'Proc' by deserializing its arguments and calling the
/// given functor. This assumes that the id for 'Proc' has already been
/// Handles a call to 'Func' by deserializing its arguments and calling the
/// given functor. This assumes that the id for 'Func' has already been
/// deserialized.
///
/// expect<Proc>(Channel, <functor matching std::error_code(Args...)> :
/// expect<Func>(Channel, <functor matching std::error_code(Args...)> :
///
/// The same as 'handle', except that the procedure id should not have been
/// read yet. Expect will deserialize the id and assert that it matches Proc's
/// read yet. Expect will deserialize the id and assert that it matches Func's
/// id. If it does not, and unexpected RPC call error is returned.
template <typename ChannelT, typename ProcedureIdT = uint32_t>
template <typename ChannelT, typename FunctionIdT = uint32_t,
typename SequenceNumberT = uint16_t>
class RPC : public RPCBase {
public:
/// Utility class for defining/referring to RPC procedures.
///
/// Typedefs of this utility are used when calling/handling remote procedures.
///
/// ProcId should be a unique value of ProcedureIdT (i.e. not used with any
/// other Procedure typedef in the RPC API being defined.
/// FuncId should be a unique value of FunctionIdT (i.e. not used with any
/// other Function typedef in the RPC API being defined.
///
/// the template argument Ts... gives the argument list for the remote
/// procedure.
///
/// E.g.
///
/// typedef Procedure<0, bool> Proc1;
/// typedef Procedure<1, std::string, std::vector<int>> Proc2;
/// typedef Function<0, bool> Func1;
/// typedef Function<1, std::string, std::vector<int>> Func2;
///
/// if (auto EC = call<Proc1>(Channel, true))
/// if (auto EC = call<Func1>(Channel, true))
/// /* handle EC */;
///
/// if (auto EC = expect<Proc2>(Channel,
/// if (auto EC = expect<Func2>(Channel,
/// [](std::string &S, std::vector<int> &V) {
/// // Stuff.
/// return std::error_code();
/// })
/// /* handle EC */;
///
template <ProcedureIdT ProcId, typename FnT>
using Procedure = ProcedureHelper<ProcedureIdT, ProcId, FnT>;
template <FunctionIdT FuncId, typename FnT>
using Function = FunctionHelper<FunctionIdT, FuncId, FnT>;
/// Return type for asynchronous call primitives.
template <typename Func>
using AsyncCallResult =
std::pair<std::future<typename Func::OptionalReturn>, SequenceNumberT>;
/// Serialize Args... to channel C, but do not call C.send().
///
/// For buffered channels, this can be used to queue up several calls before
/// flushing the channel.
template <typename Proc, typename... ArgTs>
static std::error_code appendCall(ChannelT &C, const ArgTs &... Args) {
return CallHelper<ChannelT, Proc>::call(C, Args...);
/// For void functions returns a std::future<Error>. For functions that
/// return an R, returns a std::future<Optional<R>>.
template <typename Func, typename... ArgTs>
ErrorOr<AsyncCallResult<Func>> appendCallAsync(ChannelT &C,
const ArgTs &... Args) {
auto SeqNo = SequenceNumberMgr.getSequenceNumber();
std::promise<typename Func::OptionalReturn> Promise;
auto Result = Promise.get_future();
OutstandingResults[SeqNo] = std::move(Promise);
if (auto EC = CallHelper<ChannelT, SequenceNumberT, Func>::call(C, SeqNo,
Args...)) {
abandonOutstandingResults();
return EC;
} else
return AsyncCallResult<Func>(std::move(Result), SeqNo);
}
/// Serialize Args... to channel C and call C.send().
template <typename Proc, typename... ArgTs>
static std::error_code call(ChannelT &C, const ArgTs &... Args) {
if (auto EC = appendCall<Proc>(C, Args...))
template <typename Func, typename... ArgTs>
ErrorOr<AsyncCallResult<Func>> callAsync(ChannelT &C, const ArgTs &... Args) {
auto SeqNo = SequenceNumberMgr.getSequenceNumber();
std::promise<typename Func::OptionalReturn> Promise;
auto Result = Promise.get_future();
OutstandingResults[SeqNo] =
createOutstandingResult<Func>(std::move(Promise));
if (auto EC = CallHelper<ChannelT, SequenceNumberT, Func>::call(C, SeqNo,
Args...)) {
abandonOutstandingResults();
return EC;
return C.send();
}
if (auto EC = C.send()) {
