mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-29 06:10:48 +00:00
[SCEVExpander] Fix indentation/formatting (NFC).
The declarations inside the llvm namespace where indented too much. Fix it by re-running clang-format on the whole file.
This commit is contained in:
parent
9622d72029
commit
da4befee30
@ -26,410 +26,398 @@
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
|
||||
namespace llvm {
|
||||
extern cl::opt<unsigned> SCEVCheapExpansionBudget;
|
||||
extern cl::opt<unsigned> SCEVCheapExpansionBudget;
|
||||
|
||||
/// Return true if the given expression is safe to expand in the sense that
|
||||
/// all materialized values are safe to speculate anywhere their operands are
|
||||
/// defined.
|
||||
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
|
||||
/// Return true if the given expression is safe to expand in the sense that
|
||||
/// all materialized values are safe to speculate anywhere their operands are
|
||||
/// defined.
|
||||
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
|
||||
|
||||
/// Return true if the given expression is safe to expand in the sense that
|
||||
/// all materialized values are defined and safe to speculate at the specified
|
||||
/// location and their operands are defined at this location.
|
||||
bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
|
||||
ScalarEvolution &SE);
|
||||
/// Return true if the given expression is safe to expand in the sense that
|
||||
/// all materialized values are defined and safe to speculate at the specified
|
||||
/// location and their operands are defined at this location.
|
||||
bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
|
||||
ScalarEvolution &SE);
|
||||
|
||||
/// This class uses information about analyze scalars to rewrite expressions
|
||||
/// in canonical form.
|
||||
/// This class uses information about analyze scalars to rewrite expressions
|
||||
/// in canonical form.
|
||||
///
|
||||
/// Clients should create an instance of this class when rewriting is needed,
|
||||
/// and destroy it when finished to allow the release of the associated
|
||||
/// memory.
|
||||
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> {
|
||||
ScalarEvolution &SE;
|
||||
const DataLayout &DL;
|
||||
|
||||
// New instructions receive a name to identify them with the current pass.
|
||||
const char *IVName;
|
||||
|
||||
// InsertedExpressions caches Values for reuse, so must track RAUW.
|
||||
DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
|
||||
InsertedExpressions;
|
||||
|
||||
// InsertedValues only flags inserted instructions so needs no RAUW.
|
||||
DenseSet<AssertingVH<Value>> InsertedValues;
|
||||
DenseSet<AssertingVH<Value>> InsertedPostIncValues;
|
||||
|
||||
/// A memoization of the "relevant" loop for a given SCEV.
|
||||
DenseMap<const SCEV *, const Loop *> RelevantLoops;
|
||||
|
||||
/// Addrecs referring to any of the given loops are expanded in post-inc
|
||||
/// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
|
||||
/// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
|
||||
/// phi starting at 1. This is only supported in non-canonical mode.
|
||||
PostIncLoopSet PostIncLoops;
|
||||
|
||||
/// When this is non-null, addrecs expanded in the loop it indicates should
|
||||
/// be inserted with increments at IVIncInsertPos.
|
||||
const Loop *IVIncInsertLoop;
|
||||
|
||||
/// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
|
||||
/// increment at this position.
|
||||
Instruction *IVIncInsertPos;
|
||||
|
||||
/// Phis that complete an IV chain. Reuse
|
||||
DenseSet<AssertingVH<PHINode>> ChainedPhis;
|
||||
|
||||
/// When true, SCEVExpander tries to expand expressions in "canonical" form.
|
||||
/// When false, expressions are expanded in a more literal form.
|
||||
///
|
||||
/// Clients should create an instance of this class when rewriting is needed,
|
||||
/// and destroy it when finished to allow the release of the associated
|
||||
/// memory.
|
||||
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
|
||||
ScalarEvolution &SE;
|
||||
const DataLayout &DL;
|
||||
/// In "canonical" form addrecs are expanded as arithmetic based on a
|
||||
/// canonical induction variable. Note that CanonicalMode doesn't guarantee
|
||||
/// that all expressions are expanded in "canonical" form. For some
|
||||
/// expressions literal mode can be preferred.
|
||||
bool CanonicalMode;
|
||||
|
||||
// New instructions receive a name to identify them with the current pass.
|
||||
const char* IVName;
|
||||
/// When invoked from LSR, the expander is in "strength reduction" mode. The
|
||||
/// only difference is that phi's are only reused if they are already in
|
||||
/// "expanded" form.
