This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
llvm-svn: 207143
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine-intrinsics testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207130
This patch:
- Adds two new X86 builtin intrinsics ('int_x86_rdtsc' and
'int_x86_rdtscp') as GCCBuiltin intrinsics;
- Teaches the backend how to lower the two new builtins;
- Introduces a common function to lower READCYCLECOUNTER dag nodes
and the two new rdtsc/rdtscp intrinsics;
- Improves (and extends) the existing x86 test 'rdtsc.ll'; now test 'rdtsc.ll'
correctly verifies that both READCYCLECOUNTER and the two new intrinsics
work fine for both 64bit and 32bit Subtargets.
llvm-svn: 207127
I discovered this const-hole while attempting to coalesnce the Symbol
and SymbolMap data structures. There's some pending issues with that,
but I figured this change was easy to flush early.
llvm-svn: 207124
algorithm here: http://dl.acm.org/citation.cfm?id=177301.
The idea of isolating the roots has even more relevance when using the
stack not just to implement the DFS but also to implement the recursive
step. Because we use it for the recursive step, to isolate the roots we
need to maintain two stacks: one for our recursive DFS walk, and another
of the nodes that have been walked. The nice thing is that the latter
will be half the size. It also fixes a complete hack where we scanned
backwards over the stack to find the next potential-root to continue
processing. Now that is always the top of the DFS stack.
While this is a really nice improvement already (IMO) it further opens
the door for two important simplifications:
1) De-duplicating some of the code across the two different walks. I've
actually made the duplication a bit worse in some senses with this
patch because the two are starting to converge.
2) Dramatically simplifying the loop structures of both walks.
I wanted to do those separately as they'll be essentially *just* CFG
restructuring. This patch on the other hand actually uses different
datastructures to implement the algorithm itself.
llvm-svn: 207098
a SmallPtrSet. Currently, there is no need for stable iteration in this
dimension, and I now thing there won't need to be going forward.
If this is ever re-introduced in any form, it needs to not be
a SetVector based solution because removal cannot be linear. There will
be many SCCs with large numbers of parents. When encountering these, the
incremental SCC update for intra-SCC edge removal was quadratic due to
linear removal (kind of).
I'm really hoping we can avoid having an ordering property here at all
though...
llvm-svn: 207091
own CRTP base class for more general purpose use. Add some clarifying
comments for the exact way in which the adaptor uses it. Hopefully this
will help us write increasingly full featured iterators. This is
becoming important as they start to be used heavily inside of ranges.
llvm-svn: 207072
Boost's iterator_adaptor, and a specific adaptor which iterates over
pointees when wrapped around an iterator over pointers.
This is the result of a long discussion on IRC with Duncan Smith, Dave
Blaikie, Richard Smith, and myself. Essentially, I could use some subset
of the iterator facade facilities often used from Boost, and everyone
seemed interested in having the functionality in a reasonably generic
form. I've tried to strike a balance between the pragmatism and the
established Boost design. The primary differences are:
1) Delegating to the standard iterator interface names rather than
special names that then make up a second iterator-like API.
2) Using the name 'pointee_iterator' which seems more clear than
'indirect_iterator'. The whole business of calling the '*p' operation
'pointer indirection' in the standard is ... quite confusing. And
'dereference' is no better of a term for moving from a pointer to
a reference.
Hoping Duncan, and others continue to provide comments on this until
we've got a nice, minimal abstraction.
llvm-svn: 207069
than functions. So far, this access pattern is *much* more common. It
seems likely that any user of this interface is going to have nodes at
the point that they are querying the SCCs.
No functionality changed.
llvm-svn: 207045
GCOV provides an option to prepend output file names with the source
file name, to disambiguate between covered data that's included from
multiple sources. Add a flag to llvm-cov that does the same.
llvm-svn: 207035
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
llvm-svn: 206971
This implements the core functionality necessary to remove an edge from
the call graph and correctly update both the basic graph and the SCC
structure. As part of that it has to run a tiny (in number of nodes)
Tarjan-style DFS walk of an SCC being mutated to compute newly formed
SCCs, etc.
This is *very rough* and a WIP. I have a bunch of FIXMEs for code
cleanup that will reduce the boilerplate in this change substantially.
I also have a bunch of simplifications to various parts of both
algorithms that I want to make, but first I'd like to have a more
holistic picture. Ideally, I'd also like more testing. I'll probably add
quite a few more unit tests as I go here to cover the various different
aspects and corner cases of removing edges from the graph.
