The implicit def of the super register would appear to kill any live
uses of components before the spill, and would be deleted by
MachineCopyPropagation. We need to add implicit uses of the super
register, similarly to what copyPhysReg does. VGPR tuples appear to be
correctly handled already. I need to double check the SGPR->memory
path.
After D85099, if we have attribute group in the function signature that hasn't
been seen before, and later a callsite with the same attribute group, filecheck will evaluate
the first attribute group to for example '#0 {'. We now include { in the args_and_sig group to avoid this.
Differential Revision: https://reviews.llvm.org/D86769
There's a special case in hasAttribute for None when pImpl is null. If pImpl is not null we dispatch to pImpl->hasAttribute which will always return false for Attribute::None.
So if we just want to check for None its sufficient to just check that pImpl is null. Which can even be done inline.
This patch adds a helper for that case which I hope will speed up our getSubtargetImpl implementations.
Differential Revision: https://reviews.llvm.org/D86744
Since doInitialization() in the legacy pass modifies the module, the NPM
pass is a Module pass.
Reviewed By: ahatanak, ychen
Differential Revision: https://reviews.llvm.org/D86178
This patch fixes this crash https://gcc.godbolt.org/z/Ps8d1e
And gives SROA the ability to remove assumes if it allows promoting an alloca to register
Without removing assumes when it can't promote to register.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86570
Skip this for now, to avoid a backend crash in:
UNREACHABLE executed at llvm/lib/Target/ARM/ARMISelLowering.cpp:13412
This should fix PR45824.
Differential Revision: https://reviews.llvm.org/D86784
We introduce a codegen optimization pass which splits functions into hot and cold
parts. This pass leverages the basic block sections feature recently
introduced in LLVM from the Propeller project. The pass targets
functions with profile coverage, identifies cold blocks and moves them
to a separate section. The linker groups all cold blocks across
functions together, decreasing fragmentation and improving icache and
itlb utilization.
We evaluated the Machine Function Splitter pass on clang bootstrap and
SPECInt 2017.
For clang bootstrap we observe a mean 2.33% runtime improvement with a
~32% reduction in itlb and stlb misses. Additionally, L1 icache misses
reduced by 9.5% while L2 instruction misses reduced by 20%.
For SPECInt we report the change in IntRate the C/C++
benchmarks. All benchmarks apart from mcf and x264 improve, on average
by 0.6% with the max for deepsjeng at 1.6%.
Benchmark % Change
500.perlbench_r 0.78
502.gcc_r 0.82
505.mcf_r -0.30
520.omnetpp_r 0.18
523.xalancbmk_r 0.37
525.x264_r -0.46
531.deepsjeng_r 1.61
541.leela_r 0.83
557.xz_r 0.15
Differential Revision: https://reviews.llvm.org/D85368
These arm_mve_vldr_gather_offset_predicated and
arm_mve_vstr_scatter_offset_predicated have some extra parameters
meaning the predicate is at a later operand. If a loop contains _only_
those masked instructions, we would miss transforming the active lane
mask.
Differential Revision: https://reviews.llvm.org/D86791
This patch implements the builtins for Vector Load with Zero and Signed Extend Builtins (lxvr_x for b, h, w, d), and adds the appropriate test cases for these builtins. The builtins utilize the vector load instructions itnroduced with ISA 3.1.
Differential Revision: https://reviews.llvm.org/D82502#inline-797941
There is a subtle problem with new statepoint lowering scheme
when base and pointers are the same (see PR46917 for more context):
%1 = STATEPOINT ... %0, %0(tied-def 0)...
if, for some reason, register allocator desides to put two instances
of %0 into two different objects (registers or spill slots), we may
end up with
$reg3 = STATEPOINT ... $reg2, $reg1(tied-def 0)...
and nothing will prevent later passes to sink uses of $reg2 below
statepoint, which is incorrect.
As a short term solution, always put base pointers on stack during
lowering.
A longer term solution may be to rework MIR statepoint format to
avoid GC pointer duplication in statepoint argument list.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D86712
With gcc 6.3.0, I hit the following compilation error:
../lib/CodeGen/GlobalISel/Combiner.cpp: In member function
‘bool llvm::Combiner::combineMachineInstrs(llvm::MachineFunction&,
llvm::GISelCSEInfo*)’:
../lib/CodeGen/GlobalISel/Combiner.cpp:156:54: error: suggest parentheses
around ‘&&’ within ‘||’ [-Werror=parentheses]
assert(!CSEInfo || !errorToBool(CSEInfo->verify()) &&
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~
"CSEInfo is not consistent. Likely missing calls to "
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"observer on mutations");
Fix the code as suggested by the compiler.