|
||||
bool LSRMode;
|
||||
|
||||
// InsertedExpressions caches Values for reuse, so must track RAUW.
|
||||
DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
|
||||
InsertedExpressions;
|
||||
typedef IRBuilder<TargetFolder> BuilderType;
|
||||
BuilderType Builder;
|
||||
|
||||
// InsertedValues only flags inserted instructions so needs no RAUW.
|
||||
DenseSet<AssertingVH<Value>> InsertedValues;
|
||||
DenseSet<AssertingVH<Value>> InsertedPostIncValues;
|
||||
// RAII object that stores the current insertion point and restores it when
|
||||
// the object is destroyed. This includes the debug location. Duplicated
|
||||
// from InsertPointGuard to add SetInsertPoint() which is used to updated
|
||||
// InsertPointGuards stack when insert points are moved during SCEV
|
||||
// expansion.
|
||||
class SCEVInsertPointGuard {
|
||||
IRBuilderBase &Builder;
|
||||
AssertingVH<BasicBlock> Block;
|
||||
BasicBlock::iterator Point;
|
||||
DebugLoc DbgLoc;
|
||||
SCEVExpander *SE;
|
||||
|
||||
/// A memoization of the "relevant" loop for a given SCEV.
|
||||
DenseMap<const SCEV *, const Loop *> RelevantLoops;
|
||||
|
||||
/// Addrecs referring to any of the given loops are expanded in post-inc
|
||||
/// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
|
||||
/// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
|
||||
/// phi starting at 1. This is only supported in non-canonical mode.
|
||||
PostIncLoopSet PostIncLoops;
|
||||
|
||||
/// When this is non-null, addrecs expanded in the loop it indicates should
|
||||
/// be inserted with increments at IVIncInsertPos.
|
||||
const Loop *IVIncInsertLoop;
|
||||
|
||||
/// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
|
||||
/// increment at this position.
|
||||
Instruction *IVIncInsertPos;
|
||||
|
||||
/// Phis that complete an IV chain. Reuse
|
||||
DenseSet<AssertingVH<PHINode>> ChainedPhis;
|
||||
|
||||
/// When true, SCEVExpander tries to expand expressions in "canonical" form.
|
||||
/// When false, expressions are expanded in a more literal form.
|
||||
///
|
||||
/// In "canonical" form addrecs are expanded as arithmetic based on a
|
||||
/// canonical induction variable. Note that CanonicalMode doesn't guarantee
|
||||
/// that all expressions are expanded in "canonical" form. For some
|
||||
/// expressions literal mode can be preferred.
|
||||
bool CanonicalMode;
|
||||
|
||||
/// When invoked from LSR, the expander is in "strength reduction" mode. The
|
||||
/// only difference is that phi's are only reused if they are already in
|
||||
/// "expanded" form.
|
||||
bool LSRMode;
|
||||
|
||||
typedef IRBuilder<TargetFolder> BuilderType;
|
||||
BuilderType Builder;
|
||||
|
||||
// RAII object that stores the current insertion point and restores it when
|
||||
// the object is destroyed. This includes the debug location. Duplicated
|
||||
// from InsertPointGuard to add SetInsertPoint() which is used to updated
|
||||
// InsertPointGuards stack when insert points are moved during SCEV
|
||||
// expansion.
|
||||
class SCEVInsertPointGuard {
|
||||
IRBuilderBase &Builder;
|
||||
AssertingVH<BasicBlock> Block;
|
||||
BasicBlock::iterator Point;
|
||||
DebugLoc DbgLoc;
|
||||
SCEVExpander *SE;
|
||||
|
||||
SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
|
||||
SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
|
||||
|
||||
public:
|
||||
SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
|
||||
: Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
|
||||
DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
|
||||
SE->InsertPointGuards.push_back(this);
|
||||
}
|
||||
|
||||
~SCEVInsertPointGuard() {
|
||||
// These guards should always created/destroyed in FIFO order since they
|
||||
// are used to guard lexically scoped blocks of code in
|
||||
// ScalarEvolutionExpander.
