//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements induction variable simplification. It does // not define any actual pass or policy, but provides a single function to // simplify a loop's induction variables based on ScalarEvolution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "indvars" #include "llvm/Instructions.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/IVUsers.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/SimplifyIndVar.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); namespace { /// SimplifyIndvar - This is a utility for simplifying induction variables /// based on ScalarEvolution. It is the primary instrument of the /// IndvarSimplify pass, but it may also be directly invoked to cleanup after /// other loop passes that preserve SCEV. class SimplifyIndvar { Loop *L; LoopInfo *LI; DominatorTree *DT; ScalarEvolution *SE; IVUsers *IU; // NULL for DisableIVRewrite const TargetData *TD; // May be NULL SmallVectorImpl &DeadInsts; bool Changed; public: SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM, SmallVectorImpl &Dead, IVUsers *IVU = NULL) : L(Loop), LI(LPM->getAnalysisIfAvailable()), SE(SE), IU(IVU), TD(LPM->getAnalysisIfAvailable()), DeadInsts(Dead), Changed(false) { assert(LI && "IV simplification requires LoopInfo"); } bool hasChanged() const { return Changed; } /// Iteratively perform simplification on a worklist of users of the /// specified induction variable. This is the top-level driver that applies /// all simplicitions to users of an IV. void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL); Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, bool IsSigned); }; } /// foldIVUser - Fold an IV operand into its use. This removes increments of an /// aligned IV when used by a instruction that ignores the low bits. /// /// IVOperand is guaranteed SCEVable, but UseInst may not be. /// /// Return the operand of IVOperand for this induction variable if IVOperand can /// be folded (in case more folding opportunities have been exposed). /// Otherwise return null. Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { Value *IVSrc = 0; unsigned OperIdx = 0; const SCEV *FoldedExpr = 0; switch (UseInst->getOpcode()) { default: return 0; case Instruction::UDiv: case Instruction::LShr: // We're only interested in the case where we know something about // the numerator and have a constant denominator. if (IVOperand != UseInst->getOperand(OperIdx) || !isa(UseInst->getOperand(1))) return 0; // Attempt to fold a binary operator with constant operand. // e.g. ((I + 1) >> 2) => I >> 2 if (!isa(IVOperand) || !isa(IVOperand->getOperand(1))) return 0; IVSrc = IVOperand->getOperand(0); // IVSrc must be the (SCEVable) IV, since the other operand is const. assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); ConstantInt *D = cast(UseInst->getOperand(1)); if (UseInst->getOpcode() == Instruction::LShr) { // Get a constant for the divisor. See createSCEV. uint32_t BitWidth = cast(UseInst->getType())->getBitWidth(); if (D->getValue().uge(BitWidth)) return 0; D = ConstantInt::get(UseInst->getContext(), APInt(BitWidth, 1).shl(D->getZExtValue())); } FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); } // We have something that might fold it's operand. Compare SCEVs. if (!SE->isSCEVable(UseInst->getType())) return 0; // Bypass the operand if SCEV can prove it has no effect. if (SE->getSCEV(UseInst) != FoldedExpr) return 0; DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand << " -> " << *UseInst << '\n'); UseInst->setOperand(OperIdx, IVSrc); assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); ++NumElimOperand; Changed = true; if (IVOperand->use_empty()) DeadInsts.push_back(IVOperand); return IVSrc; } /// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless /// comparisons against an induction variable. void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { unsigned IVOperIdx = 0; ICmpInst::Predicate Pred = ICmp->getPredicate(); if (IVOperand != ICmp->getOperand(0)) { // Swapped assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); IVOperIdx = 1; Pred = ICmpInst::getSwappedPredicate(Pred); } // Get the SCEVs for the ICmp operands. const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); // Simplify unnecessary loops away. const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); S = SE->getSCEVAtScope(S, ICmpLoop); X = SE->getSCEVAtScope(X, ICmpLoop); // If the condition is always true or always false, replace it with // a constant value. if (SE->isKnownPredicate(Pred, S, X)) ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); else return; DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); ++NumElimCmp; Changed = true; DeadInsts.push_back(ICmp); } /// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless /// remainder operations operating on an induction variable. void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, bool IsSigned) { // We're only interested in the case where we know something about // the numerator. if (IVOperand != Rem->getOperand(0)) return; // Get the SCEVs for the ICmp operands. const SCEV *S = SE->getSCEV(Rem->getOperand(0)); const SCEV *X = SE->getSCEV(Rem->getOperand(1)); // Simplify unnecessary loops away. const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); S = SE->getSCEVAtScope(S, ICmpLoop); X = SE->getSCEVAtScope(X, ICmpLoop); // i % n --> i if i is in [0,n). if ((!IsSigned || SE->isKnownNonNegative(S)) && SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, S, X)) Rem->replaceAllUsesWith(Rem->getOperand(0)); else { // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). const SCEV *LessOne = SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); if (IsSigned && !SE->isKnownNonNegative(LessOne)) return; if (!SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, LessOne, X)) return; ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, Rem->getOperand(0), Rem->getOperand(1)); SelectInst *Sel = SelectInst::Create(ICmp, ConstantInt::get(Rem->getType(), 0), Rem->getOperand(0), "tmp", Rem); Rem->replaceAllUsesWith(Sel); } // Inform IVUsers about the new users. if (IU) { if (Instruction *I = dyn_cast(Rem->getOperand(0))) { SmallPtrSet