mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-29 14:20:29 +00:00
sink most of the meat in smallvector back from SmallVectorTemplateCommon
down into SmallVectorImpl. This requires sprinking a ton of this->'s in, but gives us a place to factor. llvm-svn: 91522
This commit is contained in:
parent
503ef79cc5
commit
c9b5e915c2
@ -86,19 +86,11 @@ public:
|
||||
|
||||
template <typename T>
|
||||
class SmallVectorTemplateCommon : public SmallVectorBase {
|
||||
protected:
|
||||
void setEnd(T *P) { this->EndX = P; }
|
||||
public:
|
||||
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
|
||||
|
||||
~SmallVectorTemplateCommon() {
|
||||
// Destroy the constructed elements in the vector.
|
||||
destroy_range(begin(), end());
|
||||
|
||||
// If this wasn't grown from the inline copy, deallocate the old space.
|
||||
if (!this->isSmall())
|
||||
operator delete(begin());
|
||||
}
|
||||
|
||||
typedef size_t size_type;
|
||||
typedef ptrdiff_t difference_type;
|
||||
typedef T value_type;
|
||||
@ -118,7 +110,7 @@ public:
|
||||
const_iterator begin() const { return (const_iterator)this->BeginX; }
|
||||
iterator end() { return (iterator)this->EndX; }
|
||||
const_iterator end() const { return (const_iterator)this->EndX; }
|
||||
private:
|
||||
protected:
|
||||
iterator capacity_ptr() { return (iterator)this->CapacityX; }
|
||||
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
|
||||
public:
|
||||
@ -163,253 +155,297 @@ public:
|
||||
const_reference back() const {
|
||||
return end()[-1];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename T, bool isPodLike>
|
||||
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
|
||||
public:
|
||||
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
||||
|
||||
void push_back(const_reference Elt) {
|
||||
if (this->EndX < this->CapacityX) {
|
||||
Retry:
|
||||
new (end()) T(Elt);
|
||||
setEnd(end()+1);
|
||||
return;
|
||||
}
|
||||
grow();
|
||||
goto Retry;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
|
||||
public:
|
||||
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
||||
|
||||
};
|
||||
|
||||
|
||||
/// SmallVectorImpl - This class consists of common code factored out of the
|
||||
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
||||
/// template parameter.
|
||||
template <typename T>
|
||||
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
|
||||
public:
|
||||
typedef typename SmallVectorTemplateBase<T, isPodLike<T>::value >::iterator
|
||||
iterator;
|
||||
typedef typename SmallVectorTemplateBase<T, isPodLike<T>::value >::size_type
|
||||
size_type;
|
||||
|
||||
// Default ctor - Initialize to empty.
|
||||
explicit SmallVectorImpl(unsigned N)
|
||||
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
setEnd(end()-1);
|
||||
end()->~T();
|
||||
|
||||
~SmallVectorImpl() {
|
||||
// Destroy the constructed elements in the vector.
|
||||
destroy_range(this->begin(), this->end());
|
||||
|
||||
// If this wasn't grown from the inline copy, deallocate the old space.
