Teach LSR to optimize away SMAX operations for tripcounts in common

cases.  See the comment above OptimizeSMax for the full story, and
the testcase for an example. This cancels out a pessimization
commonly attributed to indvars, and will allow us to lift some of
the artificial throttles in indvars, rather than add new ones.

llvm-svn: 56230
This commit is contained in:
Dan Gohman 2008-09-15 21:22:06 +00:00
parent b980f023ca
commit faa15214e0
2 changed files with 363 additions and 0 deletions

View File

@ -184,6 +184,11 @@ private:
/// inside the loop then try to eliminate the cast opeation.
void OptimizeShadowIV(Loop *L);
/// OptimizeSMax - Rewrite the loop's terminating condition
/// if it uses an smax computation.
ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
IVStrideUse* &CondUse);
bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
const SCEVHandle *&CondStride);
bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
@ -1695,6 +1700,123 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
return Cond;
}
/// OptimizeSMax - Rewrite the loop's terminating condition if it uses
/// an smax computation.
///
/// This is a narrow solution to a specific, but acute, problem. For loops
/// like this:
///
/// i = 0;
/// do {
/// p[i] = 0.0;
/// } while (++i < n);
///
/// where the comparison is signed, the trip count isn't just 'n', because
/// 'n' could be negative. And unfortunately this can come up even for loops
/// where the user didn't use a C do-while loop. For example, seemingly
/// well-behaved top-test loops will commonly be lowered like this:
//
/// if (n > 0) {
/// i = 0;
/// do {
/// p[i] = 0.0;
/// } while (++i < n);
/// }
///
/// and then it's possible for subsequent optimization to obscure the if
/// test in such a way that indvars can't find it.
///
/// When indvars can't find the if test in loops like this, it creates a
/// signed-max expression, which allows it to give the loop a canonical
/// induction variable:
///
/// i = 0;
/// smax = n < 1 ? 1 : n;
/// do {
/// p[i] = 0.0;
/// } while (++i != smax);
///
/// Canonical induction variables are necessary because the loop passes
/// are designed around them. The most obvious example of this is the
/// LoopInfo analysis, which doesn't remember trip count values. It
/// expects to be able to rediscover the trip count each time it is
/// needed, and it does this using a simple analyis that only succeeds if
/// the loop has a canonical induction variable.
///
/// However, when it comes time to generate code, the maximum operation
/// can be quite costly, especially if it's inside of an outer loop.
///
/// This function solves this problem by detecting this type of loop and
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
/// the instructions for the maximum computation.
///
ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
IVStrideUse* &CondUse) {
// Check that the loop matches the pattern we're looking for.
if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
Cond->getPredicate() != CmpInst::ICMP_NE)
return Cond;
SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
if (!Sel || !Sel->hasOneUse()) return Cond;
SCEVHandle IterationCount = SE->getIterationCount(L);
if (isa<SCEVCouldNotCompute>(IterationCount))
return Cond;
SCEVHandle One = SE->getIntegerSCEV(1, IterationCount->getType());
// Adjust for an annoying getIterationCount quirk.
IterationCount = SE->getAddExpr(IterationCount, One);
// Check for a max calculation that matches the pattern.
SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
SCEVHandle SMaxLHS = SMax->getOperand(0);
SCEVHandle SMaxRHS = SMax->getOperand(1);
if (!SMaxLHS || SMaxLHS != One) return Cond;
// Check the relevant induction variable for conformance to
// the pattern.
SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
if (!AR || !AR->isAffine() ||
AR->getStart() != One ||
AR->getStepRecurrence(*SE) != One)
return Cond;
// Check the right operand of the select, and remember it, as it will
// be used in the new comparison instruction.
Value *NewRHS = 0;
if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
NewRHS = Sel->getOperand(1);
else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
NewRHS = Sel->getOperand(2);
if (!NewRHS) return Cond;
// Ok, everything looks ok to change the condition into an SLT or SGE and
// delete the max calculation.
ICmpInst *NewCond =
new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
CmpInst::ICMP_SLT :
CmpInst::ICMP_SGE,
Cond->getOperand(0), NewRHS, "scmp", Cond);
// Delete the max calculation instructions.
Cond->replaceAllUsesWith(NewCond);
Cond->eraseFromParent();
SE->deleteValueFromRecords(Cond);
Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
Sel->eraseFromParent();
SE->deleteValueFromRecords(Sel);
if (Cmp->use_empty()) {
Cmp->eraseFromParent();
SE->deleteValueFromRecords(Cmp);
}
CondUse->User = NewCond;
return NewCond;
}
/// OptimizeShadowIV - If IV is used in a int-to-float cast
/// inside the loop then try to eliminate the cast opeation.
void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
@ -1836,6 +1958,11 @@ void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
if (!FindIVUserForCond(Cond, CondUse, CondStride))
return; // setcc doesn't use the IV.
