Make the PATypeHolder use a simple union-find implementation to handle

merging of types.  This makes it MUCH more efficient than before, also
making things simpler.

llvm-svn: 8833
This commit is contained in:
Chris Lattner 2003-10-02 23:35:57 +00:00
parent 62331c44ab
commit b217f24289
4 changed files with 124 additions and 62 deletions

View File

@ -61,9 +61,9 @@ public:
};
// PATypeHandle - Handle to a Type subclass. This class is used to keep the use
// list of abstract types up-to-date.
//
/// PATypeHandle - Handle to a Type subclass. This class is used to keep the
/// use list of abstract types up-to-date.
///
class PATypeHandle {
const Type *Ty;
AbstractTypeUser * const User;
@ -123,50 +123,43 @@ public:
};
// PATypeHolder - Holder class for a potentially abstract type. This functions
// as both a handle (as above) and an AbstractTypeUser. It uses the callback to
// keep its pointer member updated to the current version of the type.
//
class PATypeHolder : public AbstractTypeUser {
PATypeHandle Handle;
/// PATypeHolder - Holder class for a potentially abstract type. This uses
/// efficient union-find techniques to handle dynamic type resolution. Unless
/// you need to do custom processing when types are resolved, you should always
/// use PATypeHolders in preference to PATypeHandles.
///
class PATypeHolder {
mutable const Type *Ty;
public:
PATypeHolder(const Type *ty) : Handle(ty, this) {}
PATypeHolder(const PATypeHolder &T) : AbstractTypeUser(), Handle(T, this) {}
PATypeHolder(const Type *ty) : Ty(ty) {
addRef();
}
PATypeHolder(const PATypeHolder &T) : Ty(T.Ty) {
addRef();
}
operator const Type *() const { return Handle; }
const Type *get() const { return Handle; }
operator const Type *() const { return get(); }
const Type *get() const;
// operator-> - Allow user to dereference handle naturally...
inline const Type *operator->() const { return Handle; }
// refineAbstractType - All we do is update our PATypeHandle member to point
// to the new type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
assert(get() == (const Type*)OldTy && "Can't refine to unknown value!");
// Check to see if the type just became concrete. If so, we have to
// removeUser to get off its AbstractTypeUser list
Handle.removeUserFromConcrete();
if ((const Type*)OldTy != NewTy)
Handle.operator=(NewTy);
}
const Type *operator->() const { return get(); }
// operator= - Allow assignment to handle
const Type *operator=(const Type *ty) {
return Handle = ty;
}
// operator= - Allow assignment to handle
const Type *operator=(const PATypeHandle &T) {
return Handle = T;
if (Ty != ty) { // Don't accidentally drop last ref to Ty.
dropRef();
Ty = ty;
addRef();
}
return get();
}
const Type *operator=(const PATypeHolder &H) {
return Handle = H;
return operator=(H.Ty);
}
void dump() const;
private:
void addRef();
void dropRef();
};
#endif

View File

@ -20,7 +20,14 @@ class StructValType;
class PointerValType;
class DerivedType : public Type, public AbstractTypeUser {
char isRefining; // Used for recursive types
/// RefCount - This counts the number of PATypeHolders that are pointing to
/// this type. When this number falls to zero, if the type is abstract and
/// has no AbstractTypeUsers, the type is deleted.
///
mutable unsigned RefCount;
// isRefining - Used for recursive types
char isRefining;
// AbstractTypeUsers - Implement a list of the users that need to be notified
// if I am a type, and I get resolved into a more concrete type.
@ -29,8 +36,7 @@ class DerivedType : public Type, public AbstractTypeUser {
mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
protected:
inline DerivedType(PrimitiveID id) : Type("", id) {
isRefining = 0;
DerivedType(PrimitiveID id) : Type("", id), RefCount(0), isRefining(0) {
}
~DerivedType() {
assert(AbstractTypeUsers.empty());
@ -61,7 +67,10 @@ public:
// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it. This function is called primarily by the PATypeHandle class.
//
void addAbstractTypeUser(AbstractTypeUser *U) const;
void addAbstractTypeUser(AbstractTypeUser *U) const {
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
AbstractTypeUsers.push_back(U);
}
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
@ -80,6 +89,22 @@ public:
refineAbstractTypeToInternal(NewType, true);
}
void addRef() const {
assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
++RefCount;
}
void dropRef() const {
assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
assert(RefCount && "No objects are currently referencing this object!");
// If this is the last PATypeHolder using this object, and there are no
// PATypeHandles using it, the type is dead, delete it now.
if (--RefCount == 0 && AbstractTypeUsers.empty())
delete this;
}
void dump() const { Value::dump(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
@ -453,4 +478,26 @@ inline void PATypeHandle::removeUserFromConcrete() {
cast<DerivedType>(Ty)->removeAbstractTypeUser(User);
}
// Define inline methods for PATypeHolder...
inline void PATypeHolder::addRef() {
if (Ty->isAbstract())
cast<DerivedType>(Ty)->addRef();
}
inline void PATypeHolder::dropRef() {
if (Ty->isAbstract())
cast<DerivedType>(Ty)->dropRef();
}
/// get - This implements the forwarding part of the union-find algorithm for
/// abstract types. Before every access to the Type*, we check to see if the
/// type we are pointing to is forwarding to a new type. If so, we drop our
/// reference to the type.
inline const Type* PATypeHolder::get() const {
const Type *NewTy = Ty->getForwardedType();
if (!NewTy) return Ty;
return *const_cast<PATypeHolder*>(this) = NewTy;
}
#endif