|
||||
if (!this->isSmall())
|
||||
operator delete(this->begin());
|
||||
}
|
||||
|
||||
T pop_back_val() {
|
||||
T Result = back();
|
||||
pop_back();
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void clear() {
|
||||
destroy_range(begin(), end());
|
||||
destroy_range(this->begin(), this->end());
|
||||
this->EndX = this->BeginX;
|
||||
}
|
||||
|
||||
void resize(unsigned N) {
|
||||
if (N < size()) {
|
||||
destroy_range(begin()+N, end());
|
||||
setEnd(begin()+N);
|
||||
} else if (N > size()) {
|
||||
if (capacity() < N)
|
||||
if (N < this->size()) {
|
||||
this->destroy_range(this->begin()+N, this->end());
|
||||
this->setEnd(this->begin()+N);
|
||||
} else if (N > this->size()) {
|
||||
if (this->capacity() < N)
|
||||
grow(N);
|
||||
construct_range(end(), begin()+N, T());
|
||||
setEnd(begin()+N);
|
||||
this->construct_range(this->end(), this->begin()+N, T());
|
||||
this->setEnd(this->begin()+N);
|
||||
}
|
||||
}
|
||||
|
||||
void resize(unsigned N, const T &NV) {
|
||||
if (N < size()) {
|
||||
destroy_range(begin()+N, end());
|
||||
setEnd(begin()+N);
|
||||
} else if (N > size()) {
|
||||
if (capacity() < N)
|
||||
if (N < this->size()) {
|
||||
destroy_range(this->begin()+N, this->end());
|
||||
setEnd(this->begin()+N);
|
||||
} else if (N > this->size()) {
|
||||
if (this->capacity() < N)
|
||||
grow(N);
|
||||
construct_range(end(), begin()+N, NV);
|
||||
setEnd(begin()+N);
|
||||
construct_range(this->end(), this->begin()+N, NV);
|
||||
setEnd(this->begin()+N);
|
||||
}
|
||||
}
|
||||
|
||||
void reserve(unsigned N) {
|
||||
if (capacity() < N)
|
||||
if (this->capacity() < N)
|
||||
grow(N);
|
||||
}
|
||||
|
||||
void swap(SmallVectorTemplateCommon &RHS);
|
||||
|
||||
|
||||
void push_back(const T &Elt) {
|
||||
if (this->EndX < this->CapacityX) {
|
||||
Retry:
|
||||
new (this->end()) T(Elt);
|
||||
setEnd(this->end()+1);
|
||||
return;
|
||||
}
|
||||
this->grow();
|
||||
goto Retry;
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
setEnd(this->end()-1);
|
||||
this->end()->~T();
|
||||
}
|
||||
|
||||
T pop_back_val() {
|
||||
T Result = this->back();
|
||||
pop_back();
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
void swap(SmallVectorImpl &RHS);
|
||||
|
||||
/// append - Add the specified range to the end of the SmallVector.
|
||||
///
|
||||
template<typename in_iter>
|
||||
void append(in_iter in_start, in_iter in_end) {
|
||||
size_type NumInputs = std::distance(in_start, in_end);
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(capacity_ptr()-end()))
|
||||
grow(size()+NumInputs);
|
||||
|
||||
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
|
||||
grow(this->size()+NumInputs);
|
||||
|
||||
// Copy the new elements over.
|
||||
// TODO: NEED To compile time dispatch on whether in_iter is a random access
|
||||
// iterator to use the fast uninitialized_copy.
|
||||
std::uninitialized_copy(in_start, in_end, end());
|
||||
setEnd(end() + NumInputs);
|
||||
std::uninitialized_copy(in_start, in_end, this->end());
|
||||
setEnd(this->end() + NumInputs);
|
||||
}
|
||||
|
||||
|
||||
/// append - Add the specified range to the end of the SmallVector.
|
||||
///
|
||||
void append(size_type NumInputs, const T &Elt) {
|
||||
// Grow allocated space if needed.
|
||||
if (NumInputs > size_type(capacity_ptr()-end()))
|
||||
grow(size()+NumInputs);
|
||||
|
||||
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
|
||||
grow(this->size()+NumInputs);
|
||||
|
||||
// Copy the new elements over.
|
||||
std::uninitialized_fill_n(end(), NumInputs, Elt);
|
||||
setEnd(end() + NumInputs);
|
||||
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
|
||||
setEnd(this->end() + NumInputs);
|
||||
}
|
||||
|
||||
|
||||
void assign(unsigned NumElts, const T &Elt) {
|
||||
clear();
|
||||
if (capacity() < NumElts)
|
||||
if (this->capacity() < NumElts)
|
||||
grow(NumElts);
|
||||
setEnd(begin()+NumElts);
|
||||
construct_range(begin(), end(), Elt);
|
||||
setEnd(this->begin()+NumElts);
|
||||
construct_range(this->begin(), this->end(), Elt);
|
||||
}
|
||||
|
||||
|
||||
iterator erase(iterator I) {
|
||||
iterator N = I;
|
||||
// Shift all elts down one.
