//===- CodeExtractor.cpp - Pull code region into a new function -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the interface to tear out a code region, such as an // individual loop or a parallel section, into a new function, replacing it with // a call to the new function. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/FunctionUtils.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "Support/CommandLine.h" #include "Support/Debug.h" #include "Support/StringExtras.h" #include #include using namespace llvm; // Provide a command-line option to aggregate function arguments into a struct // for functions produced by the code extrator. This is useful when converting // extracted functions to pthread-based code, as only one argument (void*) can // be passed in to pthread_create(). static cl::opt AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, cl::desc("Aggregate arguments to code-extracted functions")); namespace { class CodeExtractor { typedef std::vector Values; std::set BlocksToExtract; DominatorSet *DS; bool AggregateArgs; public: CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) : DS(ds), AggregateArgs(AggregateArgsOpt) {} Function *ExtractCodeRegion(const std::vector &code); bool isEligible(const std::vector &code); private: void findInputsOutputs(Values &inputs, Values &outputs, BasicBlock *newHeader, BasicBlock *newRootNode); Function *constructFunction(const Values &inputs, const Values &outputs, BasicBlock *header, BasicBlock *newRootNode, BasicBlock *newHeader, Function *oldFunction, Module *M); void moveCodeToFunction(Function *newFunction); void emitCallAndSwitchStatement(Function *newFunction, BasicBlock *newHeader, Values &inputs, Values &outputs); }; } void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs, BasicBlock *newHeader, BasicBlock *newRootNode) { for (std::set::const_iterator ci = BlocksToExtract.begin(), ce = BlocksToExtract.end(); ci != ce; ++ci) { BasicBlock *BB = *ci; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // If a used value is defined outside the region, it's an input. If an // instruction is used outside the region, it's an output. if (PHINode *PN = dyn_cast(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = PN->getIncomingValue(i); if (!BlocksToExtract.count(PN->getIncomingBlock(i)) && (isa(V) || isa(V))) inputs.push_back(V); else if (Instruction *opI = dyn_cast(V)) { if (!BlocksToExtract.count(opI->getParent())) inputs.push_back(opI); } else if (isa(V)) inputs.push_back(V); } } else { // All other instructions go through the generic input finder // Loop over the operands of each instruction (inputs) for (User::op_iterator op = I->op_begin(), opE = I->op_end(); op != opE; ++op) if (Instruction *opI = dyn_cast(*op)) { // Check if definition of this operand is within the loop if (!BlocksToExtract.count(opI->getParent())) inputs.push_back(opI); } else if (isa(*op)) { inputs.push_back(*op); } } // Consider uses of this instruction (outputs) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (!BlocksToExtract.count(cast(*UI)->getParent())) { outputs.push_back(I); break; } } // for: insts } // for: basic blocks } /// constructFunction - make a function based on inputs and outputs, as follows: /// f(in0, ..., inN, out0, ..., outN) /// Function *CodeExtractor::constructFunction(const Values &inputs, const Values &outputs, BasicBlock *header, BasicBlock *newRootNode, BasicBlock *newHeader, Function *oldFunction, Module *M) { DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); // This function returns unsigned, outputs will go back by reference. Type *retTy = Type::UShortTy; std::vector paramTy; // Add the types of the input values to the function's argument list for (Values::const_iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) { const Value *value = *i; DEBUG(std::cerr << "value used in func: " << value << "\n"); paramTy.push_back(value->getType()); } // Add the types of the output values to the function's argument list. for (Values::const_iterator I = outputs.begin(), E = outputs.end(); I != E; ++I) { DEBUG(std::cerr << "instr used in func: " << *I << "\n"); if (AggregateArgs) paramTy.push_back((*I)->getType()); else paramTy.push_back(PointerType::get((*I)->getType())); } DEBUG(std::cerr << "Function type: " << retTy << " f("); DEBUG(for (std::vector::iterator i = paramTy.begin(), e = paramTy.end(); i != e; ++i) std::cerr << *i << ", "); DEBUG(std::cerr << ")\n"); if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); paramTy.clear(); paramTy.push_back(StructPtr); } const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); // Create