mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-11 13:37:07 +00:00
rdar://12100355 (part 1)
This revision attempts to recognize following population-count pattern: while(a) { c++; ... ; a &= a - 1; ... }, where <c> and <a>could be used multiple times in the loop body. TODO: On X8664 and ARM, __buildin_ctpop() are not expanded to a efficent instruction sequence, which need to be improved in the following commits. Reviewed by Nadav, really appreciate! llvm-svn: 168931
This commit is contained in:
parent
18531926d1
commit
a7c032d8b5
@ -26,7 +26,7 @@ class TargetLowering;
|
||||
/// ScalarTargetTransformInfo interface. Different targets can implement
|
||||
/// this interface differently.
|
||||
class ScalarTargetTransformImpl : public ScalarTargetTransformInfo {
|
||||
private:
|
||||
protected:
|
||||
const TargetLowering *TLI;
|
||||
|
||||
public:
|
||||
|
@ -75,6 +75,18 @@ public:
|
||||
/// LSR, and LowerInvoke use this interface.
|
||||
class ScalarTargetTransformInfo {
|
||||
public:
|
||||
/// PopcntHwSupport - Hardware support for population count. Compared to the
|
||||
/// SW implementation, HW support is supposed to significantly boost the
|
||||
/// performance when the population is dense, and it may or not may degrade
|
||||
/// performance if the population is sparse. A HW support is considered as
|
||||
/// "Fast" if it can outperform, or is on a par with, SW implementaion when
|
||||
/// the population is sparse; otherwise, it is considered as "Slow".
|
||||
enum PopcntHwSupport {
|
||||
None,
|
||||
Fast,
|
||||
Slow
|
||||
};
|
||||
|
||||
virtual ~ScalarTargetTransformInfo() {}
|
||||
|
||||
/// isLegalAddImmediate - Return true if the specified immediate is legal
|
||||
@ -122,6 +134,11 @@ public:
|
||||
virtual bool shouldBuildLookupTables() const {
|
||||
return true;
|
||||
}
|
||||
|
||||
/// getPopcntHwSupport - Return hardware support for population count.
|
||||
virtual PopcntHwSupport getPopcntHwSupport(unsigned IntTyWidthInBit) const {
|
||||
return None;
|
||||
}
|
||||
};
|
||||
|
||||
/// VectorTargetTransformInfo - This interface is used by the vectorizers
|
||||
|
@ -17670,6 +17670,17 @@ FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
|
||||
return -1;
|
||||
}
|
||||
|
||||
ScalarTargetTransformInfo::PopcntHwSupport
|
||||
X86ScalarTargetTransformImpl::getPopcntHwSupport(unsigned TyWidth) const {
|
||||
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
||||
const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>();
|
||||
|
||||
// TODO: Currently the __builtin_popcount() implementation using SSE3
|
||||
// instructions is inefficient. Once the problem is fixed, we should
|
||||
// call ST.hasSSE3() instead of ST.hasSSE4().
|
||||
return ST.hasSSE41() ? Fast : None;
|
||||
}
|
||||
|
||||
unsigned
|
||||
X86VectorTargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
|
||||
Type *Ty) const {
|
||||
|
@ -933,6 +933,14 @@ namespace llvm {
|
||||
const TargetLibraryInfo *libInfo);
|
||||
}
|
||||
|
||||
class X86ScalarTargetTransformImpl : public ScalarTargetTransformImpl {
|
||||
public:
|
||||
explicit X86ScalarTargetTransformImpl(const TargetLowering *TL) :
|
||||
ScalarTargetTransformImpl(TL) {};
|
||||
|
||||
virtual PopcntHwSupport getPopcntHwSupport(unsigned TyWidth) const;
|
||||
};
|
||||
|
||||
class X86VectorTargetTransformInfo : public VectorTargetTransformImpl {
|
||||
public:
|
||||
explicit X86VectorTargetTransformInfo(const TargetLowering *TL) :
|
||||
|
@ -118,7 +118,7 @@ class X86_64TargetMachine : public X86TargetMachine {
|
||||
X86SelectionDAGInfo TSInfo;
|
||||
X86TargetLowering TLInfo;
|
||||
X86JITInfo JITInfo;
|
||||
ScalarTargetTransformImpl STTI;
|
||||
X86ScalarTargetTransformImpl STTI;
|
||||
X86VectorTargetTransformInfo VTTI;
|
||||
public:
|
||||
X86_64TargetMachine(const Target &T, StringRef TT,
|
||||
|
@ -56,6 +56,7 @@
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/DataLayout.h"
|
||||
#include "llvm/Target/TargetLibraryInfo.h"
|
||||
#include "llvm/TargetTransformInfo.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
using namespace llvm;
|
||||
|
||||
@ -63,16 +64,83 @@ STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
|
||||
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
|
||||
|
||||
namespace {
|
||||
|
||||
class LoopIdiomRecognize;
|
||||
|
||||
/// This class defines some utility functions for loop idiom recognization.