|
||||
assert(SE->InsertPointGuards.back() == this);
|
||||
SE->InsertPointGuards.pop_back();
|
||||
Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
|
||||
Builder.SetCurrentDebugLocation(DbgLoc);
|
||||
}
|
||||
|
||||
BasicBlock::iterator GetInsertPoint() const { return Point; }
|
||||
void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
|
||||
};
|
||||
|
||||
/// Stack of pointers to saved insert points, used to keep insert points
|
||||
/// consistent when instructions are moved.
|
||||
SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
|
||||
|
||||
#ifndef NDEBUG
|
||||
const char *DebugType;
|
||||
#endif
|
||||
|
||||
friend struct SCEVVisitor<SCEVExpander, Value*>;
|
||||
SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
|
||||
SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
|
||||
|
||||
public:
|
||||
/// Construct a SCEVExpander in "canonical" mode.
|
||||
explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
|
||||
const char *name)
|
||||
: SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
|
||||
IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
|
||||
Builder(se.getContext(), TargetFolder(DL)) {
|
||||
#ifndef NDEBUG
|
||||
DebugType = "";
|
||||
#endif
|
||||
SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
|
||||
: Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
|
||||
DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
|
||||
SE->InsertPointGuards.push_back(this);
|
||||
}
|
||||
|
||||
~SCEVExpander() {
|
||||
// Make sure the insert point guard stack is consistent.
|
||||
assert(InsertPointGuards.empty());
|
||||
~SCEVInsertPointGuard() {
|
||||
// These guards should always created/destroyed in FIFO order since they
|
||||
// are used to guard lexically scoped blocks of code in
|
||||
// ScalarEvolutionExpander.
|
||||
assert(SE->InsertPointGuards.back() == this);
|
||||
SE->InsertPointGuards.pop_back();
|
||||
Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
|
||||
Builder.SetCurrentDebugLocation(DbgLoc);
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
void setDebugType(const char* s) { DebugType = s; }
|
||||
#endif
|
||||
|
||||
/// Erase the contents of the InsertedExpressions map so that users trying
|
||||
/// to expand the same expression into multiple BasicBlocks or different
|
||||
/// places within the same BasicBlock can do so.
|
||||
void clear() {
|
||||
InsertedExpressions.clear();
|
||||
InsertedValues.clear();
|
||||
InsertedPostIncValues.clear();
|
||||
ChainedPhis.clear();
|
||||
}
|
||||
|
||||
/// Return true for expressions that can't be evaluated at runtime
|
||||
/// within given \b Budget.
|
||||
///
|
||||
/// At is a parameter which specifies point in code where user is going to
|
||||
/// expand this expression. Sometimes this knowledge can lead to
|
||||
/// a less pessimistic cost estimation.
|
||||
bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget,
|
||||
const TargetTransformInfo *TTI,
|
||||
const Instruction *At) {
|
||||
assert(TTI && "This function requires TTI to be provided.");
|
||||
assert(At && "This function requires At instruction to be provided.");
|
||||
if (!TTI) // In assert-less builds, avoid crashing
|
||||
return true; // by always claiming to be high-cost.
|
||||
SmallVector<const SCEV *, 8> Worklist;
|
||||
SmallPtrSet<const SCEV *, 8> Processed;
|
||||
int BudgetRemaining = Budget * TargetTransformInfo::TCC_Basic;
|
||||
Worklist.emplace_back(Expr);
|
||||
while (!Worklist.empty()) {
|
||||
const SCEV *S = Worklist.pop_back_val();
|
||||
if (isHighCostExpansionHelper(S, L, *At, BudgetRemaining, *TTI,
|
||||
Processed, Worklist))
|
||||
return true;
|
||||
}
|
||||
assert(BudgetRemaining >= 0 && "Should have returned from inner loop.");
|
||||
return false;
|
||||
}
|
||||
|
||||
/// This method returns the canonical induction variable of the specified
|
||||
/// type for the specified loop (inserting one if there is none). A
|
||||
/// canonical induction variable starts at zero and steps by one on each
|
||||
/// iteration.
|
||||
PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
|
||||
|
||||
/// Return the induction variable increment's IV operand.
|
||||
Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
|
||||
bool allowScale);
|
||||
|
||||
/// Utility for hoisting an IV increment.
|
||||
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
|
||||
|
||||
/// replace congruent phis with their most canonical representative. Return
|
||||
/// the number of phis eliminated.
