//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "LeonPasses.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; LEONMachineFunctionPass::LEONMachineFunctionPass(TargetMachine &tm, char &ID) : MachineFunctionPass(ID) {} LEONMachineFunctionPass::LEONMachineFunctionPass(char &ID) : MachineFunctionPass(ID) {} int LEONMachineFunctionPass::GetRegIndexForOperand(MachineInstr &MI, int OperandIndex) { if (MI.getNumOperands() > 0) { if (OperandIndex == LAST_OPERAND) { OperandIndex = MI.getNumOperands() - 1; } if (MI.getNumOperands() > (unsigned)OperandIndex && MI.getOperand(OperandIndex).isReg()) { return (int)MI.getOperand(OperandIndex).getReg(); } } static int NotFoundIndex = -10; // Return a different number each time to avoid any comparisons between the // values returned. NotFoundIndex -= 10; return NotFoundIndex; } // finds a new free FP register // checks also the AllocatedRegisters vector int LEONMachineFunctionPass::getUnusedFPRegister(MachineRegisterInfo &MRI) { for (int RegisterIndex = SP::F0; RegisterIndex <= SP::F31; ++RegisterIndex) { if (!MRI.isPhysRegUsed(RegisterIndex) && !(std::find(UsedRegisters.begin(), UsedRegisters.end(), RegisterIndex) != UsedRegisters.end())) { return RegisterIndex; } } return -1; } //***************************************************************************** //**** InsertNOPLoad pass //***************************************************************************** // This pass fixes the incorrectly working Load instructions that exists for // some earlier versions of the LEON processor line. NOP instructions must // be inserted after the load instruction to ensure that the Load instruction // behaves as expected for these processors. // // This pass inserts a NOP after any LD or LDF instruction. // char InsertNOPLoad::ID = 0; InsertNOPLoad::InsertNOPLoad(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {} bool InsertNOPLoad::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = DebugLoc(); bool Modified = false; for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) { MachineBasicBlock::iterator NMBBI = std::next(MBBI); BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP)); Modified = true; } else if (MI.isInlineAsm()) { // Look for an inline ld or ldf instruction. StringRef AsmString = MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName(); if (AsmString.startswith_lower("ld")) { MachineBasicBlock::iterator NMBBI = std::next(MBBI); BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP)); Modified = true; } } } } return Modified; } //***************************************************************************** //**** FixFSMULD pass //***************************************************************************** // This pass fixes the incorrectly working FSMULD instruction that exists for // some earlier versions of the LEON processor line. // // The pass should convert the FSMULD operands to double precision in scratch // registers, then calculate the result with the FMULD instruction. Therefore, // the pass should replace operations of the form: // fsmuld %f20,%f21,%f8 // with the sequence: // fstod %f20,%f0 // fstod %f21,%f2 // fmuld %f0,%f2,%f8 // char FixFSMULD::ID = 0; FixFSMULD::FixFSMULD(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {} bool FixFSMULD::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = DebugLoc(); bool Modified = false; for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); const int UNASSIGNED_INDEX = -1; int Reg1Index = UNASSIGNED_INDEX; int Reg2Index = UNASSIGNED_INDEX; int Reg3Index = UNASSIGNED_INDEX; if (Opcode == SP::FSMULD && MI.getNumOperands() == 3) { // take the registers from fsmuld %f20,%f21,%f8 Reg1Index = MI.getOperand(0).getReg(); Reg2Index = MI.getOperand(1).getReg(); Reg3Index = MI.getOperand(2).getReg(); } else if (MI.isInlineAsm()) { std::string AsmString( MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName()); std::string FMULSOpCoode("fsmuld"); std::transform(AsmString.begin(), AsmString.end(), AsmString.begin(), ::tolower); if (AsmString.find(FMULSOpCoode) == 0) { // this is an inline FSMULD instruction unsigned StartOp = InlineAsm::MIOp_FirstOperand; // extracts the registers from the inline assembly instruction for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (Reg1Index == UNASSIGNED_INDEX) Reg1Index = MO.getReg(); else if (Reg2Index == UNASSIGNED_INDEX) Reg2Index = MO.getReg(); else if (Reg3Index == UNASSIGNED_INDEX) Reg3Index = MO.getReg(); } if (Reg3Index != UNASSIGNED_INDEX) break; } } } if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX && Reg3Index != UNASSIGNED_INDEX) { clearUsedRegisterList(); MachineBasicBlock::iterator NMBBI = std::next(MBBI); // Whatever Reg3Index is hasn't been used yet, so we need to reserve it. markRegisterUsed(Reg3Index); const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo()); markRegisterUsed(ScratchReg1Index); const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo()); markRegisterUsed(ScratchReg2Index); if (ScratchReg1Index == UNASSIGNED_INDEX || ScratchReg2Index == UNASSIGNED_INDEX) { errs() << "Cannot allocate free scratch registers for the FixFSMULD " "pass." << "\n"; } else { // create fstod %f20,%f0 BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD)) .addReg(ScratchReg1Index) .addReg(Reg1Index); // create fstod %f21,%f2 BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD)) .addReg(ScratchReg2Index) .addReg(Reg2Index); // create fmuld %f0,%f2,%f8 BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD)) .addReg(Reg3Index) .addReg(ScratchReg1Index) .addReg(ScratchReg2Index); MI.eraseFromParent(); MBBI = NMBBI; Modified = true; } } } } return Modified; } //***************************************************************************** //**** ReplaceFMULS pass //***************************************************************************** // This pass fixes the incorrectly working FMULS instruction that exists for // some earlier versions of the LEON processor line. // // This pass converts the FMULS operands to double precision in scratch // registers, then calculates the result with the FMULD instruction. // The pass should replace operations of the form: // fmuls %f20,%f21,%f8 // with the sequence: // fstod %f20,%f0 // fstod %f21,%f2 // fmuld %f0,%f2,%f8 // char ReplaceFMULS::ID = 0; ReplaceFMULS::ReplaceFMULS(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {} bool ReplaceFMULS::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = DebugLoc(); bool Modified = false; for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); const int UNASSIGNED_INDEX = -1; int Reg1Index = UNASSIGNED_INDEX; int Reg2Index = UNASSIGNED_INDEX; int Reg3Index = UNASSIGNED_INDEX; if (Opcode == SP::FMULS && MI.getNumOperands() == 3) { // take the registers from fmuls %f20,%f21,%f8 Reg1Index = MI.getOperand(0).getReg(); Reg2Index = MI.getOperand(1).getReg(); Reg3Index = MI.getOperand(2).getReg(); } else if (MI.isInlineAsm()) { std::string AsmString( MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName()); std::string FMULSOpCoode("fmuls"); std::transform(AsmString.begin(), AsmString.end(), AsmString.begin(), ::tolower); if (AsmString.find(FMULSOpCoode) == 0) { // this is an inline FMULS instruction unsigned StartOp = InlineAsm::MIOp_FirstOperand; // extracts the registers from the inline assembly instruction for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (Reg1Index == UNASSIGNED_INDEX) Reg1Index = MO.getReg(); else if (Reg2Index == UNASSIGNED_INDEX) Reg2Index = MO.getReg(); else if (Reg3Index == UNASSIGNED_INDEX) Reg3Index = MO.getReg(); } if (Reg3Index != UNASSIGNED_INDEX) break; } } } if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX && Reg3Index != UNASSIGNED_INDEX) { clearUsedRegisterList(); MachineBasicBlock::iterator NMBBI = std::next(MBBI); // Whatever Reg3Index is hasn't been used yet, so we need to reserve it. markRegisterUsed(Reg3Index); const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo()); markRegisterUsed(ScratchReg1Index); const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo()); markRegisterUsed(ScratchReg2Index); if (ScratchReg1Index == UNASSIGNED_INDEX || ScratchReg2Index == UNASSIGNED_INDEX) { errs() << "Cannot allocate free scratch registers for the " "ReplaceFMULS pass." << "\n"; } else { // create fstod %f20,%f0 BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD)) .addReg(ScratchReg1Index) .addReg(Reg1Index); // create fstod %f21,%f2 BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD)) .addReg(ScratchReg2Index) .addReg(Reg2Index); // create fmuld %f0,%f2,%f8 BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD)) .addReg(Reg3Index) .addReg(ScratchReg1Index) .addReg(ScratchReg2Index); MI.eraseFromParent(); MBBI = NMBBI; Modified = true; } } } } return Modified; } //***************************************************************************** //**** FixAllFDIVSQRT pass //***************************************************************************** // This pass fixes the incorrectly working FDIVx and FSQRTx instructions that // exist for some earlier versions of the LEON processor line. Five NOP // instructions need to be inserted after these instructions to ensure the // correct result is placed in the destination registers before they are used. // // This pass implements two fixes: // 1) fixing the FSQRTS and FSQRTD instructions. // 2) fixing the FDIVS and FDIVD instructions. // // FSQRTS and FDIVS are converted to FDIVD and FSQRTD respectively earlier in // the pipeline when this option is enabled, so this pass needs only to deal // with the changes that still need implementing for the "double" versions // of these instructions. // char FixAllFDIVSQRT::ID = 0; FixAllFDIVSQRT::FixAllFDIVSQRT(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {} bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = DebugLoc(); bool Modified = false; for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) { MachineInstr &MI = *MBBI; unsigned Opcode = MI.getOpcode(); if (MI.isInlineAsm()) { std::string AsmString( MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName()); std::string FSQRTDOpCode("fsqrtd"); std::string FDIVDOpCode("fdivd"); std::transform(AsmString.begin(), AsmString.end(), AsmString.begin(), ::tolower); if (AsmString.find(FSQRTDOpCode) == 0) { // this is an inline fsqrts instruction Opcode = SP::FSQRTD; } else if (AsmString.find(FDIVDOpCode) == 0) { // this is an inline fsqrts instruction Opcode = SP::FDIVD; } } // Note: FDIVS and FSQRTS cannot be generated when this erratum fix is // switched on so we don't need to check for them here. They will // already have been converted to FSQRTD or FDIVD earlier in the // pipeline. if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) { for (int InsertedCount = 0; InsertedCount < 5; InsertedCount++) BuildMI(MBB, MBBI, DL, TII.get(SP::NOP)); MachineBasicBlock::iterator NMBBI = std::next(MBBI); for (int InsertedCount = 0; InsertedCount < 28; InsertedCount++) BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP)); Modified = true; } } } return Modified; }