|
||||
std::copy(I+1, end(), I);
|
||||
std::copy(I+1, this->end(), I);
|
||||
// Drop the last elt.
|
||||
pop_back();
|
||||
return(N);
|
||||
}
|
||||
|
||||
|
||||
iterator erase(iterator S, iterator E) {
|
||||
iterator N = S;
|
||||
// Shift all elts down.
|
||||
iterator I = std::copy(E, end(), S);
|
||||
iterator I = std::copy(E, this->end(), S);
|
||||
// Drop the last elts.
|
||||
destroy_range(I, end());
|
||||
destroy_range(I, this->end());
|
||||
setEnd(I);
|
||||
return(N);
|
||||
}
|
||||
|
||||
|
||||
iterator insert(iterator I, const T &Elt) {
|
||||
if (I == end()) { // Important special case for empty vector.
|
||||
if (I == this->end()) { // Important special case for empty vector.
|
||||
push_back(Elt);
|
||||
return end()-1;
|
||||
return this->end()-1;
|
||||
}
|
||||
|
||||
|
||||
if (this->EndX < this->CapacityX) {
|
||||
Retry:
|
||||
new (end()) T(back());
|
||||
setEnd(end()+1);
|
||||
Retry:
|
||||
new (this->end()) T(this->back());
|
||||
this->setEnd(this->end()+1);
|
||||
// Push everything else over.
|
||||
std::copy_backward(I, end()-1, end());
|
||||
std::copy_backward(I, this->end()-1, this->end());
|
||||
*I = Elt;
|
||||
return I;
|
||||
}
|
||||
size_t EltNo = I-begin();
|
||||
grow();
|
||||
I = begin()+EltNo;
|
||||
size_t EltNo = I-this->begin();
|
||||
this->grow();
|
||||
I = this->begin()+EltNo;
|
||||
goto Retry;
|
||||
}
|
||||
|
||||
|
||||
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
|
||||
if (I == end()) { // Important special case for empty vector.
|
||||
if (I == this->end()) { // Important special case for empty vector.
|
||||
append(NumToInsert, Elt);
|
||||
return end()-1;
|
||||
return this->end()-1;
|
||||
}
|
||||
|
||||
|
||||
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
||||
size_t InsertElt = I-begin();
|
||||
|
||||
size_t InsertElt = I - this->begin();
|
||||
|
||||
// Ensure there is enough space.
|
||||
reserve(static_cast<unsigned>(size() + NumToInsert));
|
||||
|
||||
reserve(static_cast<unsigned>(this->size() + NumToInsert));
|
||||
|
||||
// Uninvalidate the iterator.
|
||||
I = begin()+InsertElt;
|
||||
|
||||
I = this->begin()+InsertElt;
|
||||
|
||||
// If there are more elements between the insertion point and the end of the
|
||||
// range than there are being inserted, we can use a simple approach to
|
||||
// insertion. Since we already reserved space, we know that this won't
|
||||
// reallocate the vector.
|
||||
if (size_t(end()-I) >= NumToInsert) {
|
||||
T *OldEnd = end();
|
||||
append(end()-NumToInsert, end());
|
||||
|
||||
if (size_t(this->end()-I) >= NumToInsert) {
|
||||
T *OldEnd = this->end();
|
||||
append(this->end()-NumToInsert, this->end());
|
||||
|
||||
// Copy the existing elements that get replaced.
|
||||
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
|
||||
|
||||
|
||||
std::fill_n(I, NumToInsert, Elt);
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
// Otherwise, we're inserting more elements than exist already, and we're
|
||||
// not inserting at the end.
|
||||
|
||||
|
||||
// Copy over the elements that we're about to overwrite.
|
||||
T *OldEnd = end();
|
||||
setEnd(end() + NumToInsert);
|
||||
T *OldEnd = this->end();
|
||||
setEnd(this->end() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
uninitialized_copy(I, OldEnd, end()-NumOverwritten);
|
||||
|
||||
uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
|
||||
|
||||
// Replace the overwritten part.
|
||||
std::fill_n(I, NumOverwritten, Elt);
|
||||
|
||||
|
||||
// Insert the non-overwritten middle part.