|
||||
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
|
||||
SmallVectorImpl<WeakTrackingVH> &DeadInsts,
|
||||
const TargetTransformInfo *TTI = nullptr);
|
||||
|
||||
/// Insert code to directly compute the specified SCEV expression into the
|
||||
/// program. The inserted code is inserted into the specified block.
|
||||
Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
|
||||
|
||||
/// Insert code to directly compute the specified SCEV expression into the
|
||||
/// program. The inserted code is inserted into the SCEVExpander's current
|
||||
/// insertion point. If a type is specified, the result will be expanded to
|
||||
/// have that type, with a cast if necessary.
|
||||
Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
|
||||
|
||||
|
||||
/// Generates a code sequence that evaluates this predicate. The inserted
|
||||
/// instructions will be at position \p Loc. The result will be of type i1
|
||||
/// and will have a value of 0 when the predicate is false and 1 otherwise.
|
||||
Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
|
||||
|
||||
/// A specialized variant of expandCodeForPredicate, handling the case when
|
||||
/// we are expanding code for a SCEVEqualPredicate.
|
||||
Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
|
||||
Instruction *Loc);
|
||||
|
||||
/// Generates code that evaluates if the \p AR expression will overflow.
|
||||
Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
|
||||
bool Signed);
|
||||
|
||||
/// A specialized variant of expandCodeForPredicate, handling the case when
|
||||
/// we are expanding code for a SCEVWrapPredicate.
|
||||
Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
|
||||
|
||||
/// A specialized variant of expandCodeForPredicate, handling the case when
|
||||
/// we are expanding code for a SCEVUnionPredicate.
|
||||
Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
|
||||
Instruction *Loc);
|
||||
|
||||
/// Set the current IV increment loop and position.
|
||||
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
|
||||
assert(!CanonicalMode &&
|
||||
"IV increment positions are not supported in CanonicalMode");
|
||||
IVIncInsertLoop = L;
|
||||
IVIncInsertPos = Pos;
|
||||
}
|
||||
|
||||
/// Enable post-inc expansion for addrecs referring to the given
|
||||
/// loops. Post-inc expansion is only supported in non-canonical mode.
|
||||
void setPostInc(const PostIncLoopSet &L) {
|
||||
assert(!CanonicalMode &&
|
||||
"Post-inc expansion is not supported in CanonicalMode");
|
||||
PostIncLoops = L;
|
||||
}
|
||||
|
||||
/// Disable all post-inc expansion.
|
||||
void clearPostInc() {
|
||||
PostIncLoops.clear();
|
||||
|
||||
// When we change the post-inc loop set, cached expansions may no
|
||||
// longer be valid.
|
||||
InsertedPostIncValues.clear();
|
||||
}
|
||||
|
||||
/// Disable the behavior of expanding expressions in canonical form rather
|
||||
/// than in a more literal form. Non-canonical mode is useful for late
|
||||
/// optimization passes.
|
||||
void disableCanonicalMode() { CanonicalMode = false; }
|
||||
|
||||
void enableLSRMode() { LSRMode = true; }
|
||||
|
||||
/// Set the current insertion point. This is useful if multiple calls to
|
||||
/// expandCodeFor() are going to be made with the same insert point and the
|
||||
/// insert point may be moved during one of the expansions (e.g. if the
|
||||
/// insert point is not a block terminator).
|
||||
void setInsertPoint(Instruction *IP) {
|
||||
assert(IP);
|
||||
Builder.SetInsertPoint(IP);
|
||||
}
|
||||
|
||||
/// Clear the current insertion point. This is useful if the instruction
|
||||
/// that had been serving as the insertion point may have been deleted.
|
||||
void clearInsertPoint() { Builder.ClearInsertionPoint(); }
|
||||
|
||||
/// Set location information used by debugging information.
|
||||
void SetCurrentDebugLocation(DebugLoc L) {
|
||||
Builder.SetCurrentDebugLocation(std::move(L));
|
||||
}
|
||||
|
||||
/// Get location information used by debugging information.
|
||||
const DebugLoc &getCurrentDebugLocation() const {
|
||||
return Builder.getCurrentDebugLocation();
|
||||
}
|
||||
|
||||
/// Return true if the specified instruction was inserted by the code
|
||||
/// rewriter. If so, the client should not modify the instruction.
