be emitted.
This is needed to enable ARM long calls for LTO and enable and disable it on a
per-function basis.
Out-of-tree projects currently using EnableARMLongCalls to emit long calls
should start passing "+long-calls" to the feature string (see the changes made
to clang in r241565).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D9364
llvm-svn: 241566
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.
This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.
Reviewers: resistor, echristo
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7941
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 230775
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.
I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.
Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 216006
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
llvm-svn: 215673
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 215588
Properly constrain the operand register class for instructions used
in [sz]ext expansion. Update more tests to use the verifier now that
we're getting the register classes correct.
rdar://12594152
llvm-svn: 188594
Lots of machine verifier errors result from using a plain GPR regclass
for incoming argument copies. A more restrictive rGPR class is more
appropriate since it more accurately represents what's happening, plus
it lines up better with isel later on so the verifier is happier.
Reduces the number of ARM fast-isel tests not running with the verifier
enabled by over half.
rdar://12594152
llvm-svn: 188592
This is a resubmit of r182877, which was reverted because it broken
MCJIT tests on ARM. The patch leaves MCJIT on ARM as it was before: only
enabled for iOS. I've CC'ed people from the original review and revert.
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl, but not MCJIT.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of lnt test-suite on A15 hardware with --optimize-option=-O0
and all the tests pass. All the tests also pass on x86 make check-all. I
also re-ran the check-all tests that failed on ARM, and they all seem to
pass.
llvm-svn: 183966
My recent ARM FastISel patch exposed this bug:
http://llvm.org/bugs/show_bug.cgi?id=16178
The root cause is that it can't select integer sext/zext pre-ARMv6 and
asserts out.
The current integer sext/zext code doesn't handle other cases gracefully
either, so this patch makes it handle all sext and zext from i1/i8/i16
to i8/i16/i32, with and without ARMv6, both in Thumb and ARM mode. This
should fix the bug as well as make FastISel faster because it bails to
SelectionDAG less often. See fastisel-ext.patch for this.
fastisel-ext-tests.patch changes current tests to always use reg-imm AND
for 8-bit zext instead of UXTB. This simplifies code since it is
supported on ARMv4t and later, and at least on A15 both should perform
exactly the same (both have exec 1 uop 1, type I).
2013-05-31-char-shift-crash.ll is a bitcode version of the above bug
16178 repro.
fast-isel-ext.ll tests all sext/zext combinations that ARM FastISel
should now handle.
Note that my ARM FastISel enabling patch was reverted due to a separate
failure when dealing with MCJIT, I'll fix this second failure and then
turn FastISel on again for non-iOS ARM targets.
I've tested "make check-all" on my x86 box, and "lnt test-suite" on A15
hardware.
llvm-svn: 183551
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of test-suite on A15 hardware with --optimize-option=-O0 and
all the tests pass.
llvm-svn: 182877
ARM FastISel is currently only enabled for iOS non-Thumb1, and I'm working on
enabling it for other targets. As a first step I've fixed some of the tests.
Changes to ARM FastISel tests:
- Different triples don't generate the same relocations (especially
movw/movt versus constant pool loads). Use a regex to allow either.
- Mangling is different. Use a regex to allow either.
- The reserved registers are sometimes different, so registers get
allocated in a different order. Capture the names only where this
occurs.
- Add -verify-machineinstrs to some tests where it works. It doesn't
work everywhere it should yet.
- Add -fast-isel-abort to many tests that didn't have it before.
- Split out the VarArg test from fast-isel-call.ll into its own
test. This simplifies test setup because of --check-prefix.
Patch by JF Bastien
llvm-svn: 181801
This eliminates a lot of constant pool entries for -O0 builds of code
with many global variable accesses.
This speeds up -O0 codegen of consumer-typeset by 2x because the
constant island pass no longer has to look at thousands of constant pool
entries.
<rdar://problem/10629774>
llvm-svn: 147712