|
||||
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
template<typename ItTy>
|
||||
iterator insert(iterator I, ItTy From, ItTy To) {
|
||||
if (I == end()) { // Important special case for empty vector.
|
||||
if (I == this->end()) { // Important special case for empty vector.
|
||||
append(From, To);
|
||||
return end()-1;
|
||||
return this->end()-1;
|
||||
}
|
||||
|
||||
|
||||
size_t NumToInsert = std::distance(From, To);
|
||||
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
|
||||
size_t InsertElt = I-begin();
|
||||
|
||||
size_t InsertElt = I - this->begin();
|
||||
|
||||
// Ensure there is enough space.
|
||||
reserve(static_cast<unsigned>(size() + NumToInsert));
|
||||
|
||||
reserve(static_cast<unsigned>(this->size() + NumToInsert));
|
||||
|
||||
// Uninvalidate the iterator.
|
||||
I = begin()+InsertElt;
|
||||
|
||||
I = this->begin()+InsertElt;
|
||||
|
||||
// If there are more elements between the insertion point and the end of the
|
||||
// range than there are being inserted, we can use a simple approach to
|
||||
// insertion. Since we already reserved space, we know that this won't
|
||||
// reallocate the vector.
|
||||
if (size_t(end()-I) >= NumToInsert) {
|
||||
T *OldEnd = end();
|
||||
append(end()-NumToInsert, end());
|
||||
|
||||
if (size_t(this->end()-I) >= NumToInsert) {
|
||||
T *OldEnd = this->end();
|
||||
append(this->end()-NumToInsert, this->end());
|
||||
|
||||
// Copy the existing elements that get replaced.
|
||||
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
|
||||
|
||||
|
||||
std::copy(From, To, I);
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
// Otherwise, we're inserting more elements than exist already, and we're
|
||||
// not inserting at the end.
|
||||
|
||||
|
||||
// Copy over the elements that we're about to overwrite.
|
||||
T *OldEnd = end();
|
||||
setEnd(end() + NumToInsert);
|
||||
T *OldEnd = this->end();
|
||||
setEnd(this->end() + NumToInsert);
|
||||
size_t NumOverwritten = OldEnd-I;
|
||||
uninitialized_copy(I, OldEnd, end()-NumOverwritten);
|
||||
|
||||
uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
|
||||
|
||||
// Replace the overwritten part.
|
||||
std::copy(From, From+NumOverwritten, I);
|
||||
|
||||
|
||||
// Insert the non-overwritten middle part.
|
||||
uninitialized_copy(From+NumOverwritten, To, OldEnd);
|
||||
return I;
|
||||
}
|
||||
|
||||
const SmallVectorTemplateCommon
|
||||
&operator=(const SmallVectorTemplateCommon &RHS);
|
||||
|
||||
bool operator==(const SmallVectorTemplateCommon &RHS) const {
|
||||
if (size() != RHS.size()) return false;
|
||||
return std::equal(begin(), end(), RHS.begin());
|
||||
|
||||
const SmallVectorImpl
|
||||
&operator=(const SmallVectorImpl &RHS);
|
||||
|
||||
bool operator==(const SmallVectorImpl &RHS) const {
|
||||
if (this->size() != RHS.size()) return false;
|
||||
return std::equal(this->begin(), this->end(), RHS.begin());
|
||||
}
|
||||
bool operator!=(const SmallVectorTemplateCommon &RHS) const {
|
||||
bool operator!=(const SmallVectorImpl &RHS) const {
|
||||
return !(*this == RHS);
|
||||
}
|
||||
|
||||
bool operator<(const SmallVectorTemplateCommon &RHS) const {
|
||||
return std::lexicographical_compare(begin(), end(),
|
||||
|
||||
bool operator<(const SmallVectorImpl &RHS) const {
|
||||
return std::lexicographical_compare(this->begin(), this->end(),
|
||||
RHS.begin(), RHS.end());
|
||||
}
|
||||
|
||||
|
||||
/// set_size - Set the array size to \arg N, which the current array must have
|
||||
/// enough capacity for.