abandonOutstandingResults();
return EC;
}
return AsyncCallResult<Func>(std::move(Result), SeqNo);
}
/// Deserialize and return an enum whose underlying type is ProcedureIdT.
static std::error_code getNextProcId(ChannelT &C, ProcedureIdT &Id) {
/// This can be used in single-threaded mode.
template <typename Func, typename HandleFtor, typename... ArgTs>
typename Func::ErrorReturn
callSTHandling(ChannelT &C, HandleFtor &HandleOther, const ArgTs &... Args) {
if (auto ResultAndSeqNoOrErr = callAsync<Func>(C, Args...)) {
auto &ResultAndSeqNo = *ResultAndSeqNoOrErr;
if (auto EC = waitForResult(C, ResultAndSeqNo.second, HandleOther))
return EC;
return Func::optionalToErrorReturn(ResultAndSeqNo.first.get());
} else
return ResultAndSeqNoOrErr.getError();
}
// This can be used in single-threaded mode.
template <typename Func, typename... ArgTs>
typename Func::ErrorReturn callST(ChannelT &C, const ArgTs &... Args) {
return callSTHandling<Func>(C, handleNone, Args...);
}
/// Start receiving a new function call.
///
/// Calls startReceiveMessage on the channel, then deserializes a FunctionId
/// into Id.
std::error_code startReceivingFunction(ChannelT &C, FunctionIdT &Id) {
if (auto EC = startReceiveMessage(C))
return EC;
return deserialize(C, Id);
}
/// Deserialize args for Proc from C and call Handler. The signature of
/// Deserialize args for Func from C and call Handler. The signature of
/// handler must conform to 'std::error_code(Args...)' where Args... matches
/// the arguments used in the Proc typedef.
template <typename Proc, typename HandlerT>
/// the arguments used in the Func typedef.
template <typename Func, typename HandlerT>
static std::error_code handle(ChannelT &C, HandlerT Handler) {
return HandlerHelper<ChannelT, Proc>::handle(C, Handler);
return HandlerHelper<ChannelT, SequenceNumberT, Func>::handle(C, Handler);
}
/// Helper version of 'handle' for calling member functions.
template <typename Proc, typename ClassT, typename... ArgTs>
static std::error_code
handle(ChannelT &C, ClassT &Instance,
std::error_code (ClassT::*HandlerMethod)(ArgTs...)) {
return handle<Proc>(
C, MemberFnWrapper<ClassT, ArgTs...>(Instance, HandlerMethod));
template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
static std::error_code handle(ChannelT &C, ClassT &Instance,
RetT (ClassT::*HandlerMethod)(ArgTs...)) {
return handle<Func>(
C, MemberFnWrapper<ClassT, RetT, ArgTs...>(Instance, HandlerMethod));
}
/// Deserialize a ProcedureIdT from C and verify it matches the id for Proc.
/// Deserialize a FunctionIdT from C and verify it matches the id for Func.
/// If the id does match, deserialize the arguments and call the handler
/// (similarly to handle).
/// If the id does not match, return an unexpect RPC call error and do not
/// deserialize any further bytes.
template <typename Proc, typename HandlerT>
static std::error_code expect(ChannelT &C, HandlerT Handler) {
ProcedureIdT ProcId;
if (auto EC = getNextProcId(C, ProcId))
return EC;
if (ProcId != Proc::Id)
template <typename Func, typename HandlerT>
std::error_code expect(ChannelT &C, HandlerT Handler) {
FunctionIdT FuncId;
if (auto EC = startReceivingFunction(C, FuncId))
return std::move(EC);
if (FuncId != Func::Id)
return orcError(OrcErrorCode::UnexpectedRPCCall);
return handle<Proc>(C, Handler);
return handle<Func>(C, Handler);
}
/// Helper version of expect for calling member functions.
template <typename Proc, typename ClassT, typename... ArgTs>
template <typename Func, typename ClassT, typename... ArgTs>
static std::error_code
expect(ChannelT &C, ClassT &Instance,
std::error_code (ClassT::*HandlerMethod)(ArgTs...)) {
return expect<Proc>(
return expect<Func>(
C, MemberFnWrapper<ClassT, ArgTs...>(Instance, HandlerMethod));
}
@ -251,18 +475,160 @@ public:
/// channel.
/// E.g.
///
/// typedef Procedure<0, bool, int> Proc1;
/// typedef Function<0, bool, int> Func1;
///
/// ...
/// bool B;
/// int I;
/// if (auto EC = expect<Proc1>(Channel, readArgs(B, I)))
/// if (auto EC = expect<Func1>(Channel, readArgs(B, I)))
/// /* Handle Args */ ;
///