This is the follow up patch for https://reviews.llvm.org/D86183 as we miss to delete the node if NegX == NegY, which has use after we create the node.
```
if (NegX && (CostX <= CostY)) {
Cost = std::min(CostX, CostZ);
RemoveDeadNode(NegY);
return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); #<-- NegY is used here if NegY == NegX.
}
```
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86689
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
The abbrev codes in a new abbrev table should start from 1 (by default),
rather than inherit the value from the code in the previous table.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D86545
Original D81646 had check for tied regs in foldPatchpoint().
Due to unfortunate miscommunication with review comments and
adressing some comments post commit, it turned into assertion.
We had an offline talk and agreed that with current implementation
this path is possible, so I'm changing it back to check.
Note that this is workaround until ussues described in PR46917 are
resolved.
Remove the code that tried to look for reduction patterns, since the
vectorizer and isel can now produce predicated arithmetic instructios
within the loop body. This has required some reorganisation and fixes
around live-out and predication checks, as well as looking for cases
where an input/output is initialised to zero.
Differential Revision: https://reviews.llvm.org/D86613
Previously in addTypeForNeon, we would set the operations for bfloat vectors
like other generic types. But as bfloat is a storage-only type a number of
operations shouldn't be set. This patch fixes that.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D85101
This changes getDomMemoryDef to check if a Current is a valid
candidate for elimination before checking for reads. Before the change,
we were spending a lot of compile-time in checking for read accesses for
Current that might not even be removable.
This patch flips the logic, so we skip Current if they cannot be
removed before checking all their uses. This is much more efficient in
practice.
It also adds a more aggressive limit for checking partially overlapping
stores. The main problem with overlapping stores is that we do not know
if they will lead to elimination until seeing all of them. This patch
limits adds a new limit for overlapping store candidates, which keeps
the number of modified overlapping stores roughly the same.
This is another substantial compile-time improvement (while also
increasing the number of stores eliminated). Geomean -O3 -0.67%,
ReleaseThinLTO -0.97%.
http://llvm-compile-time-tracker.com/compare.php?from=0a929b6978a068af8ddb02d0d4714a2843dd8ba9&to=2e630629b43f64b60b282e90f0d96082fde2dacc&stat=instructions
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D86487
Tests on Solaris/sparcv9 currently show about 250 failures when building
with gcc, most of them like the following:
FAIL: LLVM-Unit :: Support/./SupportTests/TaskQueueTest.UnOrderedFutures (4269 of 67884)
******************** TEST 'LLVM-Unit :: Support/./SupportTests/TaskQueueTest.UnOrderedFutures' FAILED ********************
Note: Google Test filter = TaskQueueTest.UnOrderedFutures
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from TaskQueueTest
[ RUN ] TaskQueueTest.UnOrderedFutures
0 SupportTests 0x0000000100753b20 llvm::sys::PrintStackTrace(llvm::raw_ostream&) + 32
1 SupportTests 0x0000000100752974 llvm::sys::RunSignalHandlers() + 68
2 SupportTests 0x0000000100752b18 SignalHandler(int) + 372
3 libc.so.1 0xffffffff7eedc800 __sighndlr + 12
4 libc.so.1 0xffffffff7eecf23c call_user_handler + 852
5 libc.so.1 0xffffffff7eecf594 sigacthandler + 84
6 SupportTests 0x00000001006f8cb8 std:🧵:_State_impl<std:🧵:_Invoker<std::tuple<llvm::ThreadPool::ThreadPool(llvm::ThreadPoolStrategy)::'lambda'()> > >::_M_run() + 512
7 libstdc++.so.6.0.28 0xfffffffc628117cc execute_native_thread_routine + 16
8 libc.so.1 0xffffffff7eedc6a0 _lwp_start + 0
Since it's effectively impossible to debug such a `SEGV` in a `Release`
build, I tried a `Debug` build instead, only to find that the failures had
gone away.
Further investigation revealed that most of the issue centers around
`llvm/lib/Support/ThreadPool.cpp`. That file is built with `-O3 -fPIC` in
a `Release` build. The failure vanishes if
- compiling without `-fPIC`
- compiling with `-O -fPIC`
- linking with GNU `ld` instead of Solaris `ld`
It has meanwhile been determined that `gcc` doesn't correctly heed some TLS
code sequences. To make things worse, Solaris `ld` doesn't properly
validate its assumptions against the input, generating wrong code.
