[TLI] Refactor "is integer division cheap" queries.

This removes the isPow2SDivCheap() query, as it is not currently used in
any meaningful way. isIntDivCheap() no longer relies on a state variable
(as all in-tree target set it to false), but the interface allows querying
based on the type optimization level.

NFC.

Differential Revision: http://reviews.llvm.org/D12082

llvm-svn: 245430
This commit is contained in:
Michael Kuperstein 2015-08-19 11:17:59 +00:00
parent fa6a61daaa
commit fcab5e1388
6 changed files with 12 additions and 41 deletions

View File

@ -226,7 +226,11 @@ public:
/// Return true if integer divide is usually cheaper than a sequence of
/// several shifts, adds, and multiplies for this target.
bool isIntDivCheap() const { return IntDivIsCheap; }
/// The definition of "cheaper" may depend on whether we're optimizing
/// for speed or for size.
virtual bool isIntDivCheap(EVT VT, bool OptSize) const {
return false;
}
/// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
bool isFsqrtCheap() const {
@ -242,9 +246,6 @@ public:
return BypassSlowDivWidths;
}
/// Return true if pow2 sdiv is cheaper than a chain of sra/srl/add/sra.
bool isPow2SDivCheap() const { return Pow2SDivIsCheap; }
/// Return true if Flow Control is an expensive operation that should be
/// avoided.
bool isJumpExpensive() const { return JumpIsExpensive; }
@ -1252,11 +1253,6 @@ protected:
/// control.
void setJumpIsExpensive(bool isExpensive = true);
/// Tells the code generator that integer divide is expensive, and if
/// possible, should be replaced by an alternate sequence of instructions not
/// containing an integer divide.
void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
/// Tells the code generator that fsqrt is cheap, and should not be replaced
/// with an alternative sequence of instructions.
void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
@ -1272,10 +1268,6 @@ protected:
BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
}
/// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
/// signed divide by power of two; let the target handle it.
void setPow2SDivIsCheap(bool isCheap = true) { Pow2SDivIsCheap = isCheap; }
/// Add the specified register class as an available regclass for the
/// specified value type. This indicates the selector can handle values of
/// that class natively.
@ -1766,12 +1758,6 @@ private:
/// combined with "shift" to BitExtract instructions.
bool HasExtractBitsInsn;
/// Tells the code generator not to expand integer divides by constants into a
/// sequence of muls, adds, and shifts. This is a hack until a real cost
/// model is in place. If we ever optimize for size, this will be set to true
/// unconditionally.
bool IntDivIsCheap;
// Don't expand fsqrt with an approximation based on the inverse sqrt.
bool FsqrtIsCheap;
@ -1781,10 +1767,6 @@ private:
/// div/rem when the operands are positive and less than 256.
DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
/// Tells the code generator that it shouldn't generate sra/srl/add/sra for a
/// signed divide by power of two; let the target handle it.
bool Pow2SDivIsCheap;
/// Tells the code generator that it shouldn't generate extra flow control
/// instructions and should attempt to combine flow control instructions via
/// predication.

View File

@ -2176,6 +2176,7 @@ SDValue DAGCombiner::visitSDIV(SDNode *N) {
N0, N1);
}
bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
// fold (sdiv X, pow2) -> simple ops after legalize
// FIXME: We check for the exact bit here because the generic lowering gives
// better results in that case. The target-specific lowering should learn how
@ -2184,9 +2185,8 @@ SDValue DAGCombiner::visitSDIV(SDNode *N) {
!cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() &&
(N1C->getAPIntValue().isPowerOf2() ||
(-N1C->getAPIntValue()).isPowerOf2())) {
// If dividing by powers of two is cheap, then don't perform the following
// fold.
if (TLI.isPow2SDivCheap())
// If integer division is cheap, then don't perform the following fold.
if (TLI.isIntDivCheap(N->getValueType(0), MinSize))
return SDValue();
// Target-specific implementation of sdiv x, pow2.
@ -2226,7 +2226,7 @@ SDValue DAGCombiner::visitSDIV(SDNode *N) {
// If integer divide is expensive and we satisfy the requirements, emit an
// alternate sequence.
if (N1C && !TLI.isIntDivCheap())
if (N1C && !TLI.isIntDivCheap(N->getValueType(0), MinSize))
if (SDValue Op = BuildSDIV(N))
return Op;
@ -2280,8 +2280,10 @@ SDValue DAGCombiner::visitUDIV(SDNode *N) {
}
}
}
// fold (udiv x, c) -> alternate
if (N1C && !TLI.isIntDivCheap())
bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
if (N1C && !TLI.isIntDivCheap(N->getValueType(0), MinSize))
if (SDValue Op = BuildUDIV(N))
return Op;

View File

@ -758,9 +758,7 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
SelectIsExpensive = false;
HasMultipleConditionRegisters = false;
HasExtractBitsInsn = false;
IntDivIsCheap = false;
FsqrtIsCheap = false;
Pow2SDivIsCheap = false;
JumpIsExpensive = JumpIsExpensiveOverride;
PredictableSelectIsExpensive = false;
MaskAndBranchFoldingIsLegal = false;

View File

@ -429,10 +429,6 @@ AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM,
setSelectIsExpensive(false);
PredictableSelectIsExpensive = false;
// There are no integer divide instructions, and these expand to a pretty
// large sequence of instructions.
setIntDivIsCheap(false);
setPow2SDivIsCheap(false);
setFsqrtIsCheap(true);
// FIXME: Need to really handle these.

View File

@ -69,10 +69,6 @@ MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
computeRegisterProperties(STI.getRegisterInfo());
// Provide all sorts of operation actions
// Division is expensive
setIntDivIsCheap(false);
setStackPointerRegisterToSaveRestore(MSP430::SP);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?

View File

@ -79,9 +79,6 @@ XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget.getRegisterInfo());
// Division is expensive
setIntDivIsCheap(false);
setStackPointerRegisterToSaveRestore(XCore::SP);
setSchedulingPreference(Sched::Source);