|
||||
bool isInsertedInstruction(Instruction *I) const {
|
||||
return InsertedValues.count(I) || InsertedPostIncValues.count(I);
|
||||
}
|
||||
|
||||
void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
|
||||
|
||||
/// Try to find existing LLVM IR value for S available at the point At.
|
||||
Value *getExactExistingExpansion(const SCEV *S, const Instruction *At,
|
||||
Loop *L);
|
||||
|
||||
/// Try to find the ValueOffsetPair for S. The function is mainly used to
|
||||
/// check whether S can be expanded cheaply. If this returns a non-None
|
||||
/// value, we know we can codegen the `ValueOffsetPair` into a suitable
|
||||
/// expansion identical with S so that S can be expanded cheaply.
|
||||
///
|
||||
/// L is a hint which tells in which loop to look for the suitable value.
|
||||
/// On success return value which is equivalent to the expanded S at point
|
||||
/// At. Return nullptr if value was not found.
|
||||
///
|
||||
/// Note that this function does not perform an exhaustive search. I.e if it
|
||||
/// didn't find any value it does not mean that there is no such value.
|
||||
///
|
||||
Optional<ScalarEvolution::ValueOffsetPair>
|
||||
getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
|
||||
|
||||
private:
|
||||
LLVMContext &getContext() const { return SE.getContext(); }
|
||||
|
||||
/// Recursive helper function for isHighCostExpansion.
|
||||
bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
|
||||
const Instruction &At, int &BudgetRemaining,
|
||||
const TargetTransformInfo &TTI,
|
||||
SmallPtrSetImpl<const SCEV *> &Processed,
|
||||
SmallVectorImpl<const SCEV *> &Worklist);
|
||||
|
||||
/// Insert the specified binary operator, doing a small amount of work to
|
||||
/// avoid inserting an obviously redundant operation, and hoisting to an
|
||||
/// outer loop when the opportunity is there and it is safe.
|
||||
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
|
||||
SCEV::NoWrapFlags Flags, bool IsSafeToHoist);
|
||||
|
||||
/// Arrange for there to be a cast of V to Ty at IP, reusing an existing
|
||||
/// cast if a suitable one exists, moving an existing cast if a suitable one
|
||||
/// exists but isn't in the right place, or creating a new one.
|
||||
Value *ReuseOrCreateCast(Value *V, Type *Ty,
|
||||
Instruction::CastOps Op,
|
||||
BasicBlock::iterator IP);
|
||||
|
||||
/// Insert a cast of V to the specified type, which must be possible with a
|
||||
/// noop cast, doing what we can to share the casts.
|
||||
Value *InsertNoopCastOfTo(Value *V, Type *Ty);
|
||||
|
||||
/// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
|
||||
/// ptrtoint+arithmetic+inttoptr.
|
||||
Value *expandAddToGEP(const SCEV *const *op_begin,
|
||||
const SCEV *const *op_end,
|
||||
PointerType *PTy, Type *Ty, Value *V);
|
||||
Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V);
|
||||
|
||||
/// Find a previous Value in ExprValueMap for expand.
|
||||
ScalarEvolution::ValueOffsetPair
|
||||
FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
|
||||
|
||||
Value *expand(const SCEV *S);
|
||||
|
||||
/// Determine the most "relevant" loop for the given SCEV.
|
||||
const Loop *getRelevantLoop(const SCEV *);
|
||||
|
||||
Value *visitConstant(const SCEVConstant *S) {
|
||||
return S->getValue();
|
||||
}
|
||||
|
||||
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
|
||||
|
||||
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
|
||||
|
||||
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
|
||||
|
||||
Value *visitAddExpr(const SCEVAddExpr *S);
|
||||
|
||||
Value *visitMulExpr(const SCEVMulExpr *S);
|
||||
|
||||
Value *visitUDivExpr(const SCEVUDivExpr *S);
|
||||
|
||||
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
|
||||
|
||||
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
|
||||
|
||||
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
|
||||
|
||||
Value *visitSMinExpr(const SCEVSMinExpr *S);
|
||||
|
||||
Value *visitUMinExpr(const SCEVUMinExpr *S);
|
||||
|
||||
Value *visitUnknown(const SCEVUnknown *S) {
|
||||
return S->getValue();
|
||||
}
|
||||
|
||||
void rememberInstruction(Value *I);
|
||||
|
||||
bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
||||
|
||||
bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
||||
|
||||
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
|
||||
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
|
||||
const Loop *L,
|
||||
Type *ExpandTy,
|
||||
Type *IntTy,
|
||||
Type *&TruncTy,
|
||||
bool &InvertStep);
|
||||
Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
|
||||
Type *ExpandTy, Type *IntTy, bool useSubtract);
|
||||
|
||||
void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
|
||||
Instruction *Pos, PHINode *LoopPhi);
|
||||
|
||||
void fixupInsertPoints(Instruction *I);
|
||||
BasicBlock::iterator GetInsertPoint() const { return Point; }
|
||||
void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
|
||||
};
|
||||
}
|
||||
|
||||
/// Stack of pointers to saved insert points, used to keep insert points
|
||||
/// consistent when instructions are moved.