|
||||
class LIRUtil {
|
||||
public:
|
||||
/// Return true iff the block contains nothing but an uncondition branch
|
||||
/// (aka goto instruction).
|
||||
static bool isAlmostEmpty(BasicBlock *);
|
||||
|
||||
static BranchInst *getBranch(BasicBlock *BB) {
|
||||
return dyn_cast<BranchInst>(BB->getTerminator());
|
||||
}
|
||||
|
||||
/// Return the condition of the branch terminating the given basic block.
|
||||
static Value *getBrCondtion(BasicBlock *);
|
||||
|
||||
/// Derive the precondition block (i.e the block that guards the loop
|
||||
/// preheader) from the given preheader.
|
||||
static BasicBlock *getPrecondBb(BasicBlock *PreHead);
|
||||
};
|
||||
|
||||
/// This class is to recoginize idioms of population-count conducted in
|
||||
/// a noncountable loop. Currently it only recognizes this pattern:
|
||||
/// \code
|
||||
/// while(x) {cnt++; ...; x &= x - 1; ...}
|
||||
/// \endcode
|
||||
class NclPopcountRecognize {
|
||||
LoopIdiomRecognize &LIR;
|
||||
Loop *CurLoop;
|
||||
BasicBlock *PreCondBB;
|
||||
|
||||
typedef IRBuilder<> IRBuilderTy;
|
||||
|
||||
public:
|
||||
explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
|
||||
bool recognize();
|
||||
|
||||
private:
|
||||
/// Take a glimpse of the loop to see if we need to go ahead recoginizing
|
||||
/// the idiom.
|
||||
bool preliminaryScreen();
|
||||
|
||||
/// Check if the given conditional branch is based on the comparison
|
||||
/// beween a variable and zero, and if the variable is non-zero, the
|
||||
/// control yeilds to the loop entry. If the branch matches the behavior,
|
||||
/// the variable involved in the comparion is returned. This function will
|
||||
/// be called to see if the precondition and postcondition of the loop
|
||||
/// are in desirable form.
|
||||
Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
|
||||
|
||||
/// Return true iff the idiom is detected in the loop. and 1) \p CntInst
|
||||
/// is set to the instruction counting the pupulation bit. 2) \p CntPhi
|
||||
/// is set to the corresponding phi node. 3) \p Var is set to the value
|
||||
/// whose population bits are being counted.
|
||||
bool detectIdiom
|
||||
(Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
|
||||
|
||||
/// Insert ctpop intrinsic function and some obviously dead instructions.
|
||||
void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
|
||||
|
||||
/// Create llvm.ctpop.* intrinsic function.