template <typename... ArgTs>
static ReadArgs<ArgTs...> readArgs(ArgTs &... Args) {
return ReadArgs<ArgTs...>(Args...);
}
/// Read a response from Channel.
/// This should be called from the receive loop to retrieve results.
std::error_code handleResponse(ChannelT &C, SequenceNumberT &SeqNo) {
if (auto EC = deserialize(C, SeqNo)) {
abandonOutstandingResults();
return EC;
}
auto I = OutstandingResults.find(SeqNo);
if (I == OutstandingResults.end()) {
abandonOutstandingResults();
return orcError(OrcErrorCode::UnexpectedRPCResponse);
}
if (auto EC = I->second->readResult(C)) {
abandonOutstandingResults();
// FIXME: Release sequence numbers?
return EC;
}
OutstandingResults.erase(I);
SequenceNumberMgr.releaseSequenceNumber(SeqNo);
return std::error_code();
}
// Loop waiting for a result with the given sequence number.
// This can be used as a receive loop if the user doesn't have a default.
template <typename HandleOtherFtor>
std::error_code waitForResult(ChannelT &C, SequenceNumberT TgtSeqNo,
HandleOtherFtor &HandleOther = handleNone) {
bool GotTgtResult = false;
while (!GotTgtResult) {
FunctionIdT Id = RPCFunctionIdTraits<FunctionIdT>::InvalidId;
if (auto EC = startReceivingFunction(C, Id))
return EC;
if (Id == RPCFunctionIdTraits<FunctionIdT>::ResponseId) {
SequenceNumberT SeqNo;
if (auto EC = handleResponse(C, SeqNo))
return EC;
GotTgtResult = (SeqNo == TgtSeqNo);
} else if (auto EC = HandleOther(C, Id))
return EC;
}
return std::error_code();
}
// Default handler for 'other' (non-response) functions when waiting for a
// result from the channel.
static std::error_code handleNone(ChannelT &, FunctionIdT) {
return orcError(OrcErrorCode::UnexpectedRPCCall);
};
private:
// Manage sequence numbers.
class SequenceNumberManager {
public:
SequenceNumberManager() = default;
SequenceNumberManager(SequenceNumberManager &&Other)
: NextSequenceNumber(std::move(Other.NextSequenceNumber)),
FreeSequenceNumbers(std::move(Other.FreeSequenceNumbers)) {}
SequenceNumberManager &operator=(SequenceNumberManager &&Other) {
NextSequenceNumber = std::move(Other.NextSequenceNumber);
FreeSequenceNumbers = std::move(Other.FreeSequenceNumbers);
}
void reset() {
std::lock_guard<std::mutex> Lock(SeqNoLock);
NextSequenceNumber = 0;
FreeSequenceNumbers.clear();
}
SequenceNumberT getSequenceNumber() {
std::lock_guard<std::mutex> Lock(SeqNoLock);
if (FreeSequenceNumbers.empty())
return NextSequenceNumber++;
auto SequenceNumber = FreeSequenceNumbers.back();
FreeSequenceNumbers.pop_back();
return SequenceNumber;
}
void releaseSequenceNumber(SequenceNumberT SequenceNumber) {
std::lock_guard<std::mutex> Lock(SeqNoLock);
FreeSequenceNumbers.push_back(SequenceNumber);
}
private:
std::mutex SeqNoLock;
SequenceNumberT NextSequenceNumber = 0;
std::vector<SequenceNumberT> FreeSequenceNumbers;
};
// Base class for results that haven't been returned from the other end of the
// RPC connection yet.
class OutstandingResult {
public:
virtual ~OutstandingResult() {}
virtual std::error_code readResult(ChannelT &C) = 0;
virtual void abandon() = 0;
};
// Outstanding results for a specific function.
template <typename Func>
class OutstandingResultImpl : public OutstandingResult {
private:
public:
OutstandingResultImpl(std::promise<typename Func::OptionalReturn> &&P)
: P(std::move(P)) {}
std::error_code readResult(ChannelT &C) override {
return Func::readResult(C, P);
}
void abandon() override { Func::abandon(P); }
private:
std::promise<typename Func::OptionalReturn> P;
};
// Create an outstanding result for the given function.
template <typename Func>
std::unique_ptr<OutstandingResult>
createOutstandingResult(std::promise<typename Func::OptionalReturn> &&P) {
return llvm::make_unique<OutstandingResultImpl<Func>>(std::move(P));
}
// Abandon all outstanding results.
void abandonOutstandingResults() {
for (auto &KV : OutstandingResults)
KV.second->abandon();
OutstandingResults.clear();
SequenceNumberMgr.reset();
}
SequenceNumberManager SequenceNumberMgr;
std::map<SequenceNumberT, std::unique_ptr<OutstandingResult>>
OutstandingResults;
};
} // end namespace remote

