Summary:
Introduce the ShadowCallStack function attribute. It's added to
functions compiled with -fsanitize=shadow-call-stack in order to mark
functions to be instrumented by a ShadowCallStack pass to be submitted
in a separate change.
Reviewers: pcc, kcc, kubamracek
Reviewed By: pcc, kcc
Subscribers: cryptoad, mehdi_amini, javed.absar, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D44800
llvm-svn: 329108
Summary:
When building with libFuzzer, converting control flow to selects or
obscuring the original operands of CMPs reduces the effectiveness of
libFuzzer's heuristics.
This patch provides an attribute to disable or modify certain optimizations
for optimal fuzzing signal.
Provides a less aggressive alternative to https://reviews.llvm.org/D44057.
Reviewers: vitalybuka, davide, arsenm, hfinkel
Reviewed By: vitalybuka
Subscribers: junbuml, mehdi_amini, wdng, javed.absar, hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D44232
llvm-svn: 328214
X86 Supports Indirect Branch Tracking (IBT) as part of Control-Flow Enforcement Technology (CET).
IBT instruments ENDBR instructions used to specify valid targets of indirect call / jmp.
The `nocf_check` attribute has two roles in the context of X86 IBT technology:
1. Appertains to a function - do not add ENDBR instruction at the beginning of the function.
2. Appertains to a function pointer - do not track the target function of this pointer by adding nocf_check prefix to the indirect-call instruction.
This patch implements `nocf_check` context for Indirect Branch Tracking.
It also auto generates `nocf_check` prefixes before indirect branchs to jump tables that are guarded by range checks.
Differential Revision: https://reviews.llvm.org/D41879
llvm-svn: 327767
Summary: The discussion and as per need, each vendor needs a way to keep the old fast flags and the new fast flags in the auto upgrade path of the IR upgrader. This revision addresses that issue.
Patched by Michael Berg
Reviewers: qcolombet, hans, steven_wu
Reviewed By: qcolombet, steven_wu
Subscribers: dexonsmith, vsk, mehdi_amini, andrewrk, MatzeB, wristow, spatel
Differential Revision: https://reviews.llvm.org/D43253
llvm-svn: 325525
Summary:
Gold plugin does not add pass to ThinLTO modules without useful symbols.
In this case ThinLTO can't create corresponding index file and some features, like CFI,
cannot be processes by backed correctly without index.
Given that we don't need the backed output we can request it to avoid
processing the module. This is implemented by this patch using new
"SkipModuleByDistributedBackend" flag.
Reviewers: pcc, tejohnson
Subscribers: mehdi_amini, inglorion, eraman, cfe-commits
Differential Revision: https://reviews.llvm.org/D42995
llvm-svn: 325411
Summary:
TypeID summaries are used by CFI and need to be serialized by ThinLTO
indexing for later use by LTO Backend.
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42611
llvm-svn: 325182
Summary:
A recent fix to drop dead symbols (r323633) did not work for ThinLTO
distributed backends because we lose the WithGlobalValueDeadStripping
set on the index during the thin link. This patch adds a new flags
record to the bitcode format for the index, and serializes this flag
for the combined index (it would always be 0 for the per-module index
generated by the compile step, so no need to serialize the new flags
record there until/unless we add another flag that applies to the
per-module indexes).
Generally this flag should always be set for the distributed backends,
which are necessarily performed after the thin link. However, if we were
to simply set this flag on the index applied to the distributed backends
(invoked via clang), we would lose the ability to disable dead stripping
via -compute-dead=false for debugging purposes.
Reviewers: grimar, pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D42799
llvm-svn: 324444
It was reverted after buildbot regressions.
Original commit message:
This allows relative block frequency of call edges to be passed
to the thinlink stage where it will be used to compute synthetic
entry counts of functions.
llvm-svn: 323460
Summary:
This allows relative block frequency of call edges to be passed to the
thinlink stage where it will be used to compute synthetic entry counts
of functions.
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D42212
llvm-svn: 323349
It was never fully disallowed. We were rejecting it in the asm parser,
but not in the verifier.
Currently TargetMachine::shouldAssumeDSOLocal returns true for hidden
ifuncs. I considered changing it and moving the check from the asm
parser to the verifier.
The reason for deciding to allow it instead is that all linkers handle
a direct reference just fine. They use the plt address as the address
of the function. In fact doing that means that clang doesn't have the
same bug as gcc: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83782.
This patch then removes the check from the asm parser and updates the
bitcode reader and writer.
llvm-svn: 322378
Summary:
This implements a missing feature to allow importing of aliases, which
was previously disabled because alias cannot be available_externally.
We instead import an alias as a copy of its aliasee.
Some additional work was required in the IndexBitcodeWriter for the
distributed build case, to ensure that the aliasee has a value id
in the distributed index file (i.e. even when it is not being
imported directly).
This is a performance win in codes that have many aliases, e.g. C++
applications that have many constructor and destructor aliases.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D40747
llvm-svn: 320895
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217
For now at least. We clearly need some kind of comdat or
linkonce_odr support for wasm but currently COMDAT is not
supported.
Disable COMDAT support in the same way we do the Mach-O. This
also causes clang not to generated COMDATs.
Differential Revision: https://reviews.llvm.org/D39873
llvm-svn: 318123
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
Now that we have a way to mark GlobalValues as local we can use the symbol
resolutions that the linker plugin provides as part of lto/thinlto link
step to refine the compilers view on what symbols will end up being local.