|
||||
SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
|
||||
|
||||
#ifndef NDEBUG
|
||||
const char *DebugType;
|
||||
#endif
|
||||
|
||||
friend struct SCEVVisitor<SCEVExpander, Value *>;
|
||||
|
||||
public:
|
||||
/// Construct a SCEVExpander in "canonical" mode.
|
||||
explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
|
||||
const char *name)
|
||||
: SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
|
||||
IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
|
||||
Builder(se.getContext(), TargetFolder(DL)) {
|
||||
#ifndef NDEBUG
|
||||
DebugType = "";
|
||||
#endif
|
||||
}
|
||||
|
||||
~SCEVExpander() {
|
||||
// Make sure the insert point guard stack is consistent.
|
||||
assert(InsertPointGuards.empty());
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
void setDebugType(const char *s) { DebugType = s; }
|
||||
#endif
|
||||
|
||||
/// Erase the contents of the InsertedExpressions map so that users trying
|
||||
/// to expand the same expression into multiple BasicBlocks or different
|
||||
/// places within the same BasicBlock can do so.
|
||||
void clear() {
|
||||
InsertedExpressions.clear();
|
||||
InsertedValues.clear();
|
||||
InsertedPostIncValues.clear();
|
||||
ChainedPhis.clear();
|
||||
}
|
||||
|
||||
/// Return true for expressions that can't be evaluated at runtime
|
||||
/// within given \b Budget.
|
||||
///
|
||||
/// At is a parameter which specifies point in code where user is going to
|
||||
/// expand this expression. Sometimes this knowledge can lead to
|
||||
/// a less pessimistic cost estimation.
|
||||
bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget,
|
||||
const TargetTransformInfo *TTI,
|
||||
const Instruction *At) {
|
||||
assert(TTI && "This function requires TTI to be provided.");
|
||||
assert(At && "This function requires At instruction to be provided.");
|
||||
if (!TTI) // In assert-less builds, avoid crashing
|
||||
return true; // by always claiming to be high-cost.
|
||||
SmallVector<const SCEV *, 8> Worklist;
|
||||
SmallPtrSet<const SCEV *, 8> Processed;
|
||||
int BudgetRemaining = Budget * TargetTransformInfo::TCC_Basic;
|
||||
Worklist.emplace_back(Expr);
|
||||
while (!Worklist.empty()) {
|
||||
const SCEV *S = Worklist.pop_back_val();
|
||||
if (isHighCostExpansionHelper(S, L, *At, BudgetRemaining, *TTI, Processed,
|
||||
Worklist))
|
||||
return true;
|
||||
}
|
||||
assert(BudgetRemaining >= 0 && "Should have returned from inner loop.");
|
||||
return false;
|
||||
}
|
||||
|
||||
/// This method returns the canonical induction variable of the specified
|
||||
/// type for the specified loop (inserting one if there is none). A
|
||||
/// canonical induction variable starts at zero and steps by one on each
|
||||
/// iteration.
|
||||
PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
|
||||
|
||||
/// Return the induction variable increment's IV operand.
|
||||
Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
|
||||
bool allowScale);
|
||||
|
||||
/// Utility for hoisting an IV increment.
|
||||
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
|
||||
|
||||
/// replace congruent phis with their most canonical representative. Return
|
||||
/// the number of phis eliminated.
|
||||
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
|
||||
SmallVectorImpl<WeakTrackingVH> &DeadInsts,
|
||||
const TargetTransformInfo *TTI = nullptr);
|
||||
|
||||
/// Insert code to directly compute the specified SCEV expression into the
|
||||
/// program. The inserted code is inserted into the specified block.
