//===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" #include using namespace llvm; namespace { std::unique_ptr parseAssembly(LLVMContext &Context, const char *Assembly) { SMDiagnostic Error; std::unique_ptr M = parseAssemblyString(Assembly, Error, Context); std::string ErrMsg; raw_string_ostream OS(ErrMsg); Error.print("", OS); // A failure here means that the test itself is buggy. if (!M) report_fatal_error(OS.str().c_str()); return M; } /* IR forming a call graph with a diamond of triangle-shaped SCCs: d1 / \ d3--d2 / \ b1 c1 / \ / \ b3--b2 c3--c2 \ / a1 / \ a3--a2 All call edges go up between SCCs, and clockwise around the SCC. */ static const char DiamondOfTriangles[] = "define void @a1() {\n" "entry:\n" " call void @a2()\n" " call void @b2()\n" " call void @c3()\n" " ret void\n" "}\n" "define void @a2() {\n" "entry:\n" " call void @a3()\n" " ret void\n" "}\n" "define void @a3() {\n" "entry:\n" " call void @a1()\n" " ret void\n" "}\n" "define void @b1() {\n" "entry:\n" " call void @b2()\n" " call void @d3()\n" " ret void\n" "}\n" "define void @b2() {\n" "entry:\n" " call void @b3()\n" " ret void\n" "}\n" "define void @b3() {\n" "entry:\n" " call void @b1()\n" " ret void\n" "}\n" "define void @c1() {\n" "entry:\n" " call void @c2()\n" " call void @d2()\n" " ret void\n" "}\n" "define void @c2() {\n" "entry:\n" " call void @c3()\n" " ret void\n" "}\n" "define void @c3() {\n" "entry:\n" " call void @c1()\n" " ret void\n" "}\n" "define void @d1() {\n" "entry:\n" " call void @d2()\n" " ret void\n" "}\n" "define void @d2() {\n" "entry:\n" " call void @d3()\n" " ret void\n" "}\n" "define void @d3() {\n" "entry:\n" " call void @d1()\n" " ret void\n" "}\n"; /* IR forming a reference graph with a diamond of triangle-shaped RefSCCs d1 / \ d3--d2 / \ b1 c1 / \ / \ b3--b2 c3--c2 \ / a1 / \ a3--a2 All call edges go up between RefSCCs, and clockwise around the RefSCC. */ static const char DiamondOfTrianglesRefGraph[] = "define void @a1() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @a2, void ()** %a\n" " store void ()* @b2, void ()** %a\n" " store void ()* @c3, void ()** %a\n" " ret void\n" "}\n" "define void @a2() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @a3, void ()** %a\n" " ret void\n" "}\n" "define void @a3() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @a1, void ()** %a\n" " ret void\n" "}\n" "define void @b1() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @b2, void ()** %a\n" " store void ()* @d3, void ()** %a\n" " ret void\n" "}\n" "define void @b2() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @b3, void ()** %a\n" " ret void\n" "}\n" "define void @b3() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @b1, void ()** %a\n" " ret void\n" "}\n" "define void @c1() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @c2, void ()** %a\n" " store void ()* @d2, void ()** %a\n" " ret void\n" "}\n" "define void @c2() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @c3, void ()** %a\n" " ret void\n" "}\n" "define void @c3() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @c1, void ()** %a\n" " ret void\n" "}\n" "define void @d1() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @d2, void ()** %a\n" " ret void\n" "}\n" "define void @d2() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @d3, void ()** %a\n" " ret void\n" "}\n" "define void @d3() {\n" "entry:\n" " %a = alloca void ()*\n" " store void ()* @d1, void ()** %a\n" " ret void\n" "}\n"; static LazyCallGraph buildCG(Module &M) { TargetLibraryInfoImpl TLII(Triple(M.getTargetTriple())); TargetLibraryInfo TLI(TLII); LazyCallGraph CG(M, TLI); return CG; } TEST(LazyCallGraphTest, BasicGraphFormation) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, DiamondOfTriangles); LazyCallGraph CG = buildCG(*M); // The order of the entry nodes should be stable w.r.t. the source order of // the IR, and everything in our module is an entry node, so just directly // build variables for each node. auto I = CG.begin(); LazyCallGraph::Node &A1 = (I++)->getNode(); EXPECT_EQ("a1", A1.getFunction().getName()); LazyCallGraph::Node &A2 = (I++)->getNode(); EXPECT_EQ("a2", A2.getFunction().getName()); LazyCallGraph::Node &A3 = (I++)->getNode(); EXPECT_EQ("a3", A3.getFunction().getName()); LazyCallGraph::Node &B1 = (I++)->getNode(); EXPECT_EQ("b1", B1.getFunction().getName()); LazyCallGraph::Node &B2 = (I++)->getNode(); EXPECT_EQ("b2", B2.getFunction().getName()); LazyCallGraph::Node &B3 = (I++)->getNode(); EXPECT_EQ("b3", B3.getFunction().getName()); LazyCallGraph::Node &C1 = (I++)->getNode(); EXPECT_EQ("c1", C1.getFunction().getName()); LazyCallGraph::Node &C2 = (I++)->getNode(); EXPECT_EQ("c2", C2.getFunction().getName()); LazyCallGraph::Node &C3 = (I++)->getNode(); EXPECT_EQ("c3", C3.getFunction().getName()); LazyCallGraph::Node &D1 = (I++)->getNode(); EXPECT_EQ("d1", D1.getFunction().getName()); LazyCallGraph::Node &D2 = (I++)->getNode(); EXPECT_EQ("d2", D2.getFunction().getName()); LazyCallGraph::Node &D3 = (I++)->getNode(); EXPECT_EQ("d3", D3.getFunction().getName()); EXPECT_EQ(CG.end(), I); // Build vectors and sort them for the rest of the assertions to make them // independent of order. std::vector Nodes; for (LazyCallGraph::Edge &E : A1.populate()) Nodes.push_back(E.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ("a2", Nodes[0]); EXPECT_EQ("b2", Nodes[1]); EXPECT_EQ("c3", Nodes[2]); Nodes.clear(); A2.populate(); EXPECT_EQ(A2->end(), std::next(A2->begin())); EXPECT_EQ("a3", A2->begin()->getFunction().getName()); A3.populate(); EXPECT_EQ(A3->end(), std::next(A3->begin())); EXPECT_EQ("a1", A3->begin()->getFunction().getName()); for (LazyCallGraph::Edge &E : B1.populate()) Nodes.push_back(E.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ("b2", Nodes[0]); EXPECT_EQ("d3", Nodes[1]); Nodes.clear(); B2.populate(); EXPECT_EQ(B2->end(), std::next(B2->begin())); EXPECT_EQ("b3", B2->begin()->getFunction().getName()); B3.populate(); EXPECT_EQ(B3->end(), std::next(B3->begin())); EXPECT_EQ("b1", B3->begin()->getFunction().getName()); for (LazyCallGraph::Edge &E : C1.populate()) Nodes.push_back(E.