Originally commited as r317374, but reverted in r317395 to update some missed
tests.
Differential Revision: https://reviews.llvm.org/D35702
llvm-svn: 317408
Now that we have a way to mark GlobalValues as local we can use the symbol
resolutions that the linker plugin provides as part of lto/thinlto link
step to refine the compilers view on what symbols will end up being local.
Differential Revision: https://reviews.llvm.org/D35702
llvm-svn: 317374
Currently we do not represent runtime preemption in the IR, which has several
drawbacks:
1) The semantics of GlobalValues differ depending on the object file format
you are targeting (as well as the relocation-model and -fPIE value).
2) We have no way of disabling inlining of run time interposable functions,
since in the IR we only know if a function is link-time interposable.
Because of this llvm cannot support elf-interposition semantics.
3) In LTO builds of executables we will have extra knowledge that a symbol
resolved to a local definition and can't be preemptable, but have no way to
propagate that knowledge through the compiler.
This patch adds preemptability specifiers to the IR with the following meaning:
dso_local --> means the compiler may assume the symbol will resolve to a
definition within the current linkage unit and the symbol may be accessed
directly even if the definition is not within this compilation unit.
dso_preemptable --> means that the compiler must assume the GlobalValue may be
replaced with a definition from outside the current linkage unit at runtime.
To ease transitioning dso_preemptable is treated as a 'default' in that
low-level codegen will still do the same checks it did previously to see if a
symbol should be accessed indirectly. Eventually when IR producers emit the
specifiers on all Globalvalues we can change dso_preemptable to mean 'always
access indirectly', and remove the current logic.
Differential Revision: https://reviews.llvm.org/D20217
llvm-svn: 316668
The bitcode reader looks specifically for `__DATA, __objc_catlist` as a
section name. However, SVN r304661 removed the spaces (the two names
are functionally equivalent but do not compare equally
lexicographically). This causes compatibility issues. Add an
auto-upgrade path for removing the spaces as well as use the new name in
the LTO plugin.
llvm-svn: 315086
Summary: References should only be on the aliasee.
Reviewers: pcc
Subscribers: llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D37814
llvm-svn: 313158
Adds function attributes to index: ReadNone, ReadOnly, NoRecurse, NoAlias. This attributes will be used for future ThinLTO optimizations that will propagate function attributes across modules.
llvm-svn: 310061
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
If a regular LTO module has a summary index, then instead of linking
it into the combined regular LTO module right away, add it to the
combined summary index and associate it with a special module that
represents the combined regular LTO module.
Any such modules are linked during LTO::run(), at which time we use
the results of summary-based dead stripping to control whether to
link prevailing symbols.
Differential Revision: https://reviews.llvm.org/D33922
llvm-svn: 305482
The current name (addModulePath) and return value
(ModulePathStringTableTy::iterator) is a little confusing. This
API adds a module, not just a path. And the iterator is basically
just an implementation detail of the summary index. Address
both of those issues by renaming to addModule and introducing a
ModuleSummaryIndex::ModuleInfo type that the function returns.
Differential Revision: https://reviews.llvm.org/D34124
llvm-svn: 305422
This data type includes the contents of a bitcode file.
Right now a bitcode file can only contain modules, but
a later change will add a symbol table.
Differential Revision: https://reviews.llvm.org/D33969
llvm-svn: 305019
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Replace GVFlags::LiveRoot with GVFlags::Live and use that instead of
all the DeadSymbols sets. This is refactoring in order to make
liveness information available in the RegularLTO pipeline.
llvm-svn: 304466
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
Summary:
As discussed in the D32195 review thread and on IRC, remove this option
and replace with parameter, which will be set to true when invoked
from clang in the context of a ThinLTO distributed backend.
Reviewers: pcc
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D33133
llvm-svn: 302939
This patch extends llvm-ir to allow attributes to be set on global variables.
An RFC was sent out earlier by my colleague James Molloy: http://lists.llvm.org/pipermail/cfe-dev/2017-March/053100.html
A key part of that proposal was to extend LLVM-IR to carry attributes on global variables.
This generic feature could be useful for multiple purposes.
In our present context, it would be useful to carry user specified sections for bss/rodata/data.
Reviewed by: Jonathan Roelofs, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D32009
llvm-svn: 302794
When profiling a no-op incremental link of Chromium I found that the functions
computeImportForFunction and computeDeadSymbols were consuming roughly 10% of
the profile. The goal of this change is to improve the performance of those
functions by changing the map lookups that they were previously doing into
pointer dereferences.
This is achieved by changing the ValueInfo data structure to be a pointer to
an element of the global value map owned by ModuleSummaryIndex, and changing
reference lists in the GlobalValueSummary to hold ValueInfos instead of GUIDs.
This means that a ValueInfo will take a client directly to the summary list
for a given GUID.
Differential Revision: https://reviews.llvm.org/D32471
llvm-svn: 302108
This is to prepare for an upcoming change which uses pointers instead of
GUIDs to represent references.
Differential Revision: https://reviews.llvm.org/D32469
llvm-svn: 301843
This became no longer necessary after D19462 landed, and will be incompatible
with an upcoming change to the summary data structures that changes how we
represent references.
llvm-svn: 301660
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522