|
||||
CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
|
||||
};
|
||||
|
||||
class LoopIdiomRecognize : public LoopPass {
|
||||
Loop *CurLoop;
|
||||
const DataLayout *TD;
|
||||
DominatorTree *DT;
|
||||
ScalarEvolution *SE;
|
||||
TargetLibraryInfo *TLI;
|
||||
const ScalarTargetTransformInfo *STTI;
|
||||
public:
|
||||
static char ID;
|
||||
explicit LoopIdiomRecognize() : LoopPass(ID) {
|
||||
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
|
||||
TD = 0; DT = 0; SE = 0; TLI = 0; STTI = 0;
|
||||
}
|
||||
|
||||
bool runOnLoop(Loop *L, LPPassManager &LPM);
|
||||
@ -110,6 +178,36 @@ namespace {
|
||||
AU.addRequired<DominatorTree>();
|
||||
AU.addRequired<TargetLibraryInfo>();
|
||||
}
|
||||
|
||||
const DataLayout *getDataLayout() {
|
||||
return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
|
||||
}
|
||||
|
||||
DominatorTree *getDominatorTree() {
|
||||
return DT ? DT : (DT=&getAnalysis<DominatorTree>());
|
||||
}
|
||||
|
||||
ScalarEvolution *getScalarEvolution() {
|
||||
return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
|
||||
}
|
||||
|
||||
TargetLibraryInfo *getTargetLibraryInfo() {
|
||||
return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
|
||||
}
|
||||
|
||||
const ScalarTargetTransformInfo *getScalarTargetTransformInfo() {
|
||||
if (!STTI) {
|
||||
TargetTransformInfo *TTI = getAnalysisIfAvailable<TargetTransformInfo>();
|
||||
if (TTI) STTI = TTI->getScalarTargetTransformInfo();
|
||||
}
|
||||
return STTI;
|
||||
}
|
||||
|
||||
Loop *getLoop() const { return CurLoop; }
|
||||
|
||||
private:
|
||||
bool runOnNoncountableLoop();
|
||||
bool runOnCountableLoop();
|
||||
};
|
||||
}
|
||||
|
||||
@ -172,6 +270,437 @@ static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
|
||||
deleteDeadInstruction(I, SE, TLI);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Implementation of LIRUtil
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// This fucntion will return true iff the given block contains nothing but goto.
|
||||
// A typical usage of this function is to check if the preheader fucntion is
|
||||
// "almost" empty such that generated intrinsic function can be moved across
|
||||
// preheader and to be placed at the end of the preconditiona block without
|
||||
// concerning of breaking data dependence.
|
||||
bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
|
||||
if (BranchInst *Br = getBranch(BB)) {
|
||||
return Br->isUnconditional() && BB->size() == 1;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
|
||||
BranchInst *Br = getBranch(BB);
|
||||
return Br ? Br->getCondition() : 0;
|
||||
}
|
||||
|
||||
BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
|
||||
if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
|
||||
BranchInst *Br = getBranch(BB);
|
||||
return Br && Br->isConditional() ? BB : 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Implementation of NclPopcountRecognize
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
|
||||
LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
|
||||
}
|
||||
|
||||
bool NclPopcountRecognize::preliminaryScreen() {
|
||||
const ScalarTargetTransformInfo *STTI = LIR.getScalarTargetTransformInfo();
|
||||
if (STTI->getPopcntHwSupport(32) != ScalarTargetTransformInfo::Fast)
|
||||
return false;
|
||||
|
||||
// Counting population are usually conducted by few arithmetic instrutions.
|
||||
// Such instructions can be easilly "absorbed" by vacant slots in a
|
||||
// non-compact loop. Therefore, recognizing popcount idiom only makes sense
|
||||
// in a compact loop.
|
||||
|
||||
// Give up if the loop has multiple blocks or multiple backedges.
|
||||
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
|
||||
return false;
|
||||
|
||||
BasicBlock *LoopBody = *(CurLoop->block_begin());
|
||||
if (LoopBody->size() >= 20) {
|
||||
// The loop is too big, bail out.
|
||||
return false;
|
||||
}
|
||||
|
||||
// It should have a preheader containing nothing but a goto instruction.
|
||||
BasicBlock *PreHead = CurLoop->getLoopPreheader();
|
||||
if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
|
||||
return false;
|
||||
|
||||
// It should have a precondition block where the generated popcount instrinsic
|
||||
// function will be inserted.
|
||||
PreCondBB = LIRUtil::getPrecondBb(PreHead);
|
||||
if (!PreCondBB)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
|
||||
BasicBlock *LoopEntry) const {
|
||||
if (!Br || !Br->isConditional())
|
||||
return 0;
|
||||
|
||||
ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
|
||||
if (!Cond)
|
||||
return 0;
|
||||
|
||||
ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
|
||||
if (!CmpZero || !CmpZero->isZero())
|
||||
return 0;
|
||||
|
||||
ICmpInst::Predicate Pred = Cond->getPredicate();
|
||||
if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
|
||||
(Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
|
||||
return Cond->getOperand(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
|
||||
PHINode *&CntPhi,
|
||||
Value *&Var) const {
|
||||
// Following code tries to detect this idiom:
|
||||
//
|
||||
// if (x0 != 0)
|
||||
// goto loop-exit // the precondition of the loop
|
||||
// cnt0 = init-val;
|
||||
// do {
|
||||
// x1 = phi (x0, x2);
|
||||
// cnt1 = phi(cnt0, cnt2);
|
||||
//
|
||||
// cnt2 = cnt1 + 1;
|
||||
// ...
