makes working through the worklist much cleaner, and makes it possible
to avoid the 'bool-to-continue-the-outer-loop' hack. Not a huge
difference, but I think this is approaching as polished as I can make
it.
llvm-svn: 207310
more than 1 instruction. The caller need to be aware of this
and adjust instruction iterators accordingly.
rdar://16679376
Repaired r207302.
llvm-svn: 207309
processed in the DFS out of the stack completely. Keep it exclusively in
a variable. Re-shuffle some code structure to make this easier. This can
have a very dramatic effect in some cases because call graphs tend to
look like a high fan-out spanning tree. As a consequence, there are
a large number of leaf nodes in the graph, and this technique causes
leaf nodes to never even go into the stack. While this only reduces the
max depth by 1, it may cause the total number of round trips through the
stack to drop by a lot.
Now, most of this isn't really relevant for the incremental version. =]
But I wanted to prototype it first here as this variant is in ways more
complex. As long as I can get the code factored well here, I'll next
make the primary walk look the same. There are several refactorings this
exposes I think.
llvm-svn: 207306
graph in any way because we don't track edges in the SCC graph, just
nodes. This also lets us add a nice assert about the invariant that
we're working on at least a certain number of nodes within the SCC.
llvm-svn: 207305
The included test case would return the incorrect results, because the expansion
of an shift with a constant shift amount of 0 would generate undefined behavior.
This is because ExpandShiftByConstant assumes that all shifts by constants with
a value of 0 have already been optimized away. This doesn't happen for opaque
constants and usually this isn't a problem, because opaque constants won't take
this code path - they are not supposed to. In the case that the opaque constant
has to be expanded by the legalizer, the legalizer would drop the opaque flag.
In this case we hit the limitations of ExpandShiftByConstant and create incorrect
code.
This commit fixes the legalizer by not dropping the opaque flag when expanding
opaque constants and adding an assertion to ExpandShiftByConstant to catch this
not supported case in the future.
This fixes <rdar://problem/16718472>
llvm-svn: 207304
Scaling factors are not free on X86 because every "complex" addressing mode
breaks the related instruction into 2 allocations instead of 1.
<rdar://problem/16730541>
llvm-svn: 207301
a helper function. Also factor the other two places where we did the
same thing into the helper function. =] Much cleaner this way. NFC.
llvm-svn: 207300
right intrinsics.
A packed logical shift right with a shift count bigger than or equal to the
element size always produces a zero vector. In all other cases, it can be
safely replaced by a 'lshr' instruction.
llvm-svn: 207299
Summary:
If we're doing a v4f32/v4i32 shuffle on x86 with SSE4.1, we can lower
certain shufflevectors to an insertps instruction:
When most of the shufflevector result's elements come from one vector (and
keep their index), and one element comes from another vector or a memory
operand.
Added tests for insertps optimizations on shufflevector.
Added support and tests for v4i32 vector optimization.
Reviewers: nadav
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3475
llvm-svn: 207291
This reverts commit r207286. It causes an ICE on the
cmake-llvm-x86_64-linux buildbot [1]:
llvm/lib/Analysis/BlockFrequencyInfo.cpp: In lambda function:
llvm/lib/Analysis/BlockFrequencyInfo.cpp:182:1: internal compiler error: in get_expr_operands, at tree-ssa-operands.c:1035
[1]: http://bb.pgr.jp/builders/cmake-llvm-x86_64-linux/builds/12093/steps/build_llvm/logs/stdio
llvm-svn: 207287
Previously, irreducible backedges were ignored. With this commit,
irreducible SCCs are discovered on the fly, and modelled as loops with
multiple headers.
This approximation specifies the headers of irreducible sub-SCCs as its
entry blocks and all nodes that are targets of a backedge within it
(excluding backedges within true sub-loops). Block frequency
calculations act as if we insert a new block that intercepts all the
edges to the headers. All backedges and entries to the irreducible SCC
point to this imaginary block. This imaginary block has an edge (with
even probability) to each header block.
The result is now reasonable enough that I've added a number of
testcases for irreducible control flow. I've outlined in
`BlockFrequencyInfoImpl.h` ways to improve the approximation.
