This generates a compile_commands.json file, which tells tools like
YouCompleteMe and clang_complete exactly how to build each source file.
Patch by Justin Lebar!
llvm-svn: 255789
The SystemZ linkers provide an optimization to transform a general-
or local-dynamic TLS sequence into an initial-exec sequence if possible.
Do do that, the compiler generates a function call to __tls_get_offset,
which is a brasl instruction annotated with *two* relocations:
- a R_390_PLT32DBL to install __tls_get_offset as branch target
- a R_390_TLS_GDCALL / R_390_TLS_LDCALL to inform the linker that
the TLS optimization should be performed if possible
If the optimization is performed, the brasl is replaced by an ld load
instruction.
However, *both* relocs are processed independently by the linker.
Therefore it is crucial that the R_390_PLT32DBL is processed *first*
(installing the branch target for the brasl) and the R_390_TLS_GDCALL
is processed *second* (replacing the whole brasl with an ld).
If the relocs are swapped, the linker will first replace the brasl
with an ld, and *then* install the __tls_get_offset branch target
offset. Since ld has a different layout than brasl, this may even
result in a completely different (or invalid) instruction; in any
case, the resulting code is corrupted.
Unfortunately, the way the MC common code sorts relocations causes
these two to *always* end up the wrong way around, resulting in
wrong code generation by the linker and crashes.
This patch overrides the sortRelocs routine to detect this particular
pair of relocs and enforce the required order.
llvm-svn: 255787
When comparing a zero-extended value against a constant small enough to
be in range of the inner type, it doesn't matter whether a signed or
unsigned compare operation (for the outer type) is being used. This is
why the code in adjustSubwordCmp had this assertion:
assert(C.ICmpType == SystemZICMP::Any &&
"Signedness shouldn't matter here.");
assuming the the caller had already detected that fact. However, it
turns out that there cases, in particular with always-true or always-
false conditions that have not been eliminated when compiling at -O0,
where this is not true.
Instead of failing an assertion if C.ICmpType is not SystemZICMP::Any
here, we can simply *set* it safely to SystemZICMP::Any, however.
llvm-svn: 255786
This removes an unpleasant hack involving a global variable for special
lowering of certain memcpy calls. These are now lowered as intended in
EmitTargetCodeForMemcpy in the same way that other targets do it.
llvm-svn: 255785
One of the earlier patches updated the cmake rule to install the
runtime dlls in INSTALL_DIR/lib which is not correct. This patch
updates the rule to install CMake's RUNTIME in bin directory
Differential Revision: http://reviews.llvm.org/D15505
llvm-svn: 255781
Add a function VLIWPacketizerList::shouldAddToPacket, which will allow
specific implementations to decide if it is profitable to add given
instruction to the current packet.
llvm-svn: 255780
Summary:
This patch introduces two new function attributes
InaccessibleMemOnly: This attribute indicates that the function may only access memory that is not accessible by the program/IR being compiled. This is a weaker form of ReadNone.
inaccessibleMemOrArgMemOnly: This attribute indicates that the function may only access memory that is either not accessible by the program/IR being compiled, or is pointed to by its pointer arguments. This is a weaker form of ArgMemOnly
Test cases have been updated. This revision uses this (d001932f3a) as reference.
Reviewers: jmolloy, hfinkel
Subscribers: reames, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D15499
llvm-svn: 255778
In conditional store merging, we were creating PHIs when we didn't
need to. If the value to be predicated isn't defined in the block
we're predicating, then it doesn't need a PHI at all (because we only
deal with triangles and diamonds, any value not in the predicated BB
must dominate the predicated BB).
This fixes a large code size increase in some benchmarks in a popular embedded benchmark suite.
Now with a fix (and fixed tests) for the conformance issue seen in Chromium.
llvm-svn: 255767
ARMv8.2-A adds 16-bit floating point versions of all existing SIMD
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Note that VFP without SIMD is not a valid combination for any version of
ARMv8-A, but I have ensured that these instructions all depend on both
FeatureNEON and FeatureFullFP16 for consistency.