View File

@ -73,6 +73,7 @@ private:
unsigned UID; // The unique ID number for this class
bool Abstract; // True if type contains an OpaqueType
const Type *getForwardedTypeInternal() const;
protected:
/// ctor is protected, so only subclasses can create Type objects...
Type(const std::string &Name, PrimitiveID id);
@ -90,6 +91,12 @@ protected:
/// isTypeAbstract - This method is used to calculate the Abstract bit.
///
bool isTypeAbstract();
/// ForwardType - This field is used to implement the union find scheme for
/// abstract types. When types are refined to other types, this field is set
/// to the more refined type. Only abstract types can be forwarded.
mutable const Type *ForwardType;
public:
virtual void print(std::ostream &O) const;
@ -177,6 +184,13 @@ public:
///
unsigned getPrimitiveSize() const;
/// getForwaredType - Return the type that this type has been resolved to if
/// it has been resolved to anything. This is used to implement the
/// union-find algorithm for type resolution.
const Type *getForwardedType() const {
if (!ForwardType) return 0;
return getForwardedTypeInternal();
}
//===--------------------------------------------------------------------===//
// Type Iteration support

View File

@ -32,13 +32,8 @@ static std::vector<const Type *> UIDMappings;
static std::map<const Type*, std::string> ConcreteTypeDescriptions;
static std::map<const Type*, std::string> AbstractTypeDescriptions;
void PATypeHolder::dump() const {
std::cerr << "PATypeHolder(" << (void*)this << ")\n";
}
Type::Type(const std::string &name, PrimitiveID id)
: Value(Type::TypeTy, Value::TypeVal) {
: Value(Type::TypeTy, Value::TypeVal), ForwardType(0) {
if (!name.empty())
ConcreteTypeDescriptions[this] = name;
ID = id;
@ -122,6 +117,30 @@ unsigned Type::getPrimitiveSize() const {
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
cast<DerivedType>(RealForwardedType)->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
cast<DerivedType>(ForwardType)->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
// getTypeDescription - This is a recursive function that walks a type hierarchy
// calculating the description for a type.
//
@ -950,21 +969,6 @@ void debug_type_tables() {
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it. This function is called primarily by the PATypeHandle class.
//
void DerivedType::addAbstractTypeUser(AbstractTypeUser *U) const {
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
#if DEBUG_MERGE_TYPES
std::cerr << " addAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << AbstractTypeUsers.size()
<< "] User = " << U << "\n";
#endif
AbstractTypeUsers.push_back(U);
}
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
@ -989,7 +993,7 @@ void DerivedType::removeAbstractTypeUser(AbstractTypeUser *U) const {
<< *this << "][" << i << "] User = " << U << "\n";
#endif
if (AbstractTypeUsers.empty() && isAbstract()) {
if (AbstractTypeUsers.empty() && RefCount == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n";
@ -1023,6 +1027,10 @@ void DerivedType::refineAbstractTypeToInternal(const Type *NewType, bool inMap){
//
PATypeHolder NewTy(NewType);
ForwardType = NewType;
if (NewType->isAbstract())
cast<DerivedType>(NewType)->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after this while loop. We are careful to never invoke refine on ourself,
// so this extra reference shouldn't be a problem. Note that we must only