|
||||
// x2 = x1 & (x1 - 1);
|
||||
// ...
|
||||
// } while(x != 0);
|
||||
//
|
||||
// loop-exit:
|
||||
//
|
||||
|
||||
// step 1: Check to see if the look-back branch match this pattern:
|
||||
// "if (a!=0) goto loop-entry".
|
||||
BasicBlock *LoopEntry;
|
||||
Instruction *DefX2, *CountInst;
|
||||
Value *VarX1, *VarX0;
|
||||
PHINode *PhiX, *CountPhi;
|
||||
|
||||
DefX2 = CountInst = 0;
|
||||
VarX1 = VarX0 = 0;
|
||||
PhiX = CountPhi = 0;
|
||||
LoopEntry = *(CurLoop->block_begin());
|
||||
|
||||
// step 1: Check if the loop-back branch is in desirable form.
|
||||
{
|
||||
if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
|
||||
DefX2 = dyn_cast<Instruction>(T);
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
|
||||
{
|
||||
if (DefX2->getOpcode() != Instruction::And)
|
||||
return false;
|
||||
|
||||
BinaryOperator *SubOneOp;
|
||||
|
||||
if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
|
||||
VarX1 = DefX2->getOperand(1);
|
||||
else {
|
||||
VarX1 = DefX2->getOperand(0);
|
||||
SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
|
||||
}
|
||||
if (!SubOneOp)
|
||||
return false;
|
||||
|
||||
Instruction *SubInst = cast<Instruction>(SubOneOp);
|
||||
ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
|
||||
if (!Dec ||
|
||||
!((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
|
||||
(SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// step 3: Check the recurrence of variable X
|
||||
{
|
||||
PhiX = dyn_cast<PHINode>(VarX1);
|
||||
if (!PhiX ||
|
||||
(PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
|
||||
{
|
||||
CountInst = NULL;
|
||||
for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
|
||||
IterE = LoopEntry->end(); Iter != IterE; Iter++) {
|
||||
Instruction *Inst = Iter;
|
||||
if (Inst->getOpcode() != Instruction::Add)
|
||||
continue;
|
||||
|
||||
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
|
||||
if (!Inc || !Inc->isOne())
|
||||
continue;
|
||||
|
||||
PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
|
||||
if (!Phi && Phi->getParent() != LoopEntry)
|
||||
continue;
|
||||
|
||||
// Check if the result of the instruction is live of the loop.
|
||||
bool LiveOutLoop = false;
|
||||
for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
|
||||
I != E; I++) {
|
||||
if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
|
||||
LiveOutLoop = true; break;
|
||||
}
|
||||
}
|
||||
|
||||
if (LiveOutLoop) {
|
||||
CountInst = Inst;
|
||||
CountPhi = Phi;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!CountInst)
|
||||
return false;
|
||||
}
|
||||
|
||||
// step 5: check if the precondition is in this form:
|
||||
// "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
|
||||
{
|
||||
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
|
||||
Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
|
||||
if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
|
||||
return false;
|
||||
|
||||
CntInst = CountInst;
|
||||
CntPhi = CountPhi;
|
||||
Var = T;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void NclPopcountRecognize::transform(Instruction *CntInst,
|
||||
PHINode *CntPhi, Value *Var) {
|
||||
|
||||
ScalarEvolution *SE = LIR.getScalarEvolution();
|
||||
TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
|
||||
BasicBlock *PreHead = CurLoop->getLoopPreheader();
|
||||
BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
|
||||
const DebugLoc DL = CntInst->getDebugLoc();
|
||||
|
||||
// Assuming before transformation, the loop is following:
|
||||
// if (x) // the precondition
|
||||
// do { cnt++; x &= x - 1; } while(x);
|
||||
|
||||
// Step 1: Insert the ctpop instruction at the end of the precondition block
|
||||
IRBuilderTy Builder(PreCondBr);
|
||||
Value *PopCnt, *PopCntZext, *NewCount;
|
||||
{
|
||||
PopCnt = createPopcntIntrinsic(Builder, Var, DL);
|
||||
NewCount = PopCntZext =
|
||||
Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
|
||||
|
||||
if (NewCount != PopCnt)
|
||||
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
||||
|
||||
// If the popoulation counter's initial value is not zero, insert Add Inst.