// If the trip count is computed in terms of an smax (due to ScalarEvolution
// being unable to find a sufficient guard, for example), change the loop
// comparison to use SLT instead of NE.
Cond = OptimizeSMax(L, Cond, CondUse);
// If possible, change stride and operands of the compare instruction to
// eliminate one stride.
Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);

View File

@ -0,0 +1,236 @@
; RUN: llvm-as < %s | llc -march=x86 | not grep cmov
; LSR should be able to eliminate the smax computations by
; making the loops use slt comparisons instead of ne comparisons.
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
target triple = "i386-apple-darwin9"
define void @foo(i8* %r, i32 %s, i32 %w, i32 %x, i8* %j, i32 %d) nounwind {
entry:
%0 = mul i32 %x, %w ; <i32> [#uses=2]
%1 = mul i32 %x, %w ; <i32> [#uses=1]
%2 = sdiv i32 %1, 4 ; <i32> [#uses=1]
%.sum2 = add i32 %2, %0 ; <i32> [#uses=2]
%cond = icmp eq i32 %d, 1 ; <i1> [#uses=1]
br i1 %cond, label %bb29, label %bb10.preheader
bb10.preheader: ; preds = %entry
%3 = icmp sgt i32 %x, 0 ; <i1> [#uses=1]
br i1 %3, label %bb.nph9, label %bb18.loopexit
bb.nph7: ; preds = %bb7.preheader
%4 = mul i32 %y.08, %w ; <i32> [#uses=1]
%5 = mul i32 %y.08, %s ; <i32> [#uses=1]
%6 = add i32 %5, 1 ; <i32> [#uses=1]
%tmp8 = icmp sgt i32 1, %w ; <i1> [#uses=1]
%smax9 = select i1 %tmp8, i32 1, i32 %w ; <i32> [#uses=1]
br label %bb6
bb6: ; preds = %bb7, %bb.nph7
%x.06 = phi i32 [ 0, %bb.nph7 ], [ %indvar.next7, %bb7 ] ; <i32> [#uses=3]
%7 = add i32 %x.06, %4 ; <i32> [#uses=1]
%8 = shl i32 %x.06, 1 ; <i32> [#uses=1]
%9 = add i32 %6, %8 ; <i32> [#uses=1]
%10 = getelementptr i8* %r, i32 %9 ; <i8*> [#uses=1]
%11 = load i8* %10, align 1 ; <i8> [#uses=1]
%12 = getelementptr i8* %j, i32 %7 ; <i8*> [#uses=1]
store i8 %11, i8* %12, align 1
br label %bb7
bb7: ; preds = %bb6
%indvar.next7 = add i32 %x.06, 1 ; <i32> [#uses=2]
%exitcond10 = icmp ne i32 %indvar.next7, %smax9 ; <i1> [#uses=1]
br i1 %exitcond10, label %bb6, label %bb7.bb9_crit_edge
bb7.bb9_crit_edge: ; preds = %bb7
br label %bb9
bb9: ; preds = %bb7.preheader, %bb7.bb9_crit_edge
br label %bb10
bb10: ; preds = %bb9
%indvar.next11 = add i32 %y.08, 1 ; <i32> [#uses=2]
%exitcond12 = icmp ne i32 %indvar.next11, %x ; <i1> [#uses=1]
br i1 %exitcond12, label %bb7.preheader, label %bb10.bb18.loopexit_crit_edge
bb10.bb18.loopexit_crit_edge: ; preds = %bb10
br label %bb10.bb18.loopexit_crit_edge.split
bb10.bb18.loopexit_crit_edge.split: ; preds = %bb.nph9, %bb10.bb18.loopexit_crit_edge
br label %bb18.loopexit
bb.nph9: ; preds = %bb10.preheader
%13 = icmp sgt i32 %w, 0 ; <i1> [#uses=1]
br i1 %13, label %bb.nph9.split, label %bb10.bb18.loopexit_crit_edge.split
bb.nph9.split: ; preds = %bb.nph9
br label %bb7.preheader
bb7.preheader: ; preds = %bb.nph9.split, %bb10