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ("c2", Nodes[0]); EXPECT_EQ("d2", Nodes[1]); Nodes.clear(); C2.populate(); EXPECT_EQ(C2->end(), std::next(C2->begin())); EXPECT_EQ("c3", C2->begin()->getFunction().getName()); C3.populate(); EXPECT_EQ(C3->end(), std::next(C3->begin())); EXPECT_EQ("c1", C3->begin()->getFunction().getName()); D1.populate(); EXPECT_EQ(D1->end(), std::next(D1->begin())); EXPECT_EQ("d2", D1->begin()->getFunction().getName()); D2.populate(); EXPECT_EQ(D2->end(), std::next(D2->begin())); EXPECT_EQ("d3", D2->begin()->getFunction().getName()); D3.populate(); EXPECT_EQ(D3->end(), std::next(D3->begin())); EXPECT_EQ("d1", D3->begin()->getFunction().getName()); // Now lets look at the RefSCCs and SCCs. CG.buildRefSCCs(); auto J = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &D = *J++; ASSERT_EQ(1, D.size()); for (LazyCallGraph::Node &N : *D.begin()) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("d1", Nodes[0]); EXPECT_EQ("d2", Nodes[1]); EXPECT_EQ("d3", Nodes[2]); Nodes.clear(); EXPECT_FALSE(D.isParentOf(D)); EXPECT_FALSE(D.isChildOf(D)); EXPECT_FALSE(D.isAncestorOf(D)); EXPECT_FALSE(D.isDescendantOf(D)); EXPECT_EQ(&D, &*CG.postorder_ref_scc_begin()); LazyCallGraph::RefSCC &C = *J++; ASSERT_EQ(1, C.size()); for (LazyCallGraph::Node &N : *C.begin()) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("c1", Nodes[0]); EXPECT_EQ("c2", Nodes[1]); EXPECT_EQ("c3", Nodes[2]); Nodes.clear(); EXPECT_TRUE(C.isParentOf(D)); EXPECT_FALSE(C.isChildOf(D)); EXPECT_TRUE(C.isAncestorOf(D)); EXPECT_FALSE(C.isDescendantOf(D)); EXPECT_EQ(&C, &*std::next(CG.postorder_ref_scc_begin())); LazyCallGraph::RefSCC &B = *J++; ASSERT_EQ(1, B.size()); for (LazyCallGraph::Node &N : *B.begin()) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("b1", Nodes[0]); EXPECT_EQ("b2", Nodes[1]); EXPECT_EQ("b3", Nodes[2]); Nodes.clear(); EXPECT_TRUE(B.isParentOf(D)); EXPECT_FALSE(B.isChildOf(D)); EXPECT_TRUE(B.isAncestorOf(D)); EXPECT_FALSE(B.isDescendantOf(D)); EXPECT_FALSE(B.isAncestorOf(C)); EXPECT_FALSE(C.isAncestorOf(B)); EXPECT_EQ(&B, &*std::next(CG.postorder_ref_scc_begin(), 2)); LazyCallGraph::RefSCC &A = *J++; ASSERT_EQ(1, A.size()); for (LazyCallGraph::Node &N : *A.begin()) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("a1", Nodes[0]); EXPECT_EQ("a2", Nodes[1]); EXPECT_EQ("a3", Nodes[2]); Nodes.clear(); EXPECT_TRUE(A.isParentOf(B)); EXPECT_TRUE(A.isParentOf(C)); EXPECT_FALSE(A.isParentOf(D)); EXPECT_TRUE(A.isAncestorOf(B)); EXPECT_TRUE(A.isAncestorOf(C)); EXPECT_TRUE(A.isAncestorOf(D)); EXPECT_EQ(&A, &*std::next(CG.postorder_ref_scc_begin(), 3)); EXPECT_EQ(CG.postorder_ref_scc_end(), J); EXPECT_EQ(J, std::next(CG.postorder_ref_scc_begin(), 4)); } static Function &lookupFunction(Module &M, StringRef Name) { for (Function &F : M) if (F.getName() == Name) return F; report_fatal_error("Couldn't find function!"); } TEST(LazyCallGraphTest, BasicGraphMutation) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a")); LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b")); A.populate(); EXPECT_EQ(2, std::distance(A->begin(), A->end())); B.populate(); EXPECT_EQ(0, std::distance(B->begin(), B->end())); LazyCallGraph::Node &C = CG.get(lookupFunction(*M, "c")); C.populate(); CG.insertEdge(B, C, LazyCallGraph::Edge::Call); EXPECT_EQ(1, std::distance(B->begin(), B->end())); EXPECT_EQ(0, std::distance(C->begin(), C->end())); CG.insertEdge(C, B, LazyCallGraph::Edge::Call); EXPECT_EQ(1, std::distance(C->begin(), C->end())); EXPECT_EQ(&B, &C->begin()->getNode()); CG.insertEdge(C, C, LazyCallGraph::Edge::Call); EXPECT_EQ(2, std::distance(C->begin(), C->end())); EXPECT_EQ(&B, &C->begin()->getNode()); EXPECT_EQ(&C, &std::next(C->begin())->getNode()); CG.removeEdge(C, B); EXPECT_EQ(1, std::distance(C->begin(), C->end())); EXPECT_EQ(&C, &C->begin()->getNode()); CG.removeEdge(C, C); EXPECT_EQ(0, std::distance(C->begin(), C->end())); CG.removeEdge(B, C); EXPECT_EQ(0, std::distance(B->begin(), B->end())); } TEST(LazyCallGraphTest, InnerSCCFormation) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, DiamondOfTriangles); LazyCallGraph