View File

@ -38,6 +38,8 @@ public:
return "Remote indirect stubs owner Id already in use";
case OrcErrorCode::UnexpectedRPCCall:
return "Unexpected RPC call";
case OrcErrorCode::UnexpectedRPCResponse:
return "Unexpected RPC response";
}
llvm_unreachable("Unhandled error code");
}

View File

@ -13,50 +13,40 @@ namespace llvm {
namespace orc {
namespace remote {
#define PROCNAME(X) \
#define FUNCNAME(X) \
case X ## Id: \
return #X
const char *OrcRemoteTargetRPCAPI::getJITProcIdName(JITProcId Id) {
const char *OrcRemoteTargetRPCAPI::getJITFuncIdName(JITFuncId Id) {
switch (Id) {
case InvalidId:
return "*** Invalid JITProcId ***";
PROCNAME(CallIntVoid);
PROCNAME(CallIntVoidResponse);
PROCNAME(CallMain);
PROCNAME(CallMainResponse);
PROCNAME(CallVoidVoid);
PROCNAME(CallVoidVoidResponse);
PROCNAME(CreateRemoteAllocator);
PROCNAME(CreateIndirectStubsOwner);
PROCNAME(DeregisterEHFrames);
PROCNAME(DestroyRemoteAllocator);
PROCNAME(DestroyIndirectStubsOwner);
PROCNAME(EmitIndirectStubs);
PROCNAME(EmitIndirectStubsResponse);
PROCNAME(EmitResolverBlock);
PROCNAME(EmitTrampolineBlock);
PROCNAME(EmitTrampolineBlockResponse);
PROCNAME(GetSymbolAddress);
PROCNAME(GetSymbolAddressResponse);
PROCNAME(GetRemoteInfo);
PROCNAME(GetRemoteInfoResponse);
PROCNAME(ReadMem);
PROCNAME(ReadMemResponse);
PROCNAME(RegisterEHFrames);
PROCNAME(ReserveMem);
PROCNAME(ReserveMemResponse);
PROCNAME(RequestCompile);
PROCNAME(RequestCompileResponse);
PROCNAME(SetProtections);
PROCNAME(TerminateSession);
PROCNAME(WriteMem);
PROCNAME(WritePtr);
return "*** Invalid JITFuncId ***";
FUNCNAME(CallIntVoid);
FUNCNAME(CallMain);
FUNCNAME(CallVoidVoid);
FUNCNAME(CreateRemoteAllocator);
FUNCNAME(CreateIndirectStubsOwner);
FUNCNAME(DeregisterEHFrames);
FUNCNAME(DestroyRemoteAllocator);
FUNCNAME(DestroyIndirectStubsOwner);
FUNCNAME(EmitIndirectStubs);
FUNCNAME(EmitResolverBlock);
FUNCNAME(EmitTrampolineBlock);
FUNCNAME(GetSymbolAddress);
FUNCNAME(GetRemoteInfo);
FUNCNAME(ReadMem);
FUNCNAME(RegisterEHFrames);
FUNCNAME(ReserveMem);
FUNCNAME(RequestCompile);
FUNCNAME(SetProtections);
FUNCNAME(TerminateSession);
FUNCNAME(WriteMem);
FUNCNAME(WritePtr);
};
return nullptr;
}
#undef PROCNAME
#undef FUNCNAME
} // end namespace remote
} // end namespace orc