|
||||
Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
|
||||
|
||||
/// Insert code to directly compute the specified SCEV expression into the
|
||||
/// program. The inserted code is inserted into the SCEVExpander's current
|
||||
/// insertion point. If a type is specified, the result will be expanded to
|
||||
/// have that type, with a cast if necessary.
|
||||
Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
|
||||
|
||||
/// Generates a code sequence that evaluates this predicate. The inserted
|
||||
/// instructions will be at position \p Loc. The result will be of type i1
|
||||
/// and will have a value of 0 when the predicate is false and 1 otherwise.
|
||||
Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
|
||||
|
||||
/// A specialized variant of expandCodeForPredicate, handling the case when
|
||||
/// we are expanding code for a SCEVEqualPredicate.
|
||||
Value *expandEqualPredicate(const SCEVEqualPredicate *Pred, Instruction *Loc);
|
||||
|
||||
/// Generates code that evaluates if the \p AR expression will overflow.
|
||||
Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
|
||||
bool Signed);
|
||||
|
||||
/// A specialized variant of expandCodeForPredicate, handling the case when
|
||||
/// we are expanding code for a SCEVWrapPredicate.
|
||||
Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
|
||||
|
||||
/// A specialized variant of expandCodeForPredicate, handling the case when
|
||||
/// we are expanding code for a SCEVUnionPredicate.
|
||||
Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc);
|
||||
|
||||
/// Set the current IV increment loop and position.
|
||||
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
|
||||
assert(!CanonicalMode &&
|
||||
"IV increment positions are not supported in CanonicalMode");
|
||||
IVIncInsertLoop = L;
|
||||
IVIncInsertPos = Pos;
|
||||
}
|
||||
|
||||
/// Enable post-inc expansion for addrecs referring to the given
|
||||
/// loops. Post-inc expansion is only supported in non-canonical mode.
|
||||
void setPostInc(const PostIncLoopSet &L) {
|
||||
assert(!CanonicalMode &&
|
||||
"Post-inc expansion is not supported in CanonicalMode");
|
||||
PostIncLoops = L;
|
||||
}
|
||||
|
||||
/// Disable all post-inc expansion.
|
||||
void clearPostInc() {
|
||||
PostIncLoops.clear();
|
||||
|
||||
// When we change the post-inc loop set, cached expansions may no
|
||||
// longer be valid.
|
||||
InsertedPostIncValues.clear();
|
||||
}
|
||||
|
||||
/// Disable the behavior of expanding expressions in canonical form rather
|
||||
/// than in a more literal form. Non-canonical mode is useful for late
|
||||
/// optimization passes.
|
||||
void disableCanonicalMode() { CanonicalMode = false; }
|
||||
|
||||
void enableLSRMode() { LSRMode = true; }
|
||||
|
||||
/// Set the current insertion point. This is useful if multiple calls to
|
||||
/// expandCodeFor() are going to be made with the same insert point and the
|
||||
/// insert point may be moved during one of the expansions (e.g. if the
|
||||
/// insert point is not a block terminator).
|
||||
void setInsertPoint(Instruction *IP) {
|
||||
assert(IP);
|
||||
Builder.SetInsertPoint(IP);
|
||||
}
|
||||
|
||||
/// Clear the current insertion point. This is useful if the instruction
|
||||
/// that had been serving as the insertion point may have been deleted.
|
||||
void clearInsertPoint() { Builder.ClearInsertionPoint(); }
|
||||
|
||||
/// Set location information used by debugging information.
|
||||
void SetCurrentDebugLocation(DebugLoc L) {
|
||||
Builder.SetCurrentDebugLocation(std::move(L));
|
||||
}
|
||||
|
||||
/// Get location information used by debugging information.
|
||||
const DebugLoc &getCurrentDebugLocation() const {
|
||||
return Builder.getCurrentDebugLocation();
|
||||
}
|
||||
|
||||
/// Return true if the specified instruction was inserted by the code
|
||||
/// rewriter. If so, the client should not modify the instruction.
|
||||
bool isInsertedInstruction(Instruction *I) const {
|
||||
return InsertedValues.count(I) || InsertedPostIncValues.count(I);
|
||||
}
|
||||
|
||||
void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
|
||||
|
||||
/// Try to find existing LLVM IR value for S available at the point At.