Differential Revision: http://reviews.llvm.org/D15039
llvm-svn: 255764
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
The assembly for these instructions uses S registers (AArch32 does not
have H registers), but the instructions have ".f16" type specifiers
rather than ".f32" or ".f64". The top 16 bits of each source register
are ignored, and the top 16 bits of the destination register are set to
zero.
These instructions are mostly the same as the 32- and 64-bit versions,
but they use coprocessor 9 rather than 10 and 11.
Two new instructions, VMOVX and VINS, have been added to allow packing
and extracting two 16-bit floats stored in the top and bottom halves of
an S register.
New fixup kinds have been added for the PC-relative load and store
instructions, but no ELF relocations have been added as they have a
range of 512 bytes.
Differential Revision: http://reviews.llvm.org/D15038
llvm-svn: 255762
This folds (ashr (shl a, [56,48,32,24,16]), SarConst)
into (shl, (sext (a), [56,48,32,24,16] - SarConst))
or into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
depending on sign of (SarConst - [56,48,32,24,16])
sexts in X86 are MOVs.
The MOVs have the same code size as above SHIFTs (only SHIFT by 1 has lower code size).
However the MOVs have 2 advantages to SHIFTs on x86:
1. MOVs can write to a register that differs from source.
2. MOVs accept memory operands.
This fixes PR24373.
Patch by: evgeny.v.stupachenko@intel.com
Differential Revision: http://reviews.llvm.org/D13161
llvm-svn: 255761
Summary: On Windows, the allocation granularity can be significantly
larger than a page (64K), so with many small objects, just clearing
the FreeMem list rapidly leaks quite a bit of virtual memory space
(if not rss). Fix that by only removing those parts of the FreeMem
blocks that overlap pages for which we are applying memory permissions,
rather than dropping the FreeMem blocks entirely.
Reviewers: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15202
llvm-svn: 255760
Summary: This patch adds a check in visitLandingPad to see if landingpad's result type is token type. If so, do not create DAG nodes for its exception pointer and selector value. This patch enables the back end to handle landingpads of token type.
Reviewers: JosephTremoulet, majnemer, rnk
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15405
llvm-svn: 255749
Newer versions of libstdc++ (4.9+), as well as libc++, depend directly on
libpthread from the standard library headers, so libfuzzer needs to declare
a standard library dependency.
llvm-svn: 255745
Extend EarlyCSE with an additional style of dead store elimination. If we write back a value just read from that memory location, we can eliminate the store under the assumption that the value hasn't changed.
I'm implementing this mostly because I noticed the omission when looking at the code. It seemed strange to have InstCombine have a peephole which was more powerful than EarlyCSE. :)
Differential Revision: http://reviews.llvm.org/D15397
llvm-svn: 255739
This patch allows atomic loads and stores of floating point to be specified in the IR and adds an adapter to allow them to be lowered via existing backend support for bitcast-to-equivalent-integer idiom.
Previously, the only way to specify a atomic float operation was to bitcast the pointer to a i32, load the value as an i32, then bitcast to a float. At it's most basic, this patch simply moves this expansion step to the point we start lowering to the backend.
This patch does not add canonicalization rules to convert the bitcast idioms to the appropriate atomic loads. I plan to do that in the future, but for now, let's simply add the support. I'd like to get instruction selection working through at least one backend (x86-64) without the bitcast conversion before canonicalizing into this form.
Similarly, I haven't yet added the target hooks to opt out of the lowering step I added to AtomicExpand. I figured it would more sense to add those once at least one backend (x86) was ready to actually opt out.
As you can see from the included tests, the generated code quality is not great. I plan on submitting some patches to fix this, but help from others along that line would be very welcome. I'm not super familiar with the backend and my ramp up time may be material.
Differential Revision: http://reviews.llvm.org/D15471
llvm-svn: 255737
Summary:
Using the blacklist the user can filter own unwanted functions
from all outputs. By default blacklist contains "fun:__sancov*" line.
Differential Revision: http://reviews.llvm.org/D15364
llvm-svn: 255732
When a pass removes a loop it currently has to reach up into the
LPPassManager's internals to update the state of the iteration over
loops. This reverse dependency results in a pretty awkward interplay
of the LPPassManager and its Passes.
Here, we change this to instead keep track of when a loop has become
"unlooped" in the Loop objects themselves, then the LPPassManager can
check this and manipulate its own state directly. This opens the door
to allow most of the loop passes to work without a backreference to
the LPPassManager.
I've kept passes calling the LPPassManager::deleteLoopFromQueue API
now so I could put an assert in to prove that this is NFC, but a later
pass will update passes just to preserve the LoopInfo directly and
stop referencing the LPPassManager completely.
llvm-svn: 255720
These tests started passing after libcxxabi's r255559, which fixed a problem
relating to how libcxxabi links its EH library. The test failures were
caused by an issue with libc++, not the sanitizers (confirmed by building a
pre-r255559 revision with libc++/libc++abi and without sanitizers), so they
should never have been XFAILed under the sanitizers.
llvm-svn: 255708
It adjusts from RSP-after-prologue to RBP, which is what SEH filters
need to do before they can use llvm.localrecover.
Fixes SEH filter captures, which were broken in r250088.
Issue reported by Alex Crichton.
llvm-svn: 255707
This patch improves on the suggested codegen from PR24475:
https://llvm.org/bugs/show_bug.cgi?id=24475
but only for the fmaxf() case to start, so we can sort out any bugs before
extending to fmin, f64, and vectors.
The fmax / maxnum definitions provide us flexibility for signed zeros, so the
only thing we have to worry about in this replacement sequence is NaN handling.
Note 1: It may be better to implement this as lowerFMAXNUM(), but that exposes
a problem: SelectionDAGBuilder::visitSelect() transforms compare/select
instructions into FMAXNUM nodes if we declare FMAXNUM legal or custom. Perhaps
that should be checking for NaN inputs or global unsafe-math before transforming?
As it stands, that bypasses a big set of optimizations that the x86 backend
already has in PerformSELECTCombine().
Note 2: The v2f32 test reveals another bug; the vector is extended to v4f32, so
we have completely unnecessary operations happening on undef elements of the
vector.
Differential Revision: http://reviews.llvm.org/D15294
llvm-svn: 255700
An LTO pass that generates a __cfi_check() function that validates a
call based on a hash of the call-site-known type and the target
pointer.
llvm-svn: 255693
Summary: I'm not sure how things worked before without this.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15492
llvm-svn: 255692
(This is the third attempt to check in this patch, and the first two are r255454
and r255460. The once failed test file reg-usage.ll is now moved to
test/Transform/LoopVectorize/X86 directory with target datalayout and target
triple indicated.)
LoopVectorizationCostModel::calculateRegisterUsage() is used to estimate the
register usage for specific VFs. However, it takes into account many
instructions that won't be vectorized, such as induction variables,
GetElementPtr instruction, etc.. This makes the loop vectorizer too conservative
when choosing VF. In this patch, the induction variables that won't be
vectorized plus GetElementPtr instruction will be added to ValuesToIgnore set
so that their register usage won't be considered any more.
Differential revision: http://reviews.llvm.org/D15177
llvm-svn: 255691
Eventually we may need to sink this include to the .cpp file or
something to suport LLVM_ENABLE_THREADS=OFF, but this solves my
immediate problem of fixing the build.
llvm-svn: 255682
Add instruction patterns for matching load and store instructions with constant
offsets in addresses. The code is fairly redundant due to the need to replicate
everything between imm, tglobaldadr, and texternalsym, but this appears to be
common tablegen practice. The main alternative appears to be to introduce
matching functions with C++ code, but sticking with purely generated matchers
seems better for now.
Also note that this doesn't yet support offsets from getelementptr, which will
be the most common case; that will depend on a change in target-independent code
in order to set the NoUnsignedWrap flag, which I'll submit separately. Until
then, the testcase uses ptrtoint+add+inttoptr with a nuw on the add.
Also implement isLegalAddressingMode with an approximation of this.
Differential Revision: http://reviews.llvm.org/D15538
llvm-svn: 255681