CG = buildCG(*M); // Now mutate the graph to connect every node into a single RefSCC to ensure // that our inner SCC formation handles the rest. LazyCallGraph::Node &D1 = CG.get(lookupFunction(*M, "d1")); LazyCallGraph::Node &A1 = CG.get(lookupFunction(*M, "a1")); A1.populate(); D1.populate(); CG.insertEdge(D1, A1, LazyCallGraph::Edge::Ref); // Build vectors and sort them for the rest of the assertions to make them // independent of order. std::vector Nodes; // We should build a single RefSCC for the entire graph. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); // Now walk the four SCCs which should be in post-order. auto J = RC.begin(); LazyCallGraph::SCC &D = *J++; for (LazyCallGraph::Node &N : D) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("d1", Nodes[0]); EXPECT_EQ("d2", Nodes[1]); EXPECT_EQ("d3", Nodes[2]); Nodes.clear(); LazyCallGraph::SCC &B = *J++; for (LazyCallGraph::Node &N : B) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("b1", Nodes[0]); EXPECT_EQ("b2", Nodes[1]); EXPECT_EQ("b3", Nodes[2]); Nodes.clear(); LazyCallGraph::SCC &C = *J++; for (LazyCallGraph::Node &N : C) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("c1", Nodes[0]); EXPECT_EQ("c2", Nodes[1]); EXPECT_EQ("c3", Nodes[2]); Nodes.clear(); LazyCallGraph::SCC &A = *J++; for (LazyCallGraph::Node &N : A) Nodes.push_back(N.getFunction().getName()); llvm::sort(Nodes); EXPECT_EQ(3u, Nodes.size()); EXPECT_EQ("a1", Nodes[0]); EXPECT_EQ("a2", Nodes[1]); EXPECT_EQ("a3", Nodes[2]); Nodes.clear(); EXPECT_EQ(RC.end(), J); } TEST(LazyCallGraphTest, MultiArmSCC) { LLVMContext Context; // Two interlocking cycles. The really useful thing about this SCC is that it // will require Tarjan's DFS to backtrack and finish processing all of the // children of each node in the SCC. Since this involves call edges, both // Tarjan implementations will have to successfully navigate the structure. std::unique_ptr M = parseAssembly(Context, "define void @f1() {\n" "entry:\n" " call void @f2()\n" " call void @f4()\n" " ret void\n" "}\n" "define void @f2() {\n" "entry:\n" " call void @f3()\n" " ret void\n" "}\n" "define void @f3() {\n" "entry:\n" " call void @f1()\n" " ret void\n" "}\n" "define void @f4() {\n" "entry:\n" " call void @f5()\n" " ret void\n" "}\n" "define void @f5() {\n" "entry:\n" " call void @f1()\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); LazyCallGraph::Node &N1 = *CG.lookup(lookupFunction(*M, "f1")); LazyCallGraph::Node &N2 = *CG.lookup(lookupFunction(*M, "f2")); LazyCallGraph::Node &N3 = *CG.lookup(lookupFunction(*M, "f3")); LazyCallGraph::Node &N4 = *CG.lookup(lookupFunction(*M, "f4")); LazyCallGraph::Node &N5 = *CG.lookup(lookupFunction(*M, "f4")); EXPECT_EQ(&RC, CG.lookupRefSCC(N1)); EXPECT_EQ(&RC, CG.lookupRefSCC(N2)); EXPECT_EQ(&RC, CG.lookupRefSCC(N3)); EXPECT_EQ(&RC, CG.lookupRefSCC(N4)); EXPECT_EQ(&RC, CG.lookupRefSCC(N5)); ASSERT_EQ(1, RC.size()); LazyCallGraph::SCC &C = *RC.begin(); EXPECT_EQ(&C, CG.lookupSCC(N1)); EXPECT_EQ(&C, CG.lookupSCC(N2)); EXPECT_EQ(&C, CG.lookupSCC(N3)); EXPECT_EQ(&C, CG.lookupSCC(N4)); EXPECT_EQ(&C, CG.lookupSCC(N5)); } TEST(LazyCallGraphTest, OutgoingEdgeMutation) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @d()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @d()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) dbgs() << "Formed RefSCC: " << RC << "\n"; LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &BC = *CG.lookupSCC(B); LazyCallGraph::SCC &CC = *CG.lookupSCC(C); LazyCallGraph::SCC &DC = *CG.lookupSCC(D); LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); EXPECT_TRUE(ARC.isParentOf(BRC)); EXPECT_TRUE(AC.isParentOf(BC)); EXPECT_TRUE(ARC.isParentOf(CRC)); EXPECT_TRUE(AC.isParentOf(CC)); EXPECT_FALSE(ARC.isParentOf(DRC)); EXPECT_FALSE(AC.isParentOf(DC)); EXPECT_TRUE(ARC.isAncestorOf(DRC)); EXPECT_TRUE(AC.isAncestorOf(DC)); EXPECT_FALSE(DRC.isChildOf(ARC)); EXPECT_FALSE(DC.isChildOf(AC)); EXPECT_TRUE(DRC.isDescendantOf(ARC)); EXPECT_TRUE(DC.isDescendantOf(AC)); EXPECT_TRUE(DRC.isChildOf(BRC)); EXPECT_TRUE(DC.isChildOf(BC)); EXPECT_TRUE(DRC.isChildOf(CRC)); EXPECT_TRUE(DC.isChildOf(CC)); EXPECT_EQ(2, std::distance(A->begin(), A->end())); ARC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call); EXPECT_EQ(3, std::distance(A->begin(), A->end())); const LazyCallGraph::Edge &NewE = (*A)[D]; EXPECT_TRUE(NewE); EXPECT_TRUE(NewE.isCall()); EXPECT_EQ(&D, &NewE.getNode()); // Only the parent and child tests sholud have changed. The rest of the graph // remains the same. EXPECT_TRUE(ARC.isParentOf(DRC)); EXPECT_TRUE(AC.isParentOf(DC)); EXPECT_TRUE(ARC.isAncestorOf(DRC)); EXPECT_TRUE(AC.isAncestorOf(DC)); EXPECT_TRUE(DRC.isChildOf(ARC)); EXPECT_TRUE(DC.isChildOf(AC)); EXPECT_TRUE(DRC.isDescendantOf(ARC)); EXPECT_TRUE(DC.isDescendantOf(AC)); EXPECT_EQ(&AC, CG.lookupSCC(A)); EXPECT_EQ(&BC, CG.lookupSCC(B)); EXPECT_EQ(&CC, CG.lookupSCC(C)); EXPECT_EQ(&DC, CG.lookupSCC(D)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); ARC.switchOutgoingEdgeToRef(A, D); EXPECT_FALSE(NewE.isCall()); // Verify the reference graph remains the same but the SCC graph is updated. EXPECT_TRUE(ARC.isParentOf(DRC)); EXPECT_FALSE(AC.isParentOf(DC)); EXPECT_TRUE(ARC.isAncestorOf(DRC)); EXPECT_TRUE(AC.isAncestorOf(DC)); EXPECT_TRUE(DRC.isChildOf(ARC)); EXPECT_FALSE(DC.isChildOf(AC)); EXPECT_TRUE(DRC.isDescendantOf(ARC)); EXPECT_TRUE(DC.isDescendantOf(AC)); EXPECT_EQ(&AC, CG.lookupSCC(A)); EXPECT_EQ(&BC, CG.lookupSCC(B)); EXPECT_EQ(&CC, CG.lookupSCC(C)); EXPECT_EQ(&DC, CG.lookupSCC(D)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); ARC.switchOutgoingEdgeToCall(A, D); EXPECT_TRUE(NewE.isCall()); // Verify the reference graph remains the same but the SCC graph is updated. EXPECT_TRUE(ARC.isParentOf(DRC)); EXPECT_TRUE(AC.isParentOf(DC)); EXPECT_TRUE(ARC.isAncestorOf(DRC)); EXPECT_TRUE(AC.isAncestorOf(DC)); EXPECT_TRUE(DRC.isChildOf(ARC)); EXPECT_TRUE(DC.isChildOf(AC)); EXPECT_TRUE(DRC.isDescendantOf(ARC)); EXPECT_TRUE(DC.isDescendantOf(AC)); EXPECT_EQ(&AC, CG.lookupSCC(A)); EXPECT_EQ(&BC, CG.lookupSCC(B)); EXPECT_EQ(&CC, CG.lookupSCC(C)); EXPECT_EQ(&DC, CG.lookupSCC(D)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); ARC.removeOutgoingEdge(A, D); EXPECT_EQ(2, std::distance(A->begin(), A->end())); // Now