//===- InlineFunction.cpp - Code to perform function inlining -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements inlining of a function into a call site, resolving // parameters and the return value as appropriate. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Support/CallSite.h" using namespace llvm; bool llvm::InlineFunction(CallInst *CI, CallGraph *CG) { return InlineFunction(CallSite(CI), CG); } bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG) { return InlineFunction(CallSite(II), CG); } /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes and turn unwind /// instructions into branches to the invoke unwind dest. /// /// II is the invoke instruction begin inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); std::vector InvokeDestPHIValues; // If there are PHI nodes in the unwind destination block, we need to // keep track of which values came into them from this invoke, then remove // the entry for this block. BasicBlock *InvokeBlock = II->getParent(); for (BasicBlock::iterator I = InvokeDest->begin(); isa(I); ++I) { PHINode *PN = cast(I); // Save the value to use for this edge. InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock)); } Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to // rewrite. if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) { if (InlinedCodeInfo.ContainsCalls) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){ Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. if (!isa(I)) continue; CallInst *CI = cast(I); // If this is an intrinsic function call, don't convert it to an // invoke. if (CI->getCalledFunction() && CI->getCalledFunction()->getIntrinsicID()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Next, create the new invoke instruction, inserting it at the end // of the old basic block. InvokeInst *II = new InvokeInst(CI->getCalledValue(), Split, InvokeDest, std::vector(CI->op_begin()+1, CI->op_end()), CI->getName(), BB->getTerminator()); II->setCallingConv(CI->getCallingConv()); // Make sure that anything using the call now uses the invoke! CI->replaceAllUsesWith(II); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa(I); ++I, ++i) { PHINode *PN = cast(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } // This basic block is now complete, start scanning the next one. break; } } if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { // An UnwindInst requires special handling when it gets inlined into an // invoke site. Once this happens, we know that the unwind would cause // a control transfer to the invoke exception destination, so we can // transform it into a direct branch to the exception destination. new BranchInst(InvokeDest, UI); // Delete the unwind instruction! UI->getParent()->getInstList().pop_back(); // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa(I); ++I, ++i) { PHINode *PN = cast(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } } } } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); } /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee /// into the caller, update the specified callgraph to reflect the changes we /// made. Note that it's possible that not all code was copied over, so only /// some edges of the callgraph will be remain. static void UpdateCallGraphAfterInlining(const Function *Caller, const Function *Callee, Function::iterator FirstNewBlock, std::map &ValueMap, CallGraph &CG) { // Update the call graph by deleting the edge from Callee to Caller CallGraphNode *CalleeNode = CG[Callee]; CallGraphNode *CallerNode = CG[Caller]; CallerNode->removeCallEdgeTo(CalleeNode); // Since we inlined some uninlined call sites in the callee into the caller, // add edges from the caller to all of the callees of the callee. for (CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); I != E; ++I) { const Instruction *OrigCall = I->first.getInstruction(); std::map::iterator VMI = ValueMap.find(OrigCall); // Only copy the edge if the call was inlined! if (VMI != ValueMap.end() && VMI->second) { // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. if (Instruction *NewCall = dyn_cast(VMI->second)) CallerNode->addCalledFunction(CallSite::get(NewCall), I->second); } } } // InlineFunction - This function inlines the called function into the basic // block of the caller. This returns false if it is not possible to inline this // call. The program is still in a well defined state if this occurs though. // // Note that this only does one level of inlining. For example, if the // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now // exists in the instruction stream. Similiarly this will inline a recursive // function by one level. // bool llvm::InlineFunction(CallSite CS, CallGraph *CG) { Instruction *TheCall = CS.getInstruction(); assert(TheCall->getParent() && TheCall->getParent()->getParent() && "Instruction not in function!"); const Function *CalledFunc = CS.getCalledFunction(); if (CalledFunc == 0 || // Can't inline external function or indirect CalledFunc->isDeclaration() || // call, or call to a vararg function! CalledFunc->getFunctionType()->isVarArg()) return false; // If the call to the callee is a non-tail call, we must clear the 'tail' // flags