%y.08 = phi i32 [ 0, %bb.nph9.split ], [ %indvar.next11, %bb10 ] ; <i32> [#uses=3]
br i1 true, label %bb.nph7, label %bb9
bb.nph5: ; preds = %bb18.loopexit
%14 = sdiv i32 %w, 2 ; <i32> [#uses=1]
%15 = icmp slt i32 %w, 2 ; <i1> [#uses=1]
%16 = sdiv i32 %x, 2 ; <i32> [#uses=2]
br i1 %15, label %bb18.bb20_crit_edge.split, label %bb.nph5.split
bb.nph5.split: ; preds = %bb.nph5
%tmp2 = icmp sgt i32 1, %16 ; <i1> [#uses=1]
%smax3 = select i1 %tmp2, i32 1, i32 %16 ; <i32> [#uses=1]
br label %bb13
bb13: ; preds = %bb18, %bb.nph5.split
%y.14 = phi i32 [ 0, %bb.nph5.split ], [ %indvar.next1, %bb18 ] ; <i32> [#uses=4]
%17 = mul i32 %14, %y.14 ; <i32> [#uses=2]
%18 = shl i32 %y.14, 1 ; <i32> [#uses=1]
%19 = srem i32 %y.14, 2 ; <i32> [#uses=1]
%20 = add i32 %19, %18 ; <i32> [#uses=1]
%21 = mul i32 %20, %s ; <i32> [#uses=2]
br i1 true, label %bb.nph3, label %bb17
bb.nph3: ; preds = %bb13
%22 = add i32 %17, %0 ; <i32> [#uses=1]
%23 = add i32 %17, %.sum2 ; <i32> [#uses=1]
%24 = sdiv i32 %w, 2 ; <i32> [#uses=2]
%tmp = icmp sgt i32 1, %24 ; <i1> [#uses=1]
%smax = select i1 %tmp, i32 1, i32 %24 ; <i32> [#uses=1]
br label %bb14
bb14: ; preds = %bb15, %bb.nph3
%x.12 = phi i32 [ 0, %bb.nph3 ], [ %indvar.next, %bb15 ] ; <i32> [#uses=5]
%25 = shl i32 %x.12, 2 ; <i32> [#uses=1]
%26 = add i32 %25, %21 ; <i32> [#uses=1]
%27 = getelementptr i8* %r, i32 %26 ; <i8*> [#uses=1]
%28 = load i8* %27, align 1 ; <i8> [#uses=1]
%.sum = add i32 %22, %x.12 ; <i32> [#uses=1]
%29 = getelementptr i8* %j, i32 %.sum ; <i8*> [#uses=1]
store i8 %28, i8* %29, align 1
%30 = shl i32 %x.12, 2 ; <i32> [#uses=1]
%31 = or i32 %30, 2 ; <i32> [#uses=1]
%32 = add i32 %31, %21 ; <i32> [#uses=1]
%33 = getelementptr i8* %r, i32 %32 ; <i8*> [#uses=1]
%34 = load i8* %33, align 1 ; <i8> [#uses=1]
%.sum6 = add i32 %23, %x.12 ; <i32> [#uses=1]
%35 = getelementptr i8* %j, i32 %.sum6 ; <i8*> [#uses=1]
store i8 %34, i8* %35, align 1
br label %bb15
bb15: ; preds = %bb14
%indvar.next = add i32 %x.12, 1 ; <i32> [#uses=2]
%exitcond = icmp ne i32 %indvar.next, %smax ; <i1> [#uses=1]
br i1 %exitcond, label %bb14, label %bb15.bb17_crit_edge
bb15.bb17_crit_edge: ; preds = %bb15
br label %bb17
bb17: ; preds = %bb15.bb17_crit_edge, %bb13
br label %bb18
bb18.loopexit: ; preds = %bb10.bb18.loopexit_crit_edge.split, %bb10.preheader
%36 = icmp slt i32 %x, 2 ; <i1> [#uses=1]
br i1 %36, label %bb20, label %bb.nph5
bb18: ; preds = %bb17
%indvar.next1 = add i32 %y.14, 1 ; <i32> [#uses=2]
%exitcond4 = icmp ne i32 %indvar.next1, %smax3 ; <i1> [#uses=1]
br i1 %exitcond4, label %bb13, label %bb18.bb20_crit_edge
bb18.bb20_crit_edge: ; preds = %bb18
br label %bb18.bb20_crit_edge.split
bb18.bb20_crit_edge.split: ; preds = %bb18.bb20_crit_edge, %bb.nph5
br label %bb20
bb20: ; preds = %bb18.bb20_crit_edge.split, %bb18.loopexit
switch i32 %d, label %return [
i32 3, label %bb22
i32 1, label %bb29
]
bb22: ; preds = %bb20
%37 = mul i32 %x, %w ; <i32> [#uses=1]
%38 = sdiv i32 %37, 4 ; <i32> [#uses=1]
%.sum3 = add i32 %38, %.sum2 ; <i32> [#uses=2]
%39 = add i32 %x, 15 ; <i32> [#uses=1]
%40 = and i32 %39, -16 ; <i32> [#uses=1]
%41 = add i32 %w, 15 ; <i32> [#uses=1]
%42 = and i32 %41, -16 ; <i32> [#uses=1]
%43 = mul i32 %40, %s ; <i32> [#uses=1]
%44 = icmp sgt i32 %x, 0 ; <i1> [#uses=1]
br i1 %44, label %bb.nph, label %bb26
bb.nph: ; preds = %bb22
br label %bb23
bb23: ; preds = %bb24, %bb.nph
%y.21 = phi i32 [ 0, %bb.nph ], [ %indvar.next5, %bb24 ] ; <i32> [#uses=3]
%45 = mul i32 %y.21, %42 ; <i32> [#uses=1]
%.sum1 = add i32 %45, %43 ; <i32> [#uses=1]
%46 = getelementptr i8* %r, i32 %.sum1 ; <i8*> [#uses=1]
%47 = mul i32 %y.21, %w ; <i32> [#uses=1]
%.sum5 = add i32 %47, %.sum3 ; <i32> [#uses=1]
%48 = getelementptr i8* %j, i32 %.sum5 ; <i8*> [#uses=1]
tail call void @llvm.memcpy.i32(i8* %48, i8* %46, i32 %w, i32 1)
br label %bb24
bb24: ; preds = %bb23
%indvar.next5 = add i32 %y.21, 1 ; <i32> [#uses=2]
%exitcond6 = icmp ne i32 %indvar.next5, %x ; <i1> [#uses=1]
br i1 %exitcond6, label %bb23, label %bb24.bb26_crit_edge
bb24.bb26_crit_edge: ; preds = %bb24
br label %bb26
bb26: ; preds = %bb24.bb26_crit_edge, %bb22
%49 = mul i32 %x, %w ; <i32> [#uses=1]
%.sum4 = add i32 %.sum3, %49 ; <i32> [#uses=1]
%50 = getelementptr i8* %j, i32 %.sum4 ; <i8*> [#uses=1]
%51 = mul i32 %x, %w ; <i32> [#uses=1]
%52 = sdiv i32 %51, 2 ; <i32> [#uses=1]
tail call void @llvm.memset.i32(i8* %50, i8 -128, i32 %52, i32 1)
ret void
bb29: ; preds = %bb20, %entry
%53 = add i32 %w, 15 ; <i32> [#uses=1]
%54 = and i32 %53, -16 ; <i32> [#uses=1]
%55 = icmp sgt i32 %x, 0 ; <i1> [#uses=1]
br i1 %55, label %bb.nph11, label %bb33
bb.nph11: ; preds = %bb29
br label %bb30
bb30: ; preds = %bb31, %bb.nph11
%y.310 = phi i32 [ 0, %bb.nph11 ], [ %indvar.next13, %bb31 ] ; <i32> [#uses=3]
%56 = mul i32 %y.310, %54 ; <i32> [#uses=1]
%57 = getelementptr i8* %r, i32 %56 ; <i8*> [#uses=1]
%58 = mul i32 %y.310, %w ; <i32> [#uses=1]
%59 = getelementptr i8* %j, i32 %58 ; <i8*> [#uses=1]
tail call void @llvm.memcpy.i32(i8* %59, i8* %57, i32 %w, i32 1)
br label %bb31
bb31: ; preds = %bb30
%indvar.next13 = add i32 %y.310, 1 ; <i32> [#uses=2]
%exitcond14 = icmp ne i32 %indvar.next13, %x ; <i1> [#uses=1]
br i1 %exitcond14, label %bb30, label %bb31.bb33_crit_edge
bb31.bb33_crit_edge: ; preds = %bb31
br label %bb33
bb33: ; preds = %bb31.bb33_crit_edge, %bb29
%60 = mul i32 %x, %w ; <i32> [#uses=1]
%61 = getelementptr i8* %j, i32 %60 ; <i8*> [#uses=1]
%62 = mul i32 %x, %w ; <i32> [#uses=1]
%63 = sdiv i32 %62, 2 ; <i32> [#uses=1]
tail call void @llvm.memset.i32(i8* %61, i8 -128, i32 %63, i32 1)
ret void
return: ; preds = %bb20
ret void
}
declare void @llvm.memcpy.i32(i8*, i8*, i32, i32) nounwind
declare void @llvm.memset.i32(i8*, i8, i32, i32) nounwind