the parent and child tests fail again but the rest remains the same. EXPECT_FALSE(ARC.isParentOf(DRC)); EXPECT_FALSE(AC.isParentOf(DC)); EXPECT_TRUE(ARC.isAncestorOf(DRC)); EXPECT_TRUE(AC.isAncestorOf(DC)); EXPECT_FALSE(DRC.isChildOf(ARC)); EXPECT_FALSE(DC.isChildOf(AC)); EXPECT_TRUE(DRC.isDescendantOf(ARC)); EXPECT_TRUE(DC.isDescendantOf(AC)); EXPECT_EQ(&AC, CG.lookupSCC(A)); EXPECT_EQ(&BC, CG.lookupSCC(B)); EXPECT_EQ(&CC, CG.lookupSCC(C)); EXPECT_EQ(&DC, CG.lookupSCC(D)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C)); EXPECT_EQ(&DRC, CG.lookupRefSCC(D)); } TEST(LazyCallGraphTest, IncomingEdgeInsertion) { LLVMContext Context; // We want to ensure we can add edges even across complex diamond graphs, so // we use the diamond of triangles graph defined above. The ascii diagram is // repeated here for easy reference. // // d1 | // / \ | // d3--d2 | // / \ | // b1 c1 | // / \ / \ | // b3--b2 c3--c2 | // \ / | // a1 | // / \ | // a3--a2 | // std::unique_ptr M = parseAssembly(Context, DiamondOfTriangles); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) dbgs() << "Formed RefSCC: " << RC << "\n"; LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); // Add an edge to make the graph: // // d1 | // / \ | // d3--d2---. | // / \ | | // b1 c1 | | // / \ / \ / | // b3--b2 c3--c2 | // \ / | // a1 | // / \ | // a3--a2 | auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2); // Make sure we connected the nodes. for (LazyCallGraph::Edge E : *D2) { if (&E.getNode() == &D3) continue; EXPECT_EQ(&C2, &E.getNode()); } // And marked the D ref-SCC as no longer valid. EXPECT_EQ(1u, MergedRCs.size()); EXPECT_EQ(&DRC, MergedRCs[0]); // Make sure we have the correct nodes in the SCC sets. EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); EXPECT_EQ(&CRC, CG.lookupRefSCC(D1)); EXPECT_EQ(&CRC, CG.lookupRefSCC(D2)); EXPECT_EQ(&CRC, CG.lookupRefSCC(D3)); // And that ancestry tests have been updated. EXPECT_TRUE(ARC.isParentOf(CRC)); EXPECT_TRUE(BRC.isParentOf(CRC)); // And verify the post-order walk reflects the updated structure. auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); ASSERT_NE(I, E); EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; ASSERT_NE(++I, E); EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; ASSERT_NE(++I, E); EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; EXPECT_EQ(++I, E); } TEST(LazyCallGraphTest, IncomingEdgeInsertionRefGraph) { LLVMContext Context; // Another variation of the above test but with all the edges switched to // references rather than calls. std::unique_ptr M = parseAssembly(Context, DiamondOfTrianglesRefGraph); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) dbgs() << "Formed RefSCC: " << RC << "\n"; LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); // Add an edge to make the graph: // // d1 | // / \ | // d3--d2---. | // / \ | | // b1 c1 | | // / \ / \ / | // b3--b2 c3--c2 | // \ / | // a1 | // / \ | // a3--a2 | auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2); // Make sure we connected the nodes. for (LazyCallGraph::Edge