|
||||
Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
|
||||
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
|
||||
if (!InitConst || !InitConst->isZero()) {
|
||||
NewCount = Builder.CreateAdd(PopCnt, InitConst);
|
||||
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
||||
}
|
||||
}
|
||||
|
||||
// Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
|
||||
// "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
|
||||
// function would be partial dead code, and downstream passes will drag
|
||||
// it back from the precondition block to the preheader.
|
||||
{
|
||||
ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
|
||||
|
||||
Value *Opnd0 = PopCntZext;
|
||||
Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
|
||||
if (PreCond->getOperand(0) != Var)
|
||||
std::swap(Opnd0, Opnd1);
|
||||
|
||||
ICmpInst *NewPreCond =
|
||||
cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
|
||||
PreCond->replaceAllUsesWith(NewPreCond);
|
||||
|
||||
deleteDeadInstruction(PreCond, *SE, TLI);
|
||||
}
|
||||
|
||||
// Step 3: Note that the population count is exactly the trip count of the
|
||||
// loop in question, which enble us to to convert the loop from noncountable
|
||||
// loop into a countable one. The benefit is twofold:
|
||||
//
|
||||
// - If the loop only counts population, the entire loop become dead after
|
||||
// the transformation. It is lots easier to prove a countable loop dead
|
||||
// than to prove a noncountable one. (In some C dialects, a infite loop
|
||||
// isn't dead even if it computes nothing useful. In general, DCE needs
|
||||
// to prove a noncountable loop finite before safely delete it.)
|
||||
//
|
||||
// - If the loop also performs something else, it remains alive.
|
||||
// Since it is transformed to countable form, it can be aggressively
|
||||
// optimized by some optimizations which are in general not applicable
|
||||
// to a noncountable loop.
|
||||
//
|
||||
// After this step, this loop (conceptually) would look like following:
|
||||
// newcnt = __builtin_ctpop(x);
|
||||
// t = newcnt;
|
||||
// if (x)
|
||||
// do { cnt++; x &= x-1; t--) } while (t > 0);
|
||||
BasicBlock *Body = *(CurLoop->block_begin());
|
||||
{
|
||||
BranchInst *LbBr = LIRUtil::getBranch(Body);
|
||||
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
|
||||
Type *Ty = NewCount->getType();
|
||||
|
||||
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
|
||||
|
||||
Builder.SetInsertPoint(LbCond);
|
||||
Value *Opnd1 = cast<Value>(TcPhi);
|
||||
Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
|
||||
Instruction *TcDec =
|
||||
cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
|
||||
|
||||
TcPhi->addIncoming(NewCount, PreHead);
|
||||
TcPhi->addIncoming(TcDec, Body);
|
||||
|
||||
CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
|
||||
CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
|
||||
LbCond->setPredicate(Pred);
|
||||
LbCond->setOperand(0, TcDec);
|
||||
LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
|
||||
}
|
||||
|
||||
// Step 4: All the references to the original population counter outside
|
||||
// the loop are replaced with the NewCount -- the value returned from
|
||||
// __builtin_ctpop().
|
||||
{
|
||||
SmallVector<Value *, 4> CntUses;
|
||||
for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
|
||||
I != E; I++) {
|
||||
if (cast<Instruction>(*I)->getParent() != Body)
|
||||
CntUses.push_back(*I);
|
||||
}
|
||||
for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
|
||||
(cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
|
||||
}
|
||||
}
|
||||
|
||||
// step 5: Forget the "non-computable" trip-count SCEV associated with the
|
||||
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
||||
SE->forgetLoop(CurLoop);
|
||||
}
|
||||
|
||||
CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
|
||||
Value *Val, DebugLoc DL) {
|
||||
Value *Ops[] = { Val };
|
||||
Type *Tys[] = { Val->getType() };
|
||||
|
||||
Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
|
||||
Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
|
||||
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
|
||||
CI->setDebugLoc(DL);
|
||||
|
||||
return CI;
|
||||
}
|
||||
|
||||
/// recognize - detect population count idiom in a non-countable loop. If
|
||||
/// detected, transform the relevant code to popcount intrinsic function
|
||||
/// call, and return true; otherwise, return false.