Still, this is, so far, successfully updating the SCC graph in-place
without disrupting the identity established for the existing SCCs even
when we do challenging things like delete the critical edge that made an
SCC cycle at all and have to reform things as a tree of smaller SCCs.
Getting this to work is really critical for the new pass manager as it
is going to associate significant state with the SCC instance and needs
it to be stable. That is also the motivation behind the return of the
newly formed SCCs. Eventually, I'll wire this all the way up to the
public API so that the pass manager can use it to correctly re-enqueue
newly formed SCCs into a fresh postorder traversal.
llvm-svn: 206968
up the stack finishing the exploration of each entries children before
we're finished in addition to accounting for their low-links. Added
a unittest that really hammers home the need for this with interlocking
cycles that would each appear distinct otherwise and crash or compute
the wrong result. As part of this, nuke a stale fixme and bring the rest
of the implementation still more closely in line with the original
algorithm.
llvm-svn: 206966
parents of an SCC, and add a lookup method for finding the SCC for
a given function. These aren't used yet, but will be used shortly in
some unit tests I'm adding and are really part of the broader intended
interface for the analysis.
llvm-svn: 206959
resisted this for too long. Just with the basic testing here I was able
to exercise the analysis in more detail and sift out both type signature
bugs in the API and a bug in the DFS numbering. All of these are fixed
here as well.
The unittests will be much more important for the mutation support where
it is necessary to craft minimal mutations and then inspect the state of
the graph. There is just no way to do that with a standard FileCheck
test. However, unittesting these kinds of analyses is really quite easy,
especially as they're designed with the new pass manager where there is
essentially no infrastructure required to rig up the core logic and
exercise it at an API level.
As a minor aside about the DFS numbering bug, the DFS numbering used in
LCG is a bit unusual. Rather than numbering from 0, we number from 1,
and use 0 as the sentinel "unvisited" state. Other implementations often
use '-1' for this, but I find it easier to deal with 0 and it shouldn't
make any real difference provided someone doesn't write silly bugs like
forgetting to actually initialize the DFS numbering. Oops. ;]
llvm-svn: 206954
the Callee list. This is going to be quite important to prevent removal
from going quadratic. No functionality changed at this point, this is
one of the refactoring patches I've broken out of my initial work toward
mutation updates of the call graph.
llvm-svn: 206938
from places like MCCodeEmitter() in the MC backend when the
MCContext is const.
I was going to use this in my change for r206669 but Jim convinced
me to use an assert there. But this still is a good tweak.
llvm-svn: 206923
r206916 was not logically the same as the previous code because the
goto statements did not create loop. This should be the same as the
previous code.
llvm-svn: 206918
Goto statements jumping into previous inner blocks are pretty confusing
to read even though in this case they are valid. No reason to not use
while loops there.
llvm-svn: 206916
diagnostic that includes location information.
Currently if one has this assembly:
.quad (0x1234 + (4 * SOME_VALUE))
where SOME_VALUE is undefined ones gets the less than
useful error message with no location information:
% clang -c x.s
clang -cc1as: fatal error: error in backend: expected relocatable expression
With this fix one now gets a more useful error message
with location information:
% clang -c x.s
x.s:5:8: error: expected relocatable expression
.quad (0x1234 + (4 * SOME_VALUE))
^
To do this I plumbed the SMLoc through the MCObjectStreamer
EmitValue() and EmitValueImpl() interfaces so it could be used
when creating the MCFixup.
rdar://12391022
llvm-svn: 206906
Store pointers directly to loops inside the nodes. This could have been
done without changing the type stored in `std::vector<>`. However,
rather than computing the number of loops before constructing them
(which `LoopInfo` doesn't provide directly), I've switched to a
`vector<unique_ptr<LoopData>>`.
This adds some heap overhead, but the number of loops is typically
small.
llvm-svn: 206857
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
ELFEntityIterator does not implement RandomAccessIterator. It does
not even implement BidirectionalIterator.
This patch fixes LLD build issue when compiled with MSVC2013 with
debug: MSVC's find_if checks if the start iterator is before the end
iterator in the sense of operator< if it declares implementing
RandomAccessIterator. If a class does not have operator<, it fails
to compile.
llvm-svn: 206825
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
llvm-svn: 206822