E : *D2) { if (&E.getNode() == &D3) continue; EXPECT_EQ(&C2, &E.getNode()); } // And marked the D ref-SCC as no longer valid. EXPECT_EQ(1u, MergedRCs.size()); EXPECT_EQ(&DRC, MergedRCs[0]); // Make sure we have the correct nodes in the SCC sets. EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); EXPECT_EQ(&CRC, CG.lookupRefSCC(D1)); EXPECT_EQ(&CRC, CG.lookupRefSCC(D2)); EXPECT_EQ(&CRC, CG.lookupRefSCC(D3)); // And that ancestry tests have been updated. EXPECT_TRUE(ARC.isParentOf(CRC)); EXPECT_TRUE(BRC.isParentOf(CRC)); // And verify the post-order walk reflects the updated structure. auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); ASSERT_NE(I, E); EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; ASSERT_NE(++I, E); EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; ASSERT_NE(++I, E); EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; EXPECT_EQ(++I, E); } TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeCallCycle) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @b()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @d()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) dbgs() << "Formed RefSCC: " << RC << "\n"; LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &BC = *CG.lookupSCC(B); LazyCallGraph::SCC &CC = *CG.lookupSCC(C); LazyCallGraph::SCC &DC = *CG.lookupSCC(D); LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); // Connect the top to the bottom forming a large RefSCC made up mostly of calls. auto MergedRCs = ARC.insertIncomingRefEdge(D, A); // Make sure we connected the nodes. EXPECT_NE(D->begin(), D->end()); EXPECT_EQ(&A, &D->begin()->getNode()); // Check that we have the dead RCs, but ignore the order. EXPECT_EQ(3u, MergedRCs.size()); EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end()); EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end()); EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end()); // Make sure the nodes point to the right place now. EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); EXPECT_EQ(&ARC, CG.lookupRefSCC(B)); EXPECT_EQ(&ARC, CG.lookupRefSCC(C)); EXPECT_EQ(&ARC, CG.lookupRefSCC(D)); // Check that the SCCs are in postorder. EXPECT_EQ(4, ARC.size()); EXPECT_EQ(&DC, &ARC[0]); EXPECT_EQ(&CC, &ARC[1]); EXPECT_EQ(&BC, &ARC[2]); EXPECT_EQ(&AC, &ARC[3]); // And verify the post-order walk reflects the updated structure. auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); ASSERT_NE(I, E); EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; EXPECT_EQ(++I, E); } TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeRefCycle) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " %p = alloca void ()*\n" " store void ()* @b, void ()** %p\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " %p = alloca void ()*\n" " store void ()* @c, void ()** %p\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " %p = alloca void ()*\n" " store void ()* @d, void ()** %p\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) dbgs() << "Formed RefSCC: " << RC << "\n"; LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A); LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B); LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C); LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D); // Connect