<rdar://problem/14292693>
llvm-svn: 207286
This also avoids the need for subtly side-effecting calls to manifest
strings in the string table at the point where items are added to the
accelerator tables.
llvm-svn: 207281
This adds support for an -mattr option to the gold plugin and to llvm-lto. This
allows the caller to specify details of the subtarget architecture, like +aes,
or +ssse3 on x86. Note that this requires a change to the include/llvm-c/lto.h
interface: it adds a function lto_codegen_set_attr and it increments the
version of the interface.
llvm-svn: 207279
Pulls out some more code from some of the rather monolithic DWARF
classes. Unlike the address table, the string table won't move up into
DwarfDebug - each DWARF file has its own string table (but there can be
only one address table).
llvm-svn: 207277
Consider this use from the new testcase:
LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i32
reg({1000,+,-1}<nw><%for.body>)
-3003 + reg({3,+,3}<nw><%for.body>)
-1001 + reg({1,+,1}<nuw><nsw><%for.body>)
-1000 + reg({0,+,1}<nw><%for.body>)
-3000 + reg({0,+,3}<nuw><%for.body>)
reg({-1000,+,1}<nw><%for.body>)
reg({-3000,+,3}<nsw><%for.body>)
This is the last use we consider for a solution in SolveRecurse, so CurRegs is
a large set. (CurRegs is the set of registers that are needed by the
previously visited uses in the in-progress solution.)
ReqRegs is {
{3,+,3}<nw><%for.body>,
{1,+,1}<nuw><nsw><%for.body>
}
This is the intersection of the regs used by any of the formulas for the
current use and CurRegs.
Now, the code requires a formula to contain *all* these regs (the comment is
simply wrong), otherwise the formula is immediately disqualified. Obviously,
no formula for this use contains two regs so they will all get disqualified.
The fix modifies the check to allow the formula in this case. The idea is
that neither of these formulae is introducing any new registers which is the
point of this early pruning as far as I understand.
In terms of set arithmetic, we now allow formulas whose used regs are a subset
of the required regs not just the other way around.
There are few more loops in the test-suite that are now successfully LSRed. I
have benchmarked those and found very minimal change.
Fixes <rdar://problem/13965777>
llvm-svn: 207271
buildbot - do not insert debug intrinsics before phi nodes.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207269
This should reduce the chance of memory leaks like those fixed in
r207240.
There's still some unclear ownership of DIEs happening in DwarfDebug.
Pushing unique_ptr and references through more APIs should help expose
the cases where ownership is a bit fuzzy.
llvm-svn: 207263
Since this doesn't return ownership (the DIE has been added to the
specified parent already) nor return null, just return by reference.
llvm-svn: 207259
This'll make changing to unique_ptr ownership of DIEs easier since the
usages will now have '*' on them making them textually compatible
between unique_ptr and raw pointer.
llvm-svn: 207253
It's fishy to be changing the `std::vector<>` owned by the iterator, and
no one actual does it, so I'm going to remove the ability in a
subsequent commit. First, update the users.
<rdar://problem/14292693>
llvm-svn: 207252
This intrinsic is no longer needed with the new @llvm.arm.hint(i32) intrinsic
which provides a generic, extensible manner for adding hint instructions. This
functionality can now be represented as @llvm.arm.hint(i32 5).
llvm-svn: 207246
override the default cold threshold.
When we use command line argument to set the inline threshold, the default
cold threshold will not be used. This is in line with how we use
OptSizeThreshold. When we want a higher threshold for all functions, we
do not have to set both inline threshold and cold threshold.
llvm-svn: 207245
Introduce the llvm.arm.hint(i32) intrinsic that can be used to inject hints into
the instruction stream. This is particularly useful for generating IR from a
compiler where the user may inject an intrinsic (e.g. __yield). These are then
pattern substituted into the correct instruction which already existed.
llvm-svn: 207242
Debug info: Let dbg.values inserted by LowerDbgDeclare inherit the location
of the dbg.value. This gets rid of tons of redundant variable DIEs in
subscopes.
rdar://problem/14874886, rdar://problem/16679936
llvm-svn: 207236
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207235
There's no need for local symbols to go through the GOT, in fact it seems GNU ld is not even emitting GOT entries for local symbols and will error out when trying to resolve a GOT relocation for a local symbol.
This bug triggers when bootstrapping clang on AArch64 Linux with -fPIC and the ARM64 backend. The AArch64 backend is not affected.
With this commit it's now possible to bootstrap clang on AArch64 Linux with the ARM64 backend (-fPIC, -O3).
llvm-svn: 207226
SCCMap to test for nodes that have been re-added to the root SCC rather
than a set vector. We already have done the SCCMap lookup, we juts need
to test it in two different ways. In turn, do most of the processing of
these nodes as they go into the root SCC rather than lazily. This
simplifies the final loop to just stitch the root SCC into its
children's parent sets. No functionlatiy changed.
However, this makes a few things painfully obvious, which was my intent.
=] There is tons of repeated code introduced here and elsewhere. I'm
splitting the refactoring of that code into helpers from this change so
its clear that this is the change which switches the datastructures used
around, and the other is a pure factoring & deduplication of code
change.
llvm-svn: 207217
This patch is a supplement of implementing predicate of FP, enabling aarch64 backend
no-fp tests on arm64 target for verification. During this, one bug is exposed and
fixed by this patch.
llvm-svn: 207215