|
||||
///
|
||||
@ -420,20 +456,20 @@ public:
|
||||
/// update the size later. This avoids the cost of value initializing elements
|
||||
/// which will only be overwritten.
|
||||
void set_size(unsigned N) {
|
||||
assert(N <= capacity());
|
||||
setEnd(begin() + N);
|
||||
assert(N <= this->capacity());
|
||||
setEnd(this->begin() + N);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
/// grow - double the size of the allocated memory, guaranteeing space for at
|
||||
/// least one more element or MinSize if specified.
|
||||
void grow(size_type MinSize = 0);
|
||||
|
||||
void grow(size_t MinSize = 0);
|
||||
|
||||
static void construct_range(T *S, T *E, const T &Elt) {
|
||||
for (; S != E; ++S)
|
||||
new (S) T(Elt);
|
||||
}
|
||||
|
||||
|
||||
static void destroy_range(T *S, T *E) {
|
||||
// No need to do a destroy loop for POD's.
|
||||
if (isPodLike<T>::value) return;
|
||||
@ -459,31 +495,31 @@ private:
|
||||
|
||||
// Define this out-of-line to dissuade the C++ compiler from inlining it.
|
||||
template <typename T>
|
||||
void SmallVectorTemplateCommon<T>::grow(size_t MinSize) {
|
||||
size_t CurCapacity = capacity();
|
||||
size_t CurSize = size();
|
||||
void SmallVectorImpl<T>::grow(size_t MinSize) {
|
||||
size_t CurCapacity = this->capacity();
|
||||
size_t CurSize = this->size();
|
||||
size_t NewCapacity = 2*CurCapacity;
|
||||
if (NewCapacity < MinSize)
|
||||
NewCapacity = MinSize;
|
||||
T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
|
||||
|
||||
// Copy the elements over.
|
||||
uninitialized_copy(begin(), end(), NewElts);
|
||||
uninitialized_copy(this->begin(), this->end(), NewElts);
|
||||
|
||||
// Destroy the original elements.
|
||||
destroy_range(begin(), end());
|
||||
destroy_range(this->begin(), this->end());
|
||||
|
||||
// If this wasn't grown from the inline copy, deallocate the old space.
|
||||
if (!this->isSmall())
|
||||
operator delete(begin());
|
||||
operator delete(this->begin());
|
||||
|
||||
setEnd(NewElts+CurSize);
|
||||
this->BeginX = NewElts;
|
||||
this->CapacityX = begin()+NewCapacity;
|
||||
this->CapacityX = this->begin()+NewCapacity;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SmallVectorTemplateCommon<T>::swap(SmallVectorTemplateCommon<T> &RHS) {
|
||||
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
|
||||
if (this == &RHS) return;
|
||||
|
||||
// We can only avoid copying elements if neither vector is small.
|
||||
@ -493,54 +529,53 @@ void SmallVectorTemplateCommon<T>::swap(SmallVectorTemplateCommon<T> &RHS) {
|
||||
std::swap(this->CapacityX, RHS.CapacityX);
|
||||
return;
|
||||
}
|
||||
if (RHS.size() > capacity())
|
||||
if (RHS.size() > this->capacity())
|
||||
grow(RHS.size());
|
||||
if (size() > RHS.capacity())
|
||||
RHS.grow(size());
|
||||
if (this->size() > RHS.capacity())
|
||||
RHS.grow(this->size());
|
||||
|
||||
// Swap the shared elements.
|
||||
size_t NumShared = size();
|
||||
size_t NumShared = this->size();
|
||||
if (NumShared > RHS.size()) NumShared = RHS.size();
|
||||
for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
|
||||
std::swap((*this)[i], RHS[i]);
|
||||
|
||||
// Copy over the extra elts.
