mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-30 15:45:26 +00:00
Preparation for Optimal Edge Profiling:
This implements the maximum spanning tree algorithm on CFGs according to weights given by the ProfileEstimator. This is then used to implement Optimal Edge Profiling. llvm-svn: 80358
This commit is contained in:
parent
c2d92270a2
commit
c11b0d7108
121
lib/Transforms/Instrumentation/MaximumSpanningTree.cpp
Normal file
121
lib/Transforms/Instrumentation/MaximumSpanningTree.cpp
Normal file
@ -0,0 +1,121 @@
|
||||
//===- MaximumSpanningTree.cpp - LLVM Pass to estimate profile info -------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This module privides means for calculating a maximum spanning tree for the
|
||||
// CFG of a function according to a given profile. The tree does not contain
|
||||
// leaf edges, since they are needed for optimal edge profiling.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#define DEBUG_TYPE "maximum-spanning-tree"
|
||||
#include "MaximumSpanningTree.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/ADT/EquivalenceClasses.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/Format.h"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
// compare two weighted edges
|
||||
struct VISIBILITY_HIDDEN EdgeWeightCompare {
|
||||
bool operator()(const ProfileInfo::EdgeWeight X,
|
||||
const ProfileInfo::EdgeWeight Y) const {
|
||||
if (X.second > Y.second) return true;
|
||||
if (X.second < Y.second) return false;
|
||||
#ifndef NDEBUG
|
||||
if (X.first.first != 0 && Y.first.first == 0) return true;
|
||||
if (X.first.first == 0 && Y.first.first != 0) return false;
|
||||
if (X.first.first == 0 && Y.first.first == 0) return false;
|
||||
|
||||
if (X.first.first->size() > Y.first.first->size()) return true;
|
||||
if (X.first.first->size() < Y.first.first->size()) return false;
|
||||
|
||||
if (X.first.second != 0 && Y.first.second == 0) return true;
|
||||
if (X.first.second == 0 && Y.first.second != 0) return false;
|
||||
if (X.first.second == 0 && Y.first.second == 0) return false;
|
||||
|
||||
if (X.first.second->size() > Y.first.second->size()) return true;
|
||||
if (X.first.second->size() < Y.first.second->size()) return false;
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
static void inline printMSTEdge(ProfileInfo::EdgeWeight E,
|
||||
const char *M) {
|
||||
DEBUG(errs() << "--Edge " << E.first
|
||||
<<" (Weight "<< format("%g",E.second) << ") "
|
||||
<< (M) << "\n");
|
||||
}
|
||||
|
||||
// MaximumSpanningTree() - Takes a function and returns a spanning tree
|
||||
// according to the currently active profiling information, the leaf edges are
|
||||
// NOT in the MST. MaximumSpanningTree uses the algorithm of Kruskal.
|
||||
MaximumSpanningTree::MaximumSpanningTree(Function *F, ProfileInfo *PI,
|
||||
bool inverted = false) {
|
||||
|
||||
// Copy edges to vector, sort them biggest first.
|
||||
ProfileInfo::EdgeWeights ECs = PI->getEdgeWeights(F);
|
||||
std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
|
||||
std::sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare());
|
||||
|
||||
// Create spanning tree, Forest contains a special data structure
|
||||
// that makes checking if two nodes are already in a common (sub-)tree
|
||||
// fast and cheap.
|
||||
EquivalenceClasses<const BasicBlock*> Forest;
|
||||
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
|
||||
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
|
||||
Forest.insert(bbi->first.first);
|
||||
Forest.insert(bbi->first.second);
|
||||
}
|
||||
Forest.insert(0);
|
||||
|
||||
// Iterate over the sorted edges, biggest first.
|
||||
for (std::vector<ProfileInfo::EdgeWeight>::iterator bbi = EdgeVector.begin(),
|
||||
bbe = EdgeVector.end(); bbi != bbe; ++bbi) {
|
||||
ProfileInfo::Edge e = (*bbi).first;
|
||||
|
||||
if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
|
||||
Forest.unionSets(e.first, e.second);
|
||||
// So we know now that the edge is not already in a subtree (and not
|
||||
// (0,entry)), so we push the edge to the MST if it has some successors.
|
||||
if (!inverted) { MST.push_back(e); }
|
||||
printMSTEdge(*bbi,"in MST");
|
||||
} else {
|
||||
// This edge is either (0,entry) or (BB,0) or would create a circle in a
|
||||
// subtree.
|
||||
if (inverted) { MST.push_back(e); }
|
||||
printMSTEdge(*bbi,"*not* in MST");
|
||||
}
|
||||
}
|
||||
|
||||
// Sort the MST edges.
|
||||
std::stable_sort(MST.begin(),MST.end());
|
||||
}
|
||||
|
||||
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::begin() {
|
||||
return MST.begin();
|
||||
}
|
||||
|
||||
MaximumSpanningTree::MaxSpanTree::iterator MaximumSpanningTree::end() {
|
||||
return MST.end();
|
||||
}
|
||||
|
||||
void MaximumSpanningTree::dump() {
|
||||
errs()<<"{";
|
||||
for ( MaxSpanTree::iterator ei = MST.begin(), ee = MST.end();
|
||||
ei!=ee; ++ei ) {
|
||||
errs()<<"("<<((*ei).first?(*ei).first->getNameStr():"0")<<",";
|
||||
errs()<<(*ei).second->getNameStr()<<")";
|
||||
}
|
||||
errs()<<"}\n";
|
||||
}
|
50
lib/Transforms/Instrumentation/MaximumSpanningTree.h
Normal file
50
lib/Transforms/Instrumentation/MaximumSpanningTree.h
Normal file
@ -0,0 +1,50 @@
|
||||
//===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This module privides means for calculating a maximum spanning tree for the
|
||||
// CFG of a function according to a given profile.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
|
||||
#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
|
||||
|
||||
#include "llvm/Analysis/ProfileInfo.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
class Function;
|
||||
|
||||
class MaximumSpanningTree {
|
||||
public:
|
||||
typedef std::vector<ProfileInfo::Edge> MaxSpanTree;
|
||||
|
||||
protected:
|
||||
MaxSpanTree MST;
|
||||
|
||||
public:
|
||||
static char ID; // Class identification, replacement for typeinfo
|
||||
|
||||
// MaxSpanTree() - Calculates a MST for a function according to a profile.
|
||||
// If inverted is true, all the edges *not* in the MST are returned. As a
|
||||
// special also all leaf edges of the MST are not included, this makes it
|
||||
// easier for the OptimalEdgeProfileInstrumentation to use this MST to do
|
||||
// an optimal profiling.
|
||||
MaximumSpanningTree(Function *F, ProfileInfo *PI, bool invert);
|
||||
|
||||
virtual MaxSpanTree::iterator begin();
|
||||
virtual MaxSpanTree::iterator end();
|
||||
|
||||
virtual void dump();
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user