|
||||
bool NclPopcountRecognize::recognize() {
|
||||
|
||||
if (!LIR.getScalarTargetTransformInfo())
|
||||
return false;
|
||||
|
||||
LIR.getScalarEvolution();
|
||||
|
||||
if (!preliminaryScreen())
|
||||
return false;
|
||||
|
||||
Instruction *CntInst;
|
||||
PHINode *CntPhi;
|
||||
Value *Val;
|
||||
if (!detectIdiom(CntInst, CntPhi, Val))
|
||||
return false;
|
||||
|
||||
transform(CntInst, CntPhi, Val);
|
||||
return true;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Implementation of LoopIdiomRecognize
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
bool LoopIdiomRecognize::runOnCountableLoop() {
|
||||
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
|
||||
if (isa<SCEVCouldNotCompute>(BECount)) return false;
|
||||
|
||||
// If this loop executes exactly one time, then it should be peeled, not
|
||||
// optimized by this pass.
|
||||
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
||||
if (BECst->getValue()->getValue() == 0)
|
||||
return false;
|
||||
|
||||
// We require target data for now.
|
||||
if (!getDataLayout())
|
||||
return false;
|
||||
|
||||
getDominatorTree();
|
||||
|
||||
LoopInfo &LI = getAnalysis<LoopInfo>();
|
||||
TLI = &getAnalysis<TargetLibraryInfo>();
|
||||
|
||||
getTargetLibraryInfo();
|
||||
|
||||
SmallVector<BasicBlock*, 8> ExitBlocks;
|
||||
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
||||
|
||||
DEBUG(dbgs() << "loop-idiom Scanning: F["
|
||||
<< CurLoop->getHeader()->getParent()->getName()
|
||||
<< "] Loop %" << CurLoop->getHeader()->getName() << "\n");
|
||||
|
||||
bool MadeChange = false;
|
||||
// Scan all the blocks in the loop that are not in subloops.
|
||||
for (Loop::block_iterator BI = CurLoop->block_begin(),
|
||||
E = CurLoop->block_end(); BI != E; ++BI) {
|
||||
// Ignore blocks in subloops.
|
||||
if (LI.getLoopFor(*BI) != CurLoop)
|
||||
continue;
|
||||
|
||||
MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
|
||||
}
|
||||
return MadeChange;
|
||||
}
|
||||
|
||||
bool LoopIdiomRecognize::runOnNoncountableLoop() {
|
||||
NclPopcountRecognize Popcount(*this);
|
||||
if (Popcount.recognize())
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
|
||||
CurLoop = L;
|
||||
|
||||
@ -185,45 +714,10 @@ bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
|
||||
if (Name == "memset" || Name == "memcpy")
|
||||
return false;
|
||||
|
||||
// The trip count of the loop must be analyzable.
|
||||
SE = &getAnalysis<ScalarEvolution>();
|
||||
if (!SE->hasLoopInvariantBackedgeTakenCount(L))
|
||||
return false;
|
||||
const SCEV *BECount = SE->getBackedgeTakenCount(L);
|
||||
if (isa<SCEVCouldNotCompute>(BECount)) return false;
|
||||
|
||||
// If this loop executes exactly one time, then it should be peeled, not
|
||||
// optimized by this pass.
|
||||
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
||||
if (BECst->getValue()->getValue() == 0)
|
||||
return false;
|
||||
|
||||
// We require target data for now.
|
||||
TD = getAnalysisIfAvailable<DataLayout>();
|
||||
if (TD == 0) return false;
|
||||
|
||||
DT = &getAnalysis<DominatorTree>();
|
||||
LoopInfo &LI = getAnalysis<LoopInfo>();
|
||||
TLI = &getAnalysis<TargetLibraryInfo>();
|
||||
|
||||
SmallVector<BasicBlock*, 8> ExitBlocks;
|
||||
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
||||
|
||||
DEBUG(dbgs() << "loop-idiom Scanning: F["
|
||||
<< L->getHeader()->getParent()->getName()
|
||||
<< "] Loop %" << L->getHeader()->getName() << "\n");
|
||||
|
||||
bool MadeChange = false;
|
||||
// Scan all the blocks in the loop that are not in subloops.
|
||||
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
|
||||
++BI) {
|
||||
// Ignore blocks in subloops.
