Summary:
llvm-objdump's Mach-O parser was updated in r306037 to display external
relocations for MH_KEXT_BUNDLE file types. This change extends the Macho-O
parser to display local relocations for MH_PRELOAD files. When used with
the -macho option relocations will be displayed in a historical format.
All tests are passing for llvm, clang, and lld. llvm-objdump builds without
compiler warnings.
rdar://35778019
Reviewers: enderby
Reviewed By: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41199
llvm-svn: 320832
Summary:
llvm-objdump's Mach-O parser was updated in r306037 to display external
relocations for MH_KEXT_BUNDLE file types. This change extends the Macho-O
parser to display local relocations for MH_PRELOAD files. When used with
the -macho option relocations will be displayed in a historical format.
rdar://35778019
Reviewers: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41061
llvm-svn: 320532
Summary:
llvm-objdump's Mach-O parser was updated in r306037 to display external
relocations for MH_KEXT_BUNDLE file types. This change extends the Macho-O
parser to display local relocations for MH_PRELOAD files. When used with
the -macho option relocations will be displayed in a historical format.
rdar://35778019
Reviewers: enderby
Reviewed By: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40867
llvm-svn: 320166
We currently use target_link_libraries without an explicit scope
specifier (INTERFACE, PRIVATE or PUBLIC) when linking executables.
Dependencies added in this way apply to both the target and its
dependencies, i.e. they become part of the executable's link interface
and are transitive.
Transitive dependencies generally don't make sense for executables,
since you wouldn't normally be linking against an executable. This also
causes issues for generating install export files when using
LLVM_DISTRIBUTION_COMPONENTS. For example, clang has a lot of LLVM
library dependencies, which are currently added as interface
dependencies. If clang is in the distribution components but the LLVM
libraries it depends on aren't (which is a perfectly legitimate use case
if the LLVM libraries are being built static and there are therefore no
run-time dependencies on them), CMake will complain about the LLVM
libraries not being in export set when attempting to generate the
install export file for clang. This is reasonable behavior on CMake's
part, and the right thing is for LLVM's build system to explicitly use
PRIVATE dependencies for executables.
Unfortunately, CMake doesn't allow you to mix and match the keyword and
non-keyword target_link_libraries signatures for a single target; i.e.,
if a single call to target_link_libraries for a particular target uses
one of the INTERFACE, PRIVATE, or PUBLIC keywords, all other calls must
also be updated to use those keywords. This means we must do this change
in a single shot. I also fully expect to have missed some instances; I
tested by enabling all the projects in the monorepo (except dragonegg),
and configuring both with and without shared libraries, on both Darwin
and Linux, but I'm planning to rely on the buildbots for other
configurations (since it should be pretty easy to fix those).
Even after this change, we still have a lot of target_link_libraries
calls that don't specify a scope keyword, mostly for shared libraries.
I'm thinking about addressing those in a follow-up, but that's a
separate change IMO.
Differential Revision: https://reviews.llvm.org/D40823
llvm-svn: 319840
The LLVM tools can be used as a replacement for binutils, in which case
it's convenient to create symlinks with the binutils names. Add support
for these symlinks in the build system. As with any other llvm tool
symlinks, the user can limit the installed symlinks by only adding the
desired ones to `LLVM_TOOLCHAIN_TOOLS`.
Differential Revision: https://reviews.llvm.org/D39530
llvm-svn: 317272
Summary:
xar_open and xar_iter_new require manual calls to close/free functions
to deallocate resources. This makes it easy to introduce memory leaks,
so add RAII struct wrappers for these resources.
Reviewers: enderby, rafael, compnerd, lhames, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38598
llvm-svn: 315069
in the second slice of a Mach-O universal file.
The code in llvm-objdump in in DisassembleMachO() was getting the default
CPU then incorrectly setting into the global variable used for the -mcpu option
if that was not set. This caused a second call to DisassembleMachO() to use
the wrong default CPU when disassembling the next slice in a Mach-O universal
file. And would result in bad disassembly and an error message about an
recognized processor for the target:
% llvm-objdump -d -m -arch all fat.macho-armv7s-arm64
fat.macho-armv7s-arm64 (architecture armv7s):
(__TEXT,__text) section
armv7:
0: 60 47 bx r12
fat.macho-armv7s-arm64 (architecture arm64):
'cortex-a7' is not a recognized processor for this target (ignoring processor)
'cortex-a7' is not a recognized processor for this target (ignoring processor)
(__TEXT,__text) section
___multc3:
0: .long 0x1e620810
rdar://34439149
llvm-svn: 313921
Move logic that allows for Triple deduction from an ObjectFile object
out of llvm-objdump.cpp into a public factory, found in the ObjectFile
class.