on any calls that we inline. bool MustClearTailCallFlags = isa(TheCall) && !cast(TheCall)->isTailCall(); BasicBlock *OrigBB = TheCall->getParent(); Function *Caller = OrigBB->getParent(); // Get an iterator to the last basic block in the function, which will have // the new function inlined after it. // Function::iterator LastBlock = &Caller->back(); // Make sure to capture all of the return instructions from the cloned // function. std::vector Returns; ClonedCodeInfo InlinedFunctionInfo; Function::iterator FirstNewBlock; { // Scope to destroy ValueMap after cloning. std::map ValueMap; // Calculate the vector of arguments to pass into the function cloner, which // matches up the formal to the actual argument values. assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) == std::distance(CS.arg_begin(), CS.arg_end()) && "No varargs calls can be inlined!"); CallSite::arg_iterator AI = CS.arg_begin(); for (Function::const_arg_iterator I = CalledFunc->arg_begin(), E = CalledFunc->arg_end(); I != E; ++I, ++AI) ValueMap[I] = *AI; // We want the inliner to prune the code as it copies. We would LOVE to // have no dead or constant instructions leftover after inlining occurs // (which can happen, e.g., because an argument was constant), but we'll be // happy with whatever the cloner can do. CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i", &InlinedFunctionInfo); // Remember the first block that is newly cloned over. FirstNewBlock = LastBlock; ++FirstNewBlock; // Update the callgraph if requested. if (CG) UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap, *CG); } // If there are any alloca instructions in the block that used to be the entry // block for the callee, move them to the entry block of the caller. First // calculate which instruction they should be inserted before. We insert the // instructions at the end of the current alloca list. // { BasicBlock::iterator InsertPoint = Caller->begin()->begin(); for (BasicBlock::iterator I = FirstNewBlock->begin(), E = FirstNewBlock->end(); I != E; ) if (AllocaInst *AI = dyn_cast(I++)) { // If the alloca is now dead, remove it. This often occurs due to code // specialization. if (AI->use_empty()) { AI->eraseFromParent(); continue; } if (isa(AI->getArraySize())) { // Scan for the block of allocas that we can move over, and move them // all at once. while (isa(I) && isa(cast(I)->getArraySize())) ++I; // Transfer all of the allocas over in a block. Using splice means // that they instructions aren't removed from the symbol table, then // reinserted. Caller->front().getInstList().splice(InsertPoint, FirstNewBlock->getInstList(), AI, I); } } } // If the inlined code contained dynamic alloca instructions, wrap the inlined // code with llvm.stacksave/llvm.stackrestore intrinsics. if (InlinedFunctionInfo.ContainsDynamicAllocas) { Module *M = Caller->getParent(); const Type *BytePtr = PointerType::get(Type::Int8Ty); // Get the two intrinsics we care about. Constant *StackSave, *StackRestore; StackSave = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL); StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy, BytePtr, NULL); // If we are preserving the callgraph, add edges to the stacksave/restore // functions for the calls we insert. CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0; if (CG) { // We know that StackSave/StackRestore are Function*'s, because they are // intrinsics which must have the right types. StackSaveCGN = CG->getOrInsertFunction(cast(StackSave)); StackRestoreCGN = CG->getOrInsertFunction(cast(StackRestore)); CallerNode = (*CG)[Caller]; } // Insert the llvm.stacksave. CallInst *SavedPtr = new CallInst(StackSave, "savedstack", FirstNewBlock->begin()); if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN); // Insert a call to llvm.stackrestore before any return instructions in the // inlined function. for (unsigned i = 0, e = Returns.size(); i != e; ++i) { CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]); if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); } // Count the number of StackRestore calls we insert. unsigned NumStackRestores = Returns.size(); // If we are inlining an invoke instruction, insert restores before each // unwind. These unwinds will be rewritten into branches later. if (InlinedFunctionInfo.ContainsUnwinds && isa(TheCall)) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { new CallInst(StackRestore, SavedPtr, "", UI); ++NumStackRestores; } } } // If we are inlining tail call instruction through a call site that isn't // marked 'tail', we must remove the tail marker for any calls in the inlined // code. if (MustClearTailCallFlags && InlinedFunctionInfo.ContainsCalls) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (CallInst *CI = dyn_cast(I)) CI->setTailCall(false); } // If we are inlining for an invoke instruction, we must make sure to rewrite // any inlined 'unwind' instructions into branches to the invoke exception // destination, and call instructions into invoke instructions. if (InvokeInst *II = dyn_cast(TheCall)) HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); // If we cloned in _exactly one_ basic block, and if that block ends in a // return instruction, we splice the body of the inlined callee directly into // the calling basic block. if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { // Move all of the instructions right before the call. OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), FirstNewBlock->begin(), FirstNewBlock->end()); // Remove the cloned basic block. Caller->getBasicBlockList().pop_back(); // If the call site was an invoke instruction, add a branch to the normal // destination. if (InvokeInst *II = dyn_cast(TheCall)) new BranchInst(II->getNormalDest(), TheCall); // If the return instruction returned a value, replace uses of the call with // uses of the returned value. if (!TheCall->use_empty()) TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); // Since we are now done with the Call/Invoke, we can delete it. TheCall->getParent()->getInstList().erase(TheCall); // Since we are now done with the return instruction, delete it also. Returns[0]->getParent()->getInstList().erase(Returns[0]); // We are now done with the inlining. return true; } // Otherwise, we have the normal case, of more than one block to inline or // multiple return sites. // We want to clone the entire callee function into the hole between the // "starter" and "ender" blocks. How we accomplish this depends on whether // this is an invoke instruction or a call instruction. BasicBlock *AfterCallBB; if (InvokeInst *II = dyn_cast(TheCall)) { // Add an unconditional branch to make this look like the CallInst case... BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall); // Split the basic block. This guarantees that no PHI nodes will have to be // updated due to new incoming edges, and make the invoke case more // symmetric to the call case. AfterCallBB = OrigBB->splitBasicBlock(NewBr, CalledFunc->getName()+".exit"); } else { // It's a call // If this is a call instruction, we need to split the basic block that // the call lives in. // AfterCallBB = OrigBB->splitBasicBlock(TheCall, CalledFunc->getName()+".exit"); } // Change the branch that used to go to AfterCallBB to branch to the first // basic block of the inlined function. // TerminatorInst *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); Br->setOperand(0, FirstNewBlock); // Now that the function is correct, make it a little bit nicer. In // particular, move the basic blocks inserted from the end of the function // into the space made by splitting the source basic block. // Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), FirstNewBlock, Caller->end()); // Handle all of the return instructions that we just cloned in, and eliminate // any users of the original call/invoke instruction. if (Returns.size() > 1) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. // PHINode *PHI = 0; if (!TheCall->use_empty()) { PHI = new PHINode(CalledFunc->getReturnType(), TheCall->getName(), AfterCallBB->begin()); // Anything that used the result of the function call should now use the // PHI node as their operand. // TheCall->replaceAllUsesWith(PHI); } // Loop over all of the return instructions, turning them into unconditional // branches to the merge point now, and adding entries to the PHI node as // appropriate. for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; if (PHI) { assert(RI->getReturnValue() && "Ret should have value!"); assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); PHI->addIncoming(RI->getReturnValue(), RI->getParent()); } // Add a branch to the merge point where the PHI node lives if it exists. new BranchInst(AfterCallBB, RI); // Delete the return instruction now RI->getParent()->getInstList().erase(RI); } } else if (!Returns.empty()) { // Otherwise, if there is exactly one return value, just replace anything // using the return value of the call with the computed value. if (!TheCall->use_empty()) TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); // Splice the code from the return block into the block that it will return // to, which contains the code that was after the call. BasicBlock *ReturnBB = Returns[0]->getParent(); AfterCallBB->getInstList().splice(AfterCallBB->begin(), ReturnBB->getInstList()); // Update PHI nodes that use the ReturnBB to use the AfterCallBB. ReturnBB->replaceAllUsesWith(AfterCallBB); // Delete the return instruction now and empty ReturnBB now. Returns[0]->eraseFromParent(); ReturnBB->eraseFromParent(); } else if (!TheCall->use_empty()) { // No returns, but something is using the return value of the call. Just // nuke the result. TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); } // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); // We should always be able to fold the entry block of the function into the // single predecessor of the block... assert(cast(Br)->isUnconditional() && "splitBasicBlock broken!"); BasicBlock *CalleeEntry = cast(Br)->getSuccessor(0); // Splice the code entry block into calling block, right before the // unconditional branch. OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes // Remove the unconditional branch. OrigBB->getInstList().erase(Br); // Now we can remove the CalleeEntry block, which is now empty. Caller->getBasicBlockList().erase(CalleeEntry); return true; }