SimplifiedLoopNests; IU->AddUsersIfInteresting(I, SimplifiedLoopNests); } } DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); ++NumElimRem; Changed = true; DeadInsts.push_back(Rem); } /// eliminateIVUser - Eliminate an operation that consumes a simple IV and has /// no observable side-effect given the range of IV values. /// IVOperand is guaranteed SCEVable, but UseInst may not be. bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, Instruction *IVOperand) { if (ICmpInst *ICmp = dyn_cast(UseInst)) { eliminateIVComparison(ICmp, IVOperand); return true; } if (BinaryOperator *Rem = dyn_cast(UseInst)) { bool IsSigned = Rem->getOpcode() == Instruction::SRem; if (IsSigned || Rem->getOpcode() == Instruction::URem) { eliminateIVRemainder(Rem, IVOperand, IsSigned); return true; } } // Eliminate any operation that SCEV can prove is an identity function. if (!SE->isSCEVable(UseInst->getType()) || (UseInst->getType() != IVOperand->getType()) || (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) return false; DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); UseInst->replaceAllUsesWith(IVOperand); ++NumElimIdentity; Changed = true; DeadInsts.push_back(UseInst); return true; } /// pushIVUsers - Add all uses of Def to the current IV's worklist. /// static void pushIVUsers( Instruction *Def, SmallPtrSet &Simplified, SmallVectorImpl< std::pair > &SimpleIVUsers) { for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); // Avoid infinite or exponential worklist processing. // Also ensure unique worklist users. // If Def is a LoopPhi, it may not be in the Simplified set, so check for // self edges first. if (User != Def && Simplified.insert(User)) SimpleIVUsers.push_back(std::make_pair(User, Def)); } } /// isSimpleIVUser - Return true if this instruction generates a simple SCEV /// expression in terms of that IV. /// /// This is similar to IVUsers' isInteresting() but processes each instruction /// non-recursively when the operand is already known to be a simpleIVUser. /// static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { if (!SE->isSCEVable(I->getType())) return false; // Get the symbolic expression for this instruction. const SCEV *S = SE->getSCEV(I); // Only consider affine recurrences. const SCEVAddRecExpr *AR = dyn_cast(S); if (AR && AR->getLoop() == L) return true; return false; } /// simplifyUsers - Iteratively perform simplification on a worklist of users /// of the specified induction variable. Each successive simplification may push /// more users which may themselves be candidates for simplification. /// /// This algorithm does not require IVUsers analysis. Instead, it simplifies /// instructions in-place during analysis. Rather than rewriting induction /// variables bottom-up from their users, it transforms a chain of IVUsers /// top-down, updating the IR only when it encouters a clear optimization /// opportunitiy. /// /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. /// void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { if (!SE->isSCEVable(CurrIV->getType())) return; // Instructions processed by SimplifyIndvar for CurrIV. SmallPtrSet Simplified; // Use-def pairs if IV users waiting to be processed for CurrIV. SmallVector, 8> SimpleIVUsers; // Push users of the current LoopPhi. In rare cases, pushIVUsers may be // called multiple times for the same LoopPhi. This is the proper thing to // do for loop header phis that use each other. pushIVUsers(CurrIV, Simplified, SimpleIVUsers); while (!SimpleIVUsers.empty()) { std::pair UseOper = SimpleIVUsers.pop_back_val(); // Bypass back edges to avoid extra work. if (UseOper.first == CurrIV) continue; Instruction *IVOperand = UseOper.second; for (unsigned N = 0; IVOperand; ++N) { assert(N <= Simplified.size() && "runaway iteration"); Value *NewOper = foldIVUser(UseOper.first, IVOperand); if (!NewOper) break; // done folding IVOperand = dyn_cast(NewOper); } if (!IVOperand) continue; if (eliminateIVUser(UseOper.first, IVOperand)) { pushIVUsers(IVOperand, Simplified, SimpleIVUsers); continue; } CastInst *Cast = dyn_cast(UseOper.first); if (V && Cast) { V->visitCast(Cast); continue; } if (isSimpleIVUser(UseOper.first, L, SE)) { pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); } } } namespace llvm { void IVVisitor::anchor() { } /// simplifyUsersOfIV - Simplify instructions that use this induction variable /// by using ScalarEvolution to analyze the IV's recurrence. bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, SmallVectorImpl &Dead, IVVisitor *V) { LoopInfo *LI = &LPM->getAnalysis(); SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead); SIV.simplifyUsers(CurrIV, V); return SIV.hasChanged(); } /// simplifyLoopIVs - Simplify users of induction variables within this /// loop. This does not actually change or add IVs. bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, SmallVectorImpl &Dead) { bool Changed = false; for (BasicBlock::iterator I = L->getHeader()->begin(); isa(I); ++I) { Changed |= simplifyUsersOfIV(cast(I), SE, LPM, Dead); } return Changed; } /// simplifyIVUsers - Perform simplification on instructions recorded by the /// IVUsers pass. /// /// This is the old approach to IV simplification to be replaced by /// SimplifyLoopIVs. bool simplifyIVUsers(IVUsers *IU, ScalarEvolution *SE, LPPassManager *LPM, SmallVectorImpl &Dead) { SimplifyIndvar SIV(IU->getLoop(), SE, LPM, Dead); // Each round of simplification involves a round of eliminating operations // followed by a round of widening IVs. A single IVUsers worklist is used // across all rounds. The inner loop advances the user. If widening exposes // more uses, then another pass through the outer loop is triggered. for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) { Instruction *UseInst = I->getUser(); Value *IVOperand = I->getOperandValToReplace(); if (ICmpInst *ICmp = dyn_cast(UseInst)) { SIV.eliminateIVComparison(ICmp, IVOperand); continue; } if (BinaryOperator *Rem = dyn_cast(UseInst)) { bool IsSigned = Rem->getOpcode() == Instruction::SRem; if (IsSigned || Rem->getOpcode() == Instruction::URem) { SIV.eliminateIVRemainder(Rem, IVOperand, IsSigned); continue; } } } return SIV.hasChanged(); } } // namespace llvm