This should allow other tools in the future to use this logic without
reimplementation.
Patch by Mitch Phillips
Differential Revision: https://reviews.llvm.org/D37719
llvm-svn: 313605
This patch makes the `.eh_frame` extension an alias for `.debug_frame`.
Up till now it was only possible to dump the section using objdump, but
not with dwarfdump. Since the two are essentially interchangeable, we
dump whichever of the two is present.
As a workaround, this patch also adds parsing for 3 currently
unimplemented CFA instructions: `DW_CFA_def_cfa_expression`,
`DW_CFA_expression`, and `DW_CFA_val_expression`. Because I lack the
required knowledge, I just parse the fields without actually creating
the instructions.
Finally, this also fixes the typo in the `.debug_frame` section name
which incorrectly contained a trailing `s`.
Differential revision: https://reviews.llvm.org/D37852
llvm-svn: 313530
Summary: Detected by LeakSanitizer for Darwin
Reviewers: enderby, rafael
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37750
llvm-svn: 313146
As discussed on llvm-dev in
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117301.html
this changes the command line interface of llvm-dwarfdump to match the
one used by the dwarfdump utility shipping on macOS. In addition to
being shorter to type this format also has the advantage of allowing
more than one section to be specified at the same time.
In a nutshell, with this change
$ llvm-dwarfdump --debug-dump=info
$ llvm-dwarfdump --debug-dump=apple-objc
becomes
$ dwarfdump --debug-info --apple-objc
Differential Revision: https://reviews.llvm.org/D37714
llvm-svn: 312970
I was surprised to see the code model being passed to MC. After all,
it assembles code, it doesn't create it.
The one place it is used is in the expansion of .cfi directives to
handle .eh_frame being more that 2gb away from the code.
As far as I can tell, gnu assembler doesn't even have an option to
enable this. Compiling a c file with gcc -mcmodel=large produces a
regular looking .eh_frame. This is probably because in practice linker
parse and recreate .eh_frames.
In llvm this is used because the JIT can place the code and .eh_frame
very far apart. Ideally we would fix the jit and delete this
option. This is hard.
Apart from confusion another problem with the current interface is
that most callers pass CodeModel::Default, which is bad since MC has
no way to map it to the target default if it actually needed to.
This patch then replaces the argument with a boolean with a default
value. The vast majority of users don't ever need to look at it. In
fact, only CodeGen and llvm-mc use it and llvm-mc just to enable more
testing.
llvm-svn: 309884
This diff removes the second argument of the method MachOObjectFile::exports.
In all in-tree uses this argument is equal to "this" and
without this argument the interface seems to be cleaner.
Test plan: make check-all
llvm-svn: 309462
lld needs a matching change for this will be my next commit.
Expect it to fail build until that matching commit is picked up by the bots.
Like the changes in r296527 for dyld bind entires and the changes in
r298883 for lazy bind, weak bind and rebase entries the export
entries are the last of the dyld compact info to have error handling added.
This follows the model of iterators that can fail that Lang Hanes
designed when fixing the problem for bad archives r275316 (or r275361).
So that iterating through the exports now terminates if there is an error
and returns an llvm::Error with an error message in all cases for malformed
input.
This change provides the plumbing for the error handling, all the needed
testing of error conditions and test cases for all of the unique error messages.
llvm-svn: 308690
This changes DwarfContext to delegate to DwarfObject instead of having
pure virtual methods.
With this DwarfContextInMemory is replaced with an implementation of
DwarfObject that is local to a .cpp file.
llvm-svn: 308543
Previously such relocations fell into the last case for local
symbols, using the relocation addend as symbol index, leading to
a crash.
Differential Revision: https://reviews.llvm.org/D35239
llvm-svn: 307927
All other code in MachODump.cpp uses the same comparison,
((r_length & 0x1) == 1), for distinguishing between the two,
while the code in llvm-objdump.cpp seemed to be incorrect.
Differential Revision: https://reviews.llvm.org/D35240
llvm-svn: 307882
in the base address.
Without this Mach-O files, like 64-bit executables, don’t have the correct
addresses printed for their exports. As the default is to link at address
0x100000000 not zero.
llvm-svn: 305744
In order to reduce swift binary sizes, Apple is now stripping swift symbols
from the nlist symbol table. llvm-nm currently only looks at the nlist symbol
table and misses symbols that are present in dyld info. This makes it hard to
know the set of symbols for a binary using just llvm-nm. Unless you know to
run llvm-objdump -exports-trie that can output the exported symbols in the dyld
info from the export trie, which does so but in a different format.
Also moving forward the time may come a when a fully linked Mach-O file that
uses dyld will no longer have an nlist symbol table to avoid duplicating the
symbol information.
This change adds three flags to llvm-nm, -add-dyldinfo, -no-dyldinfo, and
-dyldinfo-only.
The first, -add-dyldinfo, has the same effect as when the new bit in the Mach-O
header, MH_NLIST_OUTOFSYNC_WITH_DYLDINFO, appears in a binary. In that it
looks through the dyld info from the export trie and adds symbols to be printed
that are not already in its internal SymbolList variable. The -no-dyldinfo
option turns this behavior off.
The -dyldinfo-only option only looks at the dyld information and recreates the
symbol table from the dyld info from the export trie and binding information.
As if it the Mach-O file had no nlist symbol table.
Also fixed a few bugs with Mach-O N_INDR symbols not correctly printing the
indirect name, or in the same format as the old nm-classic program.
rdar://32021551
llvm-svn: 305733
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This commit introduces a structure that holds all the flags that
control the pretty printing of dwarf output.
Patch by Spyridoula Gravani!
Differential Revision: https://reviews.llvm.org/D33749
llvm-svn: 304446
This may trigger a segfault in llvm-objdump when the line number stored
in debug infromation points beyond the end of file; lines in LineBuffer
are stored in std::vector which is allocated in chunks, so even if the
debug info points beyond the end of the file, this doesn't necessarily
trigger the segfault unless the line number points beyond the allocated
space.
Differential Revision: https://reviews.llvm.org/D32466
llvm-svn: 301347
and test cases for each of the error checks.
To do this more plumbing was needed so that the segment indexes and
segment offsets can be checked. Basically what was done was the SegInfo
from llvm-objdump’s MachODump.cpp was moved into libObject for Mach-O
objects as BindRebaseSegInfo and it is only created when an iterator for
bind or rebase entries are created.
This commit really only adds the error checking and test cases for the
bind table entires and the checking for the lazy bind and weak bind entries
are still to be fully done as well as the rebase entires. Though some of
the plumbing for those are added with this commit. Those other error
checks and test cases will be added in follow on commits.
Note, the two llvm_unreachable() calls should now actually be unreachable
with the error checks in place and would take a logic bug in the error
checking code to be reached if the segment indexes and segment
offsets are used from a checked bind entry. Comments have been added
to the methods that require the arguments to have been checked
prior to calling.
llvm-svn: 298292
other tables. Providing a helpful error message to what the error is and
where the error occurred based on which opcode it was associated with.
There have been handful of bug fixes dealing with bad bind info in
object files, r294021 and r249845, which only put a band aid on the
problem after a bad bind table was created after unpacking from
its compact info. In these cases a bind table should have never been
created and an error should have simply been generated.
This change puts in place the plumbing to allow checking and returning
of an error when the compact info is unpacked. This follows the model
of iterators that can fail that Lang Hanes designed when fixing the problem
for bad archives r275316 (or r275361).
This change uses one of the existing test cases that now causes an
error instead of printing <<bad library ordinal>> after a bad bind table
is created. The error uses the offset into the opcode table as shown with
the macOS dyldinfo(1) tool to indicate where the error is and which
opcode and which parameter is in error.
For example the exiting test case has this lazy binding opcode table:
% dyldinfo -opcodes test/tools/llvm-objdump/Inputs/bad-ordinal.macho-x86_64
…
lazy binding opcodes:
0x0000 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000010)
0x0002 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
In the test case the binary only has one library so setting the library
ordinal to the value of 2 in the BIND_OPCODE_SET_DYLIB_ORDINAL_IMM
opcode at 0x0002 above is an error. This now produces this error message:
% llvm-objdump -lazy-bind bad-ordinal.macho-x86_64
…
llvm-objdump: 'bad-ordinal.macho-x86_64': truncated or malformed object (for BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB bad library ordinal: 2 (max 1) for opcode at: 0x2)
This change provides the plumbing for the error handling and one example
of an error message. Other error checks and test cases will be added in follow
on commits.
llvm-svn: 296527
Disassembly currently begins from addresses obtained from the objects
symbol table. For ELF, add the dynamic symbols to the list if no
static symbols are available so that we can more successfully
disassemble stripped binaries.
Differential Revision: https://reviews.llvm.org/D29632
llvm-svn: 294430