View File

@ -54,16 +54,18 @@ int main(int argc, char *argv[]) {
JITServer Server(Channel, SymbolLookup, RegisterEHFrames, DeregisterEHFrames);
while (1) {
JITServer::JITProcId Id = JITServer::InvalidId;
if (auto EC = Server.getNextProcId(Id)) {
uint32_t RawId;
if (auto EC = Server.startReceivingFunction(Channel, RawId)) {
errs() << "Error: " << EC.message() << "\n";
return 1;
}
auto Id = static_cast<JITServer::JITFuncId>(RawId);
switch (Id) {
case JITServer::TerminateSessionId:
Server.handleTerminateSession();
return 0;
default:
if (auto EC = Server.handleKnownProcedure(Id)) {
if (auto EC = Server.handleKnownFunction(Id)) {
errs() << "Error: " << EC.message() << "\n";
return 1;
}

View File

@ -16,6 +16,7 @@
#include "llvm/ExecutionEngine/Orc/RPCChannel.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include <mutex>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>

View File

@ -570,7 +570,7 @@ int main(int argc, char **argv, char * const *envp) {
// Reset errno to zero on entry to main.
errno = 0;
int Result;
int Result = -1;
// Sanity check use of remote-jit: LLI currently only supports use of the
// remote JIT on Unix platforms.
@ -669,12 +669,13 @@ int main(int argc, char **argv, char * const *envp) {
static_cast<ForwardingMemoryManager*>(RTDyldMM)->setResolver(
orc::createLambdaResolver(
[&](const std::string &Name) {
orc::TargetAddress Addr = 0;
if (auto EC = R->getSymbolAddress(Addr, Name)) {
errs() << "Failure during symbol lookup: " << EC.message() << "\n";
if (auto AddrOrErr = R->getSymbolAddress(Name))
return RuntimeDyld::SymbolInfo(*AddrOrErr, JITSymbolFlags::Exported);
else {
errs() << "Failure during symbol lookup: "
<< AddrOrErr.getError().message() << "\n";
exit(1);
}
return RuntimeDyld::SymbolInfo(Addr, JITSymbolFlags::Exported);
},
[](const std::string &Name) { return nullptr; }
));
@ -686,8 +687,10 @@ int main(int argc, char **argv, char * const *envp) {
EE->finalizeObject();
DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x"
<< format("%llx", Entry) << "\n");
if (auto EC = R->callIntVoid(Result, Entry))
errs() << "ERROR: " << EC.message() << "\n";
if (auto ResultOrErr = R->callIntVoid(Entry))
Result = *ResultOrErr;
else
errs() << "ERROR: " << ResultOrErr.getError().message() << "\n";
// Like static constructors, the remote target MCJIT support doesn't handle
// this yet. It could. FIXME.

View File

@ -44,26 +44,25 @@ private:
class DummyRPC : public testing::Test,
public RPC<QueueChannel> {
public:
typedef Procedure<1, void(bool)> Proc1;
typedef Procedure<2, void(int8_t, uint8_t, int16_t, uint16_t,
typedef Function<2, void(bool)> BasicVoid;
typedef Function<3, int32_t(bool)> BasicInt;
typedef Function<4, void(int8_t, uint8_t, int16_t, uint16_t,
int32_t, uint32_t, int64_t, uint64_t,
bool, std::string, std::vector<int>)> AllTheTypes;
};
TEST_F(DummyRPC, TestBasic) {
TEST_F(DummyRPC, TestAsyncBasicVoid) {
std::queue<char> Queue;
QueueChannel C(Queue);
{
// Make a call to Proc1.
auto EC = call<Proc1>(C, true);
EXPECT_FALSE(EC) << "Simple call over queue failed";
}
// Make an async call.
auto ResOrErr = callAsync<BasicVoid>(C, true);
EXPECT_TRUE(!!ResOrErr) << "Simple call over queue failed";
{
// Expect a call to Proc1.
auto EC = expect<Proc1>(C,
auto EC = expect<BasicVoid>(C,
[&](bool &B) {
EXPECT_EQ(B, true)
<< "Bool serialization broken";
@ -71,16 +70,56 @@ TEST_F(DummyRPC, TestBasic) {
});
EXPECT_FALSE(EC) << "Simple expect over queue failed";
}
{
// Wait for the result.
auto EC = waitForResult(C, ResOrErr->second, handleNone);
EXPECT_FALSE(EC) << "Could not read result.";
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(Val) << "Remote void function failed to execute.";
}
TEST_F(DummyRPC, TestAsyncBasicInt) {
std::queue<char> Queue;
QueueChannel C(Queue);
// Make an async call.
auto ResOrErr = callAsync<BasicInt>(C, false);
EXPECT_TRUE(!!ResOrErr) << "Simple call over queue failed";
{
// Expect a call to Proc1.
auto EC = expect<BasicInt>(C,
[&](bool &B) {
EXPECT_EQ(B, false)
<< "Bool serialization broken";
return 42;
});
EXPECT_FALSE(EC) << "Simple expect over queue failed";
}
{
// Wait for the result.
auto EC = waitForResult(C, ResOrErr->second, handleNone);
EXPECT_FALSE(EC) << "Could not read result.";
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(!!Val) << "Remote int function failed to execute.";
EXPECT_EQ(*Val, 42) << "Remote int function return wrong value.";
}
TEST_F(DummyRPC, TestSerialization) {
std::queue<char> Queue;
QueueChannel C(Queue);
{
// Make a call to Proc1.
std::vector<int> v({42, 7});
auto EC = call<AllTheTypes>(C,
auto ResOrErr = callAsync<AllTheTypes>(C,
-101,
250,
-10000,
@ -92,8 +131,8 @@ TEST_F(DummyRPC, TestSerialization) {
true,
"foo",
v);
EXPECT_FALSE(EC) << "Big (serialization test) call over queue failed";
}
EXPECT_TRUE(!!ResOrErr)
<< "Big (serialization test) call over queue failed";
{
// Expect a call to Proc1.
@ -136,4 +175,14 @@ TEST_F(DummyRPC, TestSerialization) {
});
EXPECT_FALSE(EC) << "Big (serialization test) call over queue failed";
}
{
// Wait for the result.
auto EC = waitForResult(C, ResOrErr->second, handleNone);
EXPECT_FALSE(EC) << "Could not read result.";
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(Val) << "Remote void function failed to execute.";
}