the new function Function *newFunction = new Function(funcType, GlobalValue::InternalLinkage, oldFunction->getName() + "_code", M); newFunction->getBasicBlockList().push_back(newRootNode); // Create an iterator to name all of the arguments we inserted. Function::aiterator AI = newFunction->abegin(); // Rewrite all users of the inputs in the extracted region to use the // arguments (or appropriate addressing into struct) instead. for (unsigned i = 0, e = inputs.size(); i != e; ++i) { Value *RewriteVal; if (AggregateArgs) { std::vector Indices; Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); std::string GEPname = "gep_" + inputs[i]->getName(); TerminatorInst *TI = newFunction->begin()->getTerminator(); GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); } else RewriteVal = AI++; std::vector Users(inputs[i]->use_begin(), inputs[i]->use_end()); for (std::vector::iterator use = Users.begin(), useE = Users.end(); use != useE; ++use) if (Instruction* inst = dyn_cast(*use)) if (BlocksToExtract.count(inst->getParent())) inst->replaceUsesOfWith(inputs[i], RewriteVal); } // Set names for input and output arguments. if (!AggregateArgs) { AI = newFunction->abegin(); for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) AI->setName(inputs[i]->getName()); for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) AI->setName(outputs[i]->getName()+".out"); } // Rewrite branches to basic blocks outside of the loop to new dummy blocks // within the new function. This must be done before we lose track of which // blocks were originally in the code region. std::vector Users(header->use_begin(), header->use_end()); for (unsigned i = 0, e = Users.size(); i != e; ++i) // The BasicBlock which contains the branch is not in the region // modify the branch target to a new block if (TerminatorInst *TI = dyn_cast(Users[i])) if (!BlocksToExtract.count(TI->getParent()) && TI->getParent()->getParent() == oldFunction) TI->replaceUsesOfWith(header, newHeader); return newFunction; } void CodeExtractor::moveCodeToFunction(Function *newFunction) { Function *oldFunc = (*BlocksToExtract.begin())->getParent(); Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); for (std::set::const_iterator i = BlocksToExtract.begin(), e = BlocksToExtract.end(); i != e; ++i) { // Delete the basic block from the old function, and the list of blocks oldBlocks.remove(*i); // Insert this basic block into the new function newBlocks.push_back(*i); } } void CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, Values &inputs, Values &outputs) { // Emit a call to the new function, passing in: // *pointer to struct (if aggregating parameters), or // plan inputs and allocated memory for outputs std::vector params, StructValues, ReloadOutputs; // Add inputs as params, or to be filled into the struct for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) if (AggregateArgs) StructValues.push_back(*i); else params.push_back(*i); // Create allocas for the outputs for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { if (AggregateArgs) { StructValues.push_back(*i); } else { AllocaInst *alloca = new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", codeReplacer->getParent()->begin()->begin()); ReloadOutputs.push_back(alloca); params.push_back(alloca); } } AllocaInst *Struct = 0; if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { std::vector ArgTypes; for (Values::iterator v = StructValues.begin(), ve = StructValues.end(); v != ve; ++v) ArgTypes.push_back((*v)->getType()); // Allocate a struct at the beginning of this function Type *StructArgTy = StructType::get(ArgTypes); Struct = new AllocaInst(StructArgTy, 0, "structArg", codeReplacer->getParent()->begin()->begin()); params.push_back(Struct); for (unsigned i = 0, e = inputs.size(); i != e; ++i) { std::vector Indices; Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); GetElementPtrInst *GEP = new GetElementPtrInst(Struct, Indices, "gep_" + StructValues[i]->getName(), 0); codeReplacer->getInstList().push_back(GEP); StoreInst *SI = new StoreInst(StructValues[i], GEP); codeReplacer->getInstList().push_back(SI); } } // Emit the call to the function CallInst *call = new CallInst(newFunction, params, "targetBlock"); codeReplacer->getInstList().push_back(call); Function::aiterator OutputArgBegin = newFunction->abegin(); unsigned FirstOut = inputs.size(); if (!AggregateArgs) std::advance(OutputArgBegin, inputs.size()); // Reload the outputs passed in by reference for (unsigned i = 0, e = outputs.size(); i != e; ++i) { Value *Output = 0; if (AggregateArgs) { std::vector Indices; Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i)); GetElementPtrInst *GEP = new GetElementPtrInst(Struct, Indices, "gep_reload_" + outputs[i]->getName(), 0); codeReplacer->getInstList().push_back(GEP); Output = GEP; } else { Output = ReloadOutputs[i]; } LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); codeReplacer->getInstList().push_back(load); std::vector Users(outputs[i]->use_begin(), outputs[i]->use_end()); for (unsigned u = 0, e = Users.size(); u != e; ++u) { Instruction *inst = cast(Users[u]); if (!BlocksToExtract.count(inst->getParent())) inst->replaceUsesOfWith(outputs[i], load); } } // Now we can emit a switch statement using the call as a value. SwitchInst *TheSwitch = new SwitchInst(call, codeReplacer, codeReplacer); // Since there may be multiple exits from the original region, make the new // function return an unsigned, switch on that number. This loop iterates // over all of the blocks in the extracted region, updating any terminator // instructions in the to-be-extracted region that branch to blocks that are // not in the region to be extracted. std::map ExitBlockMap; unsigned switchVal = 0; for (std::set::const_iterator i = BlocksToExtract.begin(), e = BlocksToExtract.end(); i != e; ++i) { TerminatorInst *TI = (*i)->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (!BlocksToExtract.count(TI->getSuccessor(i))) { BasicBlock *OldTarget = TI->getSuccessor(i); // add a new basic block which returns the appropriate value BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; if (!NewTarget) { // If we don't already have an exit stub for this non-extracted // destination, create one now! NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", newFunction); ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal++); ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); // Update the switch instruction. TheSwitch->addCase(brVal, OldTarget); // Restore values just before we exit Function::aiterator OAI = OutputArgBegin; for (unsigned out = 0, e = outputs.size(); out != e; ++out) { // For an invoke, the normal destination is the only one that is // dominated by the result of the invocation BasicBlock *DefBlock = cast(outputs[out])->getParent(); if (InvokeInst *Invoke = dyn_cast(outputs[out])) DefBlock = Invoke->getNormalDest(); if (!DS || DS->dominates(DefBlock, TI->getParent())) if (AggregateArgs) { std::vector Indices; Indices.push_back(Constant::getNullValue(Type::UIntTy)); Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out)); GetElementPtrInst *GEP = new GetElementPtrInst(OAI, Indices, "gep_" + outputs[out]->getName(), NTRet); new StoreInst(outputs[out], GEP, NTRet); } else new StoreInst(outputs[out], OAI, NTRet); // Advance output iterator even if we don't emit a store if (!AggregateArgs) ++OAI; } } // rewrite the original branch instruction with this new target TI->setSuccessor(i, NewTarget); } } // Now that we've done the deed, make the default destination of the switch // instruction be a block with a call to abort() -- since this path should not // be taken, this will abort sooner rather than later. if (TheSwitch->getNumSuccessors() > 1) { Function *container = codeReplacer->getParent(); BasicBlock *abortBB = new BasicBlock("abortBlock", container); std::vector paramTypes; FunctionType *abortTy = FunctionType::get(Type::VoidTy, paramTypes, false); Function *abortFunc = container->getParent()->getOrInsertFunction("abort", abortTy); abortBB->getInstList().push_back(new CallInst(abortFunc)); Function *ParentFunc = TheSwitch->getParent()->getParent(); if (ParentFunc->getReturnType() == Type::VoidTy) new ReturnInst(0, abortBB); else new ReturnInst(Constant::getNullValue(ParentFunc->getReturnType()), abortBB); TheSwitch->setSuccessor(0, abortBB); } else { // There is only 1 successor (the block containing the switch itself), which // means that previously this was the last part of the function, and hence // this should be rewritten as a `ret' // Check if the function should return a value if (TheSwitch->getParent()->getParent()->getReturnType() != Type::VoidTy && TheSwitch->getParent()->getParent()->getReturnType() == TheSwitch->getCondition()->getType()) // return what we have new ReturnInst(TheSwitch->getCondition(), TheSwitch); else // just return new ReturnInst(0, TheSwitch); TheSwitch->getParent()->getInstList().erase(TheSwitch); } } /// ExtractRegion - Removes a loop from a function, replaces it with a call to /// new function. Returns pointer to the new function. /// /// algorithm: /// /// find inputs and outputs for the region /// /// for inputs: add to function as args, map input instr* to arg# /// for outputs: add allocas for scalars, /// add to func as args, map output instr* to arg# /// /// rewrite func to use argument #s instead of instr* /// /// for each scalar output in the function: at every exit, store intermediate /// computed result back into memory. /// Function *CodeExtractor::ExtractCodeRegion(const std::vector &code) { if (!isEligible(code)) return 0; // 1) Find inputs, outputs // 2) Construct new function // * Add allocas for defs, pass as args by reference // * Pass in uses as args // 3) Move code region, add call instr to func // BlocksToExtract.insert(code.begin(), code.end()); Values inputs, outputs; // Assumption: this is a single-entry code region, and the header is the first // block in the region. BasicBlock *header = code[0]; for (unsigned i = 1, e = code.size(); i != e; ++i) for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); PI != E; ++PI) assert(BlocksToExtract.count(*PI) && "No blocks in this region may have entries from outside the region" " except for the first block!"); Function *oldFunction = header->getParent(); // This takes place of the original loop BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); // The new function needs a root node because other nodes can branch to the // head of the loop, and the root cannot have predecessors BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); newFuncRoot->getInstList().push_back(new BranchInst(header)); // Find inputs to, outputs from the code region // // If one of the inputs is coming from a different basic block and it's in a // phi node, we need to rewrite the phi node: // // * All the inputs which involve basic blocks OUTSIDE of this region go into // a NEW phi node that takes care of finding which value really came in. // The result of this phi is passed to the function as an argument. // // * All the other phi values stay. // // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for // blocks moving to a new function. // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass // the values as parameters to the function findInputsOutputs(inputs, outputs, codeReplacer, newFuncRoot); // Step 2: Construct new function based on inputs/outputs, // Add allocas for all defs Function *newFunction = constructFunction(inputs, outputs, code[0], newFuncRoot, codeReplacer, oldFunction, oldFunction->getParent()); emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); moveCodeToFunction(newFunction); // Loop over all of the PHI nodes in the entry block (code[0]), and change any // references to the old incoming edge to be the new incoming edge. for (BasicBlock::iterator I = code[0]->begin(); PHINode *PN = dyn_cast(I); ++I) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (!BlocksToExtract.count(PN->getIncomingBlock(i))) PN->setIncomingBlock(i, newFuncRoot); // Look at all successors of the codeReplacer block. If any of these blocks // had PHI nodes in them, we need to update the "from" block to be the code // replacer, not the original block in the extracted region. std::vector Succs(succ_begin(codeReplacer), succ_end(codeReplacer)); for (unsigned i = 0, e = Succs.size(); i != e; ++i) for (BasicBlock::iterator I = Succs[i]->begin(); PHINode *PN = dyn_cast(I); ++I) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (BlocksToExtract.count(PN->getIncomingBlock(i))) PN->setIncomingBlock(i, codeReplacer); DEBUG(if (verifyFunction(*newFunction)) abort()); return newFunction; } bool CodeExtractor::isEligible(const std::vector &code) { // Deny code region if it contains allocas for (std::vector::const_iterator BB = code.begin(), e=code.end(); BB != e; ++BB) for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); I != Ie; ++I) if (isa(*I)) return false; return true; } /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new /// function /// Function* llvm::ExtractCodeRegion(DominatorSet &DS, const std::vector &code, bool AggregateArgs) { return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); } /// ExtractBasicBlock - slurp a natural loop into a brand new function /// Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); } /// ExtractBasicBlock - slurp a basic block into a brand new function /// Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { std::vector Blocks; Blocks.push_back(BB); return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); }