the top to the bottom forming a large RefSCC made up just of // references. auto MergedRCs = ARC.insertIncomingRefEdge(D, A); // Make sure we connected the nodes. EXPECT_NE(D->begin(), D->end()); EXPECT_EQ(&A, &D->begin()->getNode()); // Check that we have the dead RCs, but ignore the order. EXPECT_EQ(3u, MergedRCs.size()); EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end()); EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end()); EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end()); // Make sure the nodes point to the right place now. EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); EXPECT_EQ(&ARC, CG.lookupRefSCC(B)); EXPECT_EQ(&ARC, CG.lookupRefSCC(C)); EXPECT_EQ(&ARC, CG.lookupRefSCC(D)); // And verify the post-order walk reflects the updated structure. auto I = CG.postorder_ref_scc_begin(), End = CG.postorder_ref_scc_end(); ASSERT_NE(I, End); EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; EXPECT_EQ(++I, End); } TEST(LazyCallGraphTest, InlineAndDeleteFunction) { LLVMContext Context; // We want to ensure we can delete nodes from relatively complex graphs and // so use the diamond of triangles graph defined above. // // The ascii diagram is repeated here for easy reference. // // d1 | // / \ | // d3--d2 | // / \ | // b1 c1 | // / \ / \ | // b3--b2 c3--c2 | // \ / | // a1 | // / \ | // a3--a2 | // std::unique_ptr M = parseAssembly(Context, DiamondOfTriangles); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) dbgs() << "Formed RefSCC: " << RC << "\n"; LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1")); LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2")); LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3")); LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1")); LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2")); LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3")); LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1); LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1); LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1); LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1); ASSERT_EQ(&ARC, CG.lookupRefSCC(A2)); ASSERT_EQ(&ARC, CG.lookupRefSCC(A3)); ASSERT_EQ(&BRC, CG.lookupRefSCC(B2)); ASSERT_EQ(&BRC, CG.lookupRefSCC(B3)); ASSERT_EQ(&CRC, CG.lookupRefSCC(C2)); ASSERT_EQ(&CRC, CG.lookupRefSCC(C3)); ASSERT_EQ(&DRC, CG.lookupRefSCC(D2)); ASSERT_EQ(&DRC, CG.lookupRefSCC(D3)); ASSERT_EQ(1, std::distance(D2->begin(), D2->end())); // Delete d2 from the graph, as if it had been inlined. // // d1 | // / / | // d3--. | // / \ | // b1 c1 | // / \ / \ | // b3--b2 c3--c2 | // \ / | // a1 | // / \ | // a3--a2 | Function &D2F = D2.getFunction(); CallInst *C1Call = nullptr, *D1Call = nullptr; for (User *U : D2F.users()) { CallInst *CI = dyn_cast(U); ASSERT_TRUE(CI) << "Expected a call: " << *U; if (CI->getParent()->getParent() == &C1.getFunction()) { ASSERT_EQ(nullptr, C1Call) << "Found too many C1 calls: " << *CI; C1Call = CI; } else if (CI->getParent()->getParent() == &D1.getFunction()) { ASSERT_EQ(nullptr, D1Call) << "Found too many D1 calls: " << *CI; D1Call = CI; } else { FAIL() << "Found an unexpected call instruction: " << *CI; } } ASSERT_NE(C1Call, nullptr); ASSERT_NE(D1Call, nullptr); ASSERