//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the class that reads LLVM sample profiles. It // supports two file formats: text and binary. The textual representation // is useful for debugging and testing purposes. The binary representation // is more compact, resulting in smaller file sizes. However, they can // both be used interchangeably. // // NOTE: If you are making changes to the file format, please remember // to document them in the Clang documentation at // tools/clang/docs/UsersManual.rst. // // Text format // ----------- // // Sample profiles are written as ASCII text. The file is divided into // sections, which correspond to each of the functions executed at runtime. // Each section has the following format // // function1:total_samples:total_head_samples // offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ] // offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ] // ... // offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ] // offsetA[.discriminator]: fnA:num_of_total_samples // offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ] // ... // // This is a nested tree in which the identation represent the nest level // of the inline stack. There is no blank line in the file. And the spacing // within a single line is fixed. Additional spaces will result in an error // while reading the file. // // Inline stack is a stack of source locations in which the top of the stack // represents the leaf function, and the bottom of the stack represents the // actual symbol in which the instruction belongs. // // Function names must be mangled in order for the profile loader to // match them in the current translation unit. The two numbers in the // function header specify how many total samples were accumulated in the // function (first number), and the total number of samples accumulated // in the prologue of the function (second number). This head sample // count provides an indicator of how frequently the function is invoked. // // There are two types of lines in the function body. // // * Sampled line represents the profile information of a source location. // * Callsite line represents the profile inofrmation of a callsite. // // Each sampled line may contain several items. Some are optional (marked // below): // // a. Source line offset. This number represents the line number // in the function where the sample was collected. The line number is // always relative to the line where symbol of the function is // defined. So, if the function has its header at line 280, the offset // 13 is at line 293 in the file. // // Note that this offset should never be a negative number. This could // happen in cases like macros. The debug machinery will register the // line number at the point of macro expansion. So, if the macro was // expanded in a line before the start of the function, the profile // converter should emit a 0 as the offset (this means that the optimizers // will not be able to associate a meaningful weight to the instructions // in the macro). // // b. [OPTIONAL] Discriminator. This is used if the sampled program // was compiled with DWARF discriminator support // (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). // DWARF discriminators are unsigned integer values that allow the // compiler to distinguish between multiple execution paths on the // same source line location. // // For example, consider the line of code ``if (cond) foo(); else bar();``. // If the predicate ``cond`` is true 80% of the time, then the edge // into function ``foo`` should be considered to be taken most of the // time. But both calls to ``foo`` and ``bar`` are at the same source // line, so a sample count at that line is not sufficient. The // compiler needs to know which part of that line is taken more // frequently. // // This is what discriminators provide. In this case, the calls to // ``foo`` and ``bar`` will be at the same line, but will have // different discriminator values. This allows the compiler to correctly // set edge weights into ``foo`` and ``bar``. // // c. Number of samples. This is an integer quantity representing the // number of samples collected by the profiler at this source // location. // // d. [OPTIONAL] Potential call targets and samples. If present, this // line contains a call instruction. This models both direct and // number of samples. For example, // // 130: 7 foo:3 bar:2 baz:7 // // The above means that at relative line offset 130 there is a call // instruction that calls one of ``foo()``, ``bar()`` and ``baz()``, // with ``baz()`` being the relatively more frequently called target. // // Each callsite line may contain several items. Some are optional. // // a. Source line offset. This number represents the line number of the // callsite that is inlined in the profiled binary. // // b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line. // // c. Number of samples. This is an integer quantity representing the // total number of samples collected for the inlined instance at this // callsite //===----------------------------------------------------------------------===// #include "llvm/ProfileData/SampleProfReader.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" using namespace llvm::sampleprof; using namespace llvm; /// \brief Print the samples collected for a function on stream \p OS. /// /// \param OS Stream to emit the output to. void FunctionSamples::print(raw_ostream &OS) { OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size() << " sampled lines\n"; for (const auto &SI : BodySamples) { LineLocation Loc = SI.first; const SampleRecord &Sample = SI.second; OS << "\tline offset: " << Loc.LineOffset << ", discriminator: " << Loc.Discriminator << ", number of samples: " << Sample.getSamples(); if (Sample.hasCalls()) { OS << ", calls:"; for (const auto &I : Sample.getCallTargets()) OS << " " << I.first() << ":" << I.second; } OS << "\n"; } OS << "\n"; } /// \brief Dump the function profile for \p FName. /// /// \param FName Name of the function to print. /// \param OS Stream to emit the output to. void SampleProfileReader::dumpFunctionProfile(StringRef FName, raw_ostream &OS) { OS << "Function: " << FName << ": "; Profiles[FName].print(OS); } /// \brief Dump all the function profiles found on stream \p OS. void SampleProfileReader::dump(raw_ostream &OS) { for (const auto &I : Profiles) dumpFunctionProfile(I.getKey(), OS); } /// \brief Parse \p Input as function head. /// /// Parse one line of \p Input, and update function name in \p FName, /// function's total sample count in \p NumSamples, function's entry /// count in \p NumHeadSamples. /// /// \returns true if parsing is successful. static bool ParseHead(const StringRef &Input, StringRef &FName, unsigned &NumSamples, unsigned &NumHeadSamples) { if (Input[0] == ' ') return false; size_t n2 = Input.rfind(':'); size_t n1 = Input.rfind(':', n2 - 1); FName = Input.substr(0, n1); if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) return false; if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) return false; return true; } /// \brief Parse \p Input as line sample. /// /// \param Input input line. /// \param IsCallsite true if the line represents an inlined callsite. /// \param Depth the depth of the inline stack. /// \param NumSamples total samples of the line/inlined callsite. /// \param LineOffset line offset to the start of the function. /// \param Discriminator discriminator of the line. /// \param TargetCountMap map from indirect call target to count. /// /// returns true if parsing is successful. static bool ParseLine(const StringRef &Input, bool &IsCallsite, unsigned &Depth, unsigned &NumSamples, unsigned &LineOffset, unsigned &Discriminator, StringRef &CalleeName, DenseMap &TargetCountMap) { for (Depth = 0; Input[Depth] == ' '; Depth++) ; if (Depth == 0) return false; size_t n1 = Input.find(':'); StringRef Loc = Input.substr(Depth, n1 - Depth); size_t n2 = Loc.find('.'); if (n2 == StringRef::npos) { if (Loc.getAsInteger(10, LineOffset)) return false; Discriminator = 0; } else { if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) return false; if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) return false; } StringRef Rest = Input.substr(n1 + 2); if (Rest[0] >= '0' && Rest[0] <= '9') { IsCallsite = false; size_t n3 = Rest.find(' '); if (n3 == StringRef::npos) { if (Rest.getAsInteger(10, NumSamples)) return false; } else { if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) return false; } while (n3 != StringRef::npos) { n3 += Rest.substr(n3).find_first_not_of(' '); Rest = Rest.substr(n3); n3 = Rest.find(' '); StringRef pair = Rest; if (n3 != StringRef::npos) { pair = Rest.substr(0, n3); } int n4 = pair.find(':'); unsigned count; if (pair.substr(n4 + 1).getAsInteger(10, count)) return false; TargetCountMap[pair.substr(0, n4)] = count; } } else { IsCallsite = true; int n3 = Rest.find_last_of(':'); CalleeName = Rest.substr(0, n3); if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) return false; } return true; } /// \brief Load samples from a text file. /// /// See the documentation at the top of the file for an explanation of /// the expected format. /// /// \returns true if the file was loaded successfully, false otherwise. std::error_code SampleProfileReaderText::read() { line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); SmallVector InlineStack; for (; !LineIt.is_at_eof(); ++LineIt) { if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#') continue; // Read the header of each function. // // Note that for function identifiers we are actually expecting // mangled names, but we may not always get them. This happens when // the compiler decides not to emit the function (e.g., it was inlined // and removed). In this case, the binary will not have the linkage // name for the function, so the profiler will emit the function's // unmangled name, which may contain characters like ':' and '>' in its // name (member functions, templates, etc). // // The only requirement we place on the identifier, then, is that it // should not begin with a number. if ((*LineIt)[0] != ' ') { unsigned NumSamples, NumHeadSamples; StringRef FName; if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { reportError(LineIt.line_number(), "Expected 'mangled_name:NUM:NUM', found " + *LineIt); return sampleprof_error::malformed; } Profiles[FName] = FunctionSamples(); FunctionSamples &FProfile = Profiles[FName]; FProfile.addTotalSamples(NumSamples); FProfile.addHeadSamples(NumHeadSamples); InlineStack.clear(); InlineStack.push_back(&FProfile); } else { unsigned NumSamples; StringRef FName; DenseMap TargetCountMap; bool IsCallsite; unsigned Depth, LineOffset, Discriminator; if (!ParseLine(*LineIt, IsCallsite, Depth, NumSamples, LineOffset, Discriminator, FName, TargetCountMap)) { reportError(LineIt.line_number(), "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt); return sampleprof_error::malformed; } if (IsCallsite) { while (InlineStack.size() > Depth) { InlineStack.pop_back(); } FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( CallsiteLocation(LineOffset, Discriminator, FName)); FSamples.addTotalSamples(NumSamples); InlineStack.push_back(&FSamples); } else { while (InlineStack.size() > Depth) { InlineStack.pop_back(); } FunctionSamples &FProfile = *InlineStack.back(); for (const auto &name_count : TargetCountMap) { FProfile.addCalledTargetSamples(LineOffset, Discriminator, name_count.first, name_count.second); } FProfile.addBodySamples(LineOffset, Discriminator, NumSamples); } } } return sampleprof_error::success; } template ErrorOr SampleProfileReaderBinary::readNumber() { unsigned NumBytesRead = 0; std::error_code EC; uint64_t Val = decodeULEB128(Data, &NumBytesRead); if (Val > std::numeric_limits::max()) EC = sampleprof_error::malformed; else if (Data + NumBytesRead > End) EC = sampleprof_error::truncated; else EC = sampleprof_error::success; if (EC) { reportError(0, EC.message()); return EC; } Data += NumBytesRead; return static_cast(Val); } ErrorOr SampleProfileReaderBinary::readString() { std::error_code EC; StringRef Str(reinterpret_cast(Data)); if (Data + Str.size() + 1 > End) { EC = sampleprof_error::truncated; reportError(0, EC.message()); return EC; } Data += Str.size() + 1; return Str; } std::error_code SampleProfileReaderBinary::read() { while (!at_eof()) { auto FName(readString()); if (std::error_code EC = FName.getError()) return EC; Profiles[*FName] = FunctionSamples(); FunctionSamples &FProfile = Profiles[*FName]; auto Val = readNumber(); if (std::error_code EC = Val.getError()) return EC; FProfile.addTotalSamples(*Val); Val = readNumber(); if (std::error_code EC = Val.getError()) return EC; FProfile.addHeadSamples(*Val); // Read the samples in the body. auto NumRecords = readNumber(); if (std::error_code EC = NumRecords.getError()) return EC; for (unsigned I = 0; I < *NumRecords; ++I) { auto LineOffset = readNumber(); if (std::error_code EC = LineOffset.getError()) return EC; auto Discriminator = readNumber(); if (std::error_code EC = Discriminator.getError()) return EC; auto NumSamples = readNumber(); if (std::error_code EC = NumSamples.getError()) return EC; auto NumCalls = readNumber(); if (std::error_code EC = NumCalls.getError()) return EC; for (unsigned J = 0; J < *NumCalls; ++J) { auto CalledFunction(readString()); if (std::error_code EC = CalledFunction.getError()) return EC; auto CalledFunctionSamples = readNumber(); if (std::error_code EC = CalledFunctionSamples.getError()) return EC; FProfile.addCalledTargetSamples(*LineOffset, *Discriminator, *CalledFunction, *CalledFunctionSamples); } FProfile.addBodySamples(*LineOffset, *Discriminator, *NumSamples); } } return sampleprof_error::success; } std::error_code SampleProfileReaderBinary::readHeader() { Data = reinterpret_cast(Buffer->getBufferStart()); End = Data + Buffer->getBufferSize(); // Read and check the magic identifier. auto Magic = readNumber(); if (std::error_code EC = Magic.getError()) return EC; else if (*Magic != SPMagic()) return sampleprof_error::bad_magic; // Read the version number. auto Version = readNumber(); if (std::error_code EC = Version.getError()) return EC; else if (*Version != SPVersion()) return sampleprof_error::unsupported_version; return sampleprof_error::success; } bool SampleProfileReaderBinary::hasFormat(const MemoryBuffer &Buffer) { const uint8_t *Data = reinterpret_cast(Buffer.getBufferStart()); uint64_t Magic = decodeULEB128(Data); return Magic == SPMagic(); } bool SourceInfo::operator<(const SourceInfo &P) const { if (Line != P.Line) return Line < P.Line; if (StartLine != P.StartLine) return StartLine < P.StartLine; if (Discriminator != P.Discriminator) return Discriminator < P.Discriminator; return FuncName < P.FuncName; } std::error_code SampleProfileReaderGCC::skipNextWord() { uint32_t dummy; if (!GcovBuffer.readInt(dummy)) return sampleprof_error::truncated; return sampleprof_error::success; } template ErrorOr SampleProfileReaderGCC::readNumber() { if (sizeof(T) <= sizeof(uint32_t)) { uint32_t Val; if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits::max()) return static_cast(Val); } else if (sizeof(T) <= sizeof(uint64_t)) { uint64_t Val; if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits::max()) return static_cast(Val); } std::error_code EC = sampleprof_error::malformed; reportError(0, EC.message()); return EC; } ErrorOr SampleProfileReaderGCC::readString() { StringRef Str; if (!GcovBuffer.readString(Str)) return sampleprof_error::truncated; return Str; } std::error_code SampleProfileReaderGCC::readHeader() { // Read the magic identifier. if (!GcovBuffer.readGCDAFormat()) return sampleprof_error::unrecognized_format; // Read the version number. Note - the GCC reader does not validate this // version, but the profile creator generates v704. GCOV::GCOVVersion version; if (!GcovBuffer.readGCOVVersion(version)) return sampleprof_error::unrecognized_format; if (version != GCOV::V704) return sampleprof_error::unsupported_version; // Skip the empty integer. if (std::error_code EC = skipNextWord()) return EC; return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { uint32_t Tag; if (!GcovBuffer.readInt(Tag)) return sampleprof_error::truncated; if (Tag != Expected) return sampleprof_error::malformed; if (std::error_code EC = skipNextWord()) return EC; return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readNameTable() { if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) return EC; uint32_t Size; if (!GcovBuffer.readInt(Size)) return sampleprof_error::truncated; for (uint32_t I = 0; I < Size; ++I) { StringRef Str; if (!GcovBuffer.readString(Str)) return sampleprof_error::truncated; Names.push_back(Str); } return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readFunctionProfiles() { if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) return EC; uint32_t NumFunctions; if (!GcovBuffer.readInt(NumFunctions)) return sampleprof_error::truncated; SourceStack Stack; for (uint32_t I = 0; I < NumFunctions; ++I) if (std::error_code EC = readOneFunctionProfile(Stack, true)) return EC; return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::addSourceCount(StringRef Name, const SourceStack &Src, uint64_t Count) { if (Src.size() == 0 || Src[0].Malformed()) return sampleprof_error::malformed; FunctionSamples &FProfile = Profiles[Name]; FProfile.addTotalSamples(Count); // FIXME(dnovillo) - Properly update inline stack for FnName. FProfile.addBodySamples(Src[0].Line, Src[0].Discriminator, Count); return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readOneFunctionProfile(const SourceStack &Stack, bool Update) { uint64_t HeadCount = 0; if (Stack.size() == 0) if (!GcovBuffer.readInt64(HeadCount)) return sampleprof_error::truncated; uint32_t NameIdx; if (!GcovBuffer.readInt(NameIdx)) return sampleprof_error::truncated; StringRef Name(Names[NameIdx]); uint32_t NumPosCounts; if (!GcovBuffer.readInt(NumPosCounts)) return sampleprof_error::truncated; uint32_t NumCallSites; if (!GcovBuffer.readInt(NumCallSites)) return sampleprof_error::truncated; if (Stack.size() == 0) { FunctionSamples &FProfile = Profiles[Name]; FProfile.addHeadSamples(HeadCount); if (FProfile.getTotalSamples() > 0) Update = false; } for (uint32_t I = 0; I < NumPosCounts; ++I) { uint32_t Offset; if (!GcovBuffer.readInt(Offset)) return sampleprof_error::truncated; uint32_t NumTargets; if (!GcovBuffer.readInt(NumTargets)) return sampleprof_error::truncated; uint64_t Count; if (!GcovBuffer.readInt64(Count)) return sampleprof_error::truncated; SourceInfo Info(Name, "", "", 0, Offset >> 16, Offset & 0xffff); SourceStack NewStack; NewStack.push_back(Info); NewStack.insert(NewStack.end(), Stack.begin(), Stack.end()); if (Update) addSourceCount(NewStack[NewStack.size() - 1].FuncName, NewStack, Count); for (uint32_t J = 0; J < NumTargets; J++) { uint32_t HistVal; if (!GcovBuffer.readInt(HistVal)) return sampleprof_error::truncated; if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) return sampleprof_error::malformed; uint64_t TargetIdx; if (!GcovBuffer.readInt64(TargetIdx)) return sampleprof_error::truncated; StringRef TargetName(Names[TargetIdx]); uint64_t TargetCount; if (!GcovBuffer.readInt64(TargetCount)) return sampleprof_error::truncated; if (Update) { FunctionSamples &TargetProfile = Profiles[TargetName]; TargetProfile.addBodySamples(NewStack[0].Line, NewStack[0].Discriminator, TargetCount); } } } for (uint32_t I = 0; I < NumCallSites; I++) { // The offset is encoded as: // high 16 bits: line offset to the start of the function. // low 16 bits: discriminator. uint32_t Offset; if (!GcovBuffer.readInt(Offset)) return sampleprof_error::truncated; SourceInfo Info(Name, "", "", 0, Offset >> 16, Offset & 0xffff); SourceStack NewStack; NewStack.push_back(Info); NewStack.insert(NewStack.end(), Stack.begin(), Stack.end()); if (std::error_code EC = readOneFunctionProfile(NewStack, Update)) return EC; } return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readModuleGroup() { // FIXME(dnovillo) - Module support still not implemented. return sampleprof_error::not_implemented; } std::error_code SampleProfileReaderGCC::readWorkingSet() { // FIXME(dnovillo) - Working sets still not implemented. return sampleprof_error::not_implemented; } /// \brief Read a GCC AutoFDO profile. /// /// This format is generated by the Linux Perf conversion tool at /// https://github.com/google/autofdo. std::error_code SampleProfileReaderGCC::read() { // Read the string table. if (std::error_code EC = readNameTable()) return EC; // Read the source profile. if (std::error_code EC = readFunctionProfiles()) return EC; // FIXME(dnovillo) - Module groups and working set support are not // yet implemented. #if 0 // Read the module group file. if (std::error_code EC = readModuleGroup()) return EC; // Read the working set. if (std::error_code EC = readWorkingSet()) return EC; #endif return sampleprof_error::success; } bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { StringRef Magic(reinterpret_cast(Buffer.getBufferStart())); return Magic == "adcg*704"; } /// \brief Prepare a memory buffer for the contents of \p Filename. /// /// \returns an error code indicating the status of the buffer. static ErrorOr> setupMemoryBuffer(std::string Filename) { auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename); if (std::error_code EC = BufferOrErr.getError()) return EC; auto Buffer = std::move(BufferOrErr.get()); // Sanity check the file. if (Buffer->getBufferSize() > std::numeric_limits::max()) return sampleprof_error::too_large; return std::move(Buffer); } /// \brief Create a sample profile reader based on the format of the input file. /// /// \param Filename The file to open. /// /// \param Reader The reader to instantiate according to \p Filename's format. /// /// \param C The LLVM context to use to emit diagnostics. /// /// \returns an error code indicating the status of the created reader. ErrorOr> SampleProfileReader::create(StringRef Filename, LLVMContext &C) { auto BufferOrError = setupMemoryBuffer(Filename); if (std::error_code EC = BufferOrError.getError()) return EC; auto Buffer = std::move(BufferOrError.get()); std::unique_ptr Reader; if (SampleProfileReaderBinary::hasFormat(*Buffer)) Reader.reset(new SampleProfileReaderBinary(std::move(Buffer), C)); else if (SampleProfileReaderGCC::hasFormat(*Buffer)) Reader.reset(new SampleProfileReaderGCC(std::move(Buffer), C)); else Reader.reset(new SampleProfileReaderText(std::move(Buffer), C)); if (std::error_code EC = Reader->readHeader()) return EC; return std::move(Reader); }