|
||||
Value *getExactExistingExpansion(const SCEV *S, const Instruction *At,
|
||||
Loop *L);
|
||||
|
||||
/// Try to find the ValueOffsetPair for S. The function is mainly used to
|
||||
/// check whether S can be expanded cheaply. If this returns a non-None
|
||||
/// value, we know we can codegen the `ValueOffsetPair` into a suitable
|
||||
/// expansion identical with S so that S can be expanded cheaply.
|
||||
///
|
||||
/// L is a hint which tells in which loop to look for the suitable value.
|
||||
/// On success return value which is equivalent to the expanded S at point
|
||||
/// At. Return nullptr if value was not found.
|
||||
///
|
||||
/// Note that this function does not perform an exhaustive search. I.e if it
|
||||
/// didn't find any value it does not mean that there is no such value.
|
||||
///
|
||||
Optional<ScalarEvolution::ValueOffsetPair>
|
||||
getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
|
||||
|
||||
private:
|
||||
LLVMContext &getContext() const { return SE.getContext(); }
|
||||
|
||||
/// Recursive helper function for isHighCostExpansion.
|
||||
bool isHighCostExpansionHelper(const SCEV *S, Loop *L, const Instruction &At,
|
||||
int &BudgetRemaining,
|
||||
const TargetTransformInfo &TTI,
|
||||
SmallPtrSetImpl<const SCEV *> &Processed,
|
||||
SmallVectorImpl<const SCEV *> &Worklist);
|
||||
|
||||
/// Insert the specified binary operator, doing a small amount of work to
|
||||
/// avoid inserting an obviously redundant operation, and hoisting to an
|
||||
/// outer loop when the opportunity is there and it is safe.
|
||||
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
|
||||
SCEV::NoWrapFlags Flags, bool IsSafeToHoist);
|
||||
|
||||
/// Arrange for there to be a cast of V to Ty at IP, reusing an existing
|
||||
/// cast if a suitable one exists, moving an existing cast if a suitable one
|
||||
/// exists but isn't in the right place, or creating a new one.
|
||||
Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op,
|
||||
BasicBlock::iterator IP);
|
||||
|
||||
/// Insert a cast of V to the specified type, which must be possible with a
|
||||
/// noop cast, doing what we can to share the casts.
|
||||
Value *InsertNoopCastOfTo(Value *V, Type *Ty);
|
||||
|
||||
/// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
|
||||
/// ptrtoint+arithmetic+inttoptr.
|
||||
Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end,
|
||||
PointerType *PTy, Type *Ty, Value *V);
|
||||
Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V);
|
||||
|
||||
/// Find a previous Value in ExprValueMap for expand.
|
||||
ScalarEvolution::ValueOffsetPair
|
||||
FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
|
||||
|
||||
Value *expand(const SCEV *S);
|
||||
|
||||
/// Determine the most "relevant" loop for the given SCEV.
|
||||
const Loop *getRelevantLoop(const SCEV *);
|
||||
|
||||
Value *visitConstant(const SCEVConstant *S) { return S->getValue(); }
|
||||
|
||||
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
|
||||
|
||||
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
|
||||
|
||||
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
|
||||
|
||||
Value *visitAddExpr(const SCEVAddExpr *S);
|
||||
|
||||
Value *visitMulExpr(const SCEVMulExpr *S);
|
||||
|
||||
Value *visitUDivExpr(const SCEVUDivExpr *S);
|
||||
|
||||
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
|
||||
|
||||
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
|
||||
|
||||
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
|
||||
|
||||
Value *visitSMinExpr(const SCEVSMinExpr *S);
|
||||
|
||||
Value *visitUMinExpr(const SCEVUMinExpr *S);
|
||||
|
||||
Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); }
|
||||
|
||||
void rememberInstruction(Value *I);
|
||||
|
||||
bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
||||
|
||||
bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
||||
|
||||
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
|
||||
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
|
||||
const Loop *L, Type *ExpandTy, Type *IntTy,
|
||||
Type *&TruncTy, bool &InvertStep);
|
||||
Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy,
|
||||
Type *IntTy, bool useSubtract);
|
||||
|
||||
void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
|
||||
Instruction *Pos, PHINode *LoopPhi);
|
||||
|
||||
void fixupInsertPoints(Instruction *I);
|
||||
};
|
||||
} // namespace llvm
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user