|
||||
if (LI.getLoopFor(*BI) != CurLoop)
|
||||
continue;
|
||||
|
||||
MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
|
||||
}
|
||||
return MadeChange;
|
||||
if (SE->hasLoopInvariantBackedgeTakenCount(L))
|
||||
return runOnCountableLoop();
|
||||
return runOnNoncountableLoop();
|
||||
}
|
||||
|
||||
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
|
||||
|
76
test/Transforms/LoopIdiom/popcnt.ll
Normal file
76
test/Transforms/LoopIdiom/popcnt.ll
Normal file
@ -0,0 +1,76 @@
|
||||
; RUN: opt -loop-idiom < %s -mtriple=x86_64-apple-darwin -mcpu=corei7 -S | FileCheck %s
|
||||
|
||||
;To recognize this pattern:
|
||||
;int popcount(unsigned long long a) {
|
||||
; int c = 0;
|
||||
; while (a) {
|
||||
; c++;
|
||||
; a &= a - 1;
|
||||
; }
|
||||
; return c;
|
||||
;}
|
||||
;
|
||||
; CHECK: entry
|
||||
; CHECK: llvm.ctpop.i64
|
||||
; CHECK: ret
|
||||
define i32 @popcount(i64 %a) nounwind uwtable readnone ssp {
|
||||
entry:
|
||||
%tobool3 = icmp eq i64 %a, 0
|
||||
br i1 %tobool3, label %while.end, label %while.body
|
||||
|
||||
while.body: ; preds = %entry, %while.body
|
||||
%c.05 = phi i32 [ %inc, %while.body ], [ 0, %entry ]
|
||||
%a.addr.04 = phi i64 [ %and, %while.body ], [ %a, %entry ]
|
||||
%inc = add nsw i32 %c.05, 1
|
||||
%sub = add i64 %a.addr.04, -1
|
||||
%and = and i64 %sub, %a.addr.04
|
||||
%tobool = icmp eq i64 %and, 0
|
||||
br i1 %tobool, label %while.end, label %while.body
|
||||
|
||||
while.end: ; preds = %while.body, %entry
|
||||
%c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
|
||||
ret i32 %c.0.lcssa
|
||||
}
|
||||
|
||||
; To recognize this pattern:
|
||||
;int popcount(unsigned long long a, int mydata1, int mydata2) {
|
||||
; int c = 0;
|
||||
; while (a) {
|
||||
; c++;
|
||||
; a &= a - 1;
|
||||
; mydata1 *= c;
|
||||
; mydata2 *= (int)a;
|
||||
; }
|
||||
; return c + mydata1 + mydata2;
|
||||
;}
|
||||
; CHECK: entry
|
||||
; CHECK: llvm.ctpop.i64
|
||||
; CHECK: ret
|
||||
define i32 @popcount2(i64 %a, i32 %mydata1, i32 %mydata2) nounwind uwtable readnone ssp {
|
||||
entry:
|
||||
%tobool9 = icmp eq i64 %a, 0
|
||||
br i1 %tobool9, label %while.end, label %while.body
|
||||
|
||||
while.body: ; preds = %entry, %while.body
|
||||
%c.013 = phi i32 [ %inc, %while.body ], [ 0, %entry ]
|
||||
%mydata2.addr.012 = phi i32 [ %mul1, %while.body ], [ %mydata2, %entry ]
|
||||
%mydata1.addr.011 = phi i32 [ %mul, %while.body ], [ %mydata1, %entry ]
|
||||
%a.addr.010 = phi i64 [ %and, %while.body ], [ %a, %entry ]
|
||||
%inc = add nsw i32 %c.013, 1
|
||||
%sub = add i64 %a.addr.010, -1
|
||||
%and = and i64 %sub, %a.addr.010
|
||||
%mul = mul nsw i32 %inc, %mydata1.addr.011
|
||||
%conv = trunc i64 %and to i32
|
||||
%mul1 = mul nsw i32 %conv, %mydata2.addr.012
|
||||
%tobool = icmp eq i64 %and, 0
|
||||
br i1 %tobool, label %while.end, label %while.body
|
||||
|
||||
while.end: ; preds = %while.body, %entry
|
||||
%c.0.lcssa = phi i32 [ 0, %entry ], [ %inc, %while.body ]
|
||||
%mydata2.addr.0.lcssa = phi i32 [ %mydata2, %entry ], [ %mul1, %while.body ]
|
||||
%mydata1.addr.0.lcssa = phi i32 [ %mydata1, %entry ], [ %mul, %while.body ]
|
||||
%add = add i32 %mydata2.addr.0.lcssa, %mydata1.addr.0.lcssa
|
||||
%add2 = add i32 %add, %c.0.lcssa
|
||||
ret i32 %add2
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user