`gld` like `gcc` is more liberal here and correctly deals with the code it
gets fed from `gcc`.
There's PR target/96607: GCC feeds SPARC/Solaris linker with unrecognized
TLS sequences <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96607> now.
An attempt to build with `-DLLVM_ENABLE_PIC=Off` initially failed since
neither `libRemarks.so` (D85626 <https://reviews.llvm.org/D85626>) nor
`LLVMPolly.so` (D85627 <https://reviews.llvm.org/D85627>) heed that option.
Even with that fixed, a few codegen failures remain.
Next I tried to build just `ThreadPool.cpp` with `-O -fPIC`. While that
fixed the vast majority of the failures, 16 `LLVM :: CodeGen/X86` failures
remained.
Given that that solution was both incomplete and fragile, I went for
building the whole tree with `-O -fPIC` for `Release` and `RelWithDebInfo`
builds.
As detailed in Bug 47304, 2-stage builds also show large numbers of
failures when building with `-O3` or `-O2`, which are likewise worked
around by building with `-O` until they are sufficiently analyzed and
fixed.
This way, all failures relative to a `Debug` build go away.
Tested on `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D85630
This patch adds support for memcmp in MemoryLocation::getForArgument.
memcmp reads from the first 2 arguments up to the number of bytes of the
third argument.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86725
strspn, strncmp, strcspn, strcasecmp, strncasecmp, memcmp, memchr,
memrchr, memcpy, memmove, memcpy, mempcpy, strchr, strrchr, bcmp
should all only access memory through their arguments.
I broke out strcoll, strcasecmp, strncasecmp because the result
depends on the locale, which might get accessed through memory.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86724
We have a few helper functions like the following:
```
std::error_code create*Dumper(...)
```
In fact we do not need or want to use `std::error_code` and the code
can be simpler if we just return `std::unique_ptr<ObjDumper>`.
This patch does this change and refines the signature of `createDumper`
as well.
Differential revision: https://reviews.llvm.org/D86718
This adds testing for the "Format" field printed with `--file-headers`.
llvm-readelf doesn't use them, so only llvm-readobj needs to be tested.
All possible values are defined and tested in `ELFObjectFile<ELFT>::getFileFormatName()`.
Here we test just a few arbitrary ones.
Differential revision: https://reviews.llvm.org/D86350
This adds all missing format values that are defined in
ELFObjectFile<ELFT>::getFileFormatName().
Differential revision: https://reviews.llvm.org/D86625
Some reduction passes may create invalid IR. I am not aware of any use
case where we would like to proceed reducing invalid IR. Various utils
used here, including CloneModule, assume the module to clone is valid
and crash otherwise.
Ideally, no reduction pass would create invalid IR, but some currently
do. ReduceInstructions can be fixed relatively easily (D86210), but
others are harder. For example, ReduceBasicBlocks may remove result in
invalid PHI nodes.
For now, skip the chunks. If we get to the point where all reduction
passes result in valid IR, we may want to turn this into an assertion.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D86212
If there's no unwinding opcodes, omit writing the xdata/pdata records.
Previously, this generated truncated xdata records, and llvm-readobj
would error out when trying to print them.
If writing of an xdata record is forced via the .seh_handlerdata
directive, skip it if there's no info to make a sensible unwind
info structure out of, and clearly error out if such info appeared
later in the process.
Differential Revision: https://reviews.llvm.org/D86527
It's not undefined behavior for an unsigned left shift to overflow (i.e. to
shift bits out), but it has been the source of bugs and exploits in certain
codebases in the past. As we do in other parts of UBSan, this patch adds a
dynamic checker which acts beyond UBSan and checks other sources of errors. The
option is enabled as part of -fsanitize=integer.
The flag is named: -fsanitize=unsigned-shift-base
This matches shift-base and shift-exponent flags.
<rdar://problem/46129047>
Differential Revision: https://reviews.llvm.org/D86000
The tile clause in OpenACC 3.0 imposes some restriction. Element in the tile size list are either * or a
constant positive integer expression. If there are n tile sizes in the list, the loop construct must be immediately
followed by n tightly-nested loops.
This patch implement these restrictions and add some tests.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D86655
When collecting `i1` values via `findAllDefs`, ignore Constant's
operands, since Constant's operands might not be `i1`.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46923 which causes ICE
```
llvm-project/llvm/lib/IR/Constants.cpp:1924: static llvm::Constant *llvm::ConstantExpr::getZExt(llvm::Constant *, llvm::Type *, bool): Assertion `C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for ZExt!"' failed.
```
Differential Revision: https://reviews.llvm.org/D85007