|
||||
if (size() > RHS.size()) {
|
||||
size_t EltDiff = size() - RHS.size();
|
||||
uninitialized_copy(begin()+NumShared, end(), RHS.end());
|
||||
if (this->size() > RHS.size()) {
|
||||
size_t EltDiff = this->size() - RHS.size();
|
||||
uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
|
||||
RHS.setEnd(RHS.end()+EltDiff);
|
||||
destroy_range(begin()+NumShared, end());
|
||||
setEnd(begin()+NumShared);
|
||||
} else if (RHS.size() > size()) {
|
||||
size_t EltDiff = RHS.size() - size();
|
||||
uninitialized_copy(RHS.begin()+NumShared, RHS.end(), end());
|
||||
setEnd(end() + EltDiff);
|
||||
destroy_range(this->begin()+NumShared, this->end());
|
||||
setEnd(this->begin()+NumShared);
|
||||
} else if (RHS.size() > this->size()) {
|
||||
size_t EltDiff = RHS.size() - this->size();
|
||||
uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
|
||||
setEnd(this->end() + EltDiff);
|
||||
destroy_range(RHS.begin()+NumShared, RHS.end());
|
||||
RHS.setEnd(RHS.begin()+NumShared);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const SmallVectorTemplateCommon<T> &
|
||||
SmallVectorTemplateCommon<T>::
|
||||
operator=(const SmallVectorTemplateCommon<T> &RHS) {
|
||||
const SmallVectorImpl<T> &SmallVectorImpl<T>::
|
||||
operator=(const SmallVectorImpl<T> &RHS) {
|
||||
// Avoid self-assignment.
|
||||
if (this == &RHS) return *this;
|
||||
|
||||
// If we already have sufficient space, assign the common elements, then
|
||||
// destroy any excess.
|
||||
size_t RHSSize = RHS.size();
|
||||
size_t CurSize = size();
|
||||
size_t CurSize = this->size();
|
||||
if (CurSize >= RHSSize) {
|
||||
// Assign common elements.
|
||||
iterator NewEnd;
|
||||
if (RHSSize)
|
||||
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, begin());
|
||||
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
|
||||
else
|
||||
NewEnd = begin();
|
||||
NewEnd = this->begin();
|
||||
|
||||
// Destroy excess elements.
|
||||
destroy_range(NewEnd, end());
|
||||
destroy_range(NewEnd, this->end());
|
||||
|
||||
// Trim.
|
||||
setEnd(NewEnd);
|
||||
@ -549,52 +584,25 @@ SmallVectorTemplateCommon<T>::
|
||||
|
||||
// If we have to grow to have enough elements, destroy the current elements.
|
||||
// This allows us to avoid copying them during the grow.
|
||||
if (capacity() < RHSSize) {
|
||||
if (this->capacity() < RHSSize) {
|
||||
// Destroy current elements.
|
||||
destroy_range(begin(), end());
|
||||
setEnd(begin());
|
||||
destroy_range(this->begin(), this->end());
|
||||
setEnd(this->begin());
|
||||
CurSize = 0;
|
||||
grow(RHSSize);
|
||||
} else if (CurSize) {
|
||||
// Otherwise, use assignment for the already-constructed elements.
|
||||
std::copy(RHS.begin(), RHS.begin()+CurSize, begin());
|
||||
std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
|
||||
}
|
||||
|
||||
// Copy construct the new elements in place.
|
||||
uninitialized_copy(RHS.begin()+CurSize, RHS.end(), begin()+CurSize);
|
||||
uninitialized_copy(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize);
|
||||
|
||||
// Set end.
|
||||
setEnd(begin()+RHSSize);
|
||||
setEnd(this->begin()+RHSSize);
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, bool isPodLike>
|
||||
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
|
||||
public:
|
||||
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
||||
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
|
||||
public:
|
||||
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
|
||||
|
||||
};
|
||||
|
||||
|
||||
/// SmallVectorImpl - This class consists of common code factored out of the
|
||||
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
|
||||
/// template parameter.
|
||||
template <typename T>
|
||||
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
|
||||
public:
|
||||
// Default ctor - Initialize to empty.
|
||||
explicit SmallVectorImpl(unsigned N)
|
||||
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
|
||||
}
|
||||
};
|
||||
|
||||
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
|
||||
/// for the case when the array is small. It contains some number of elements
|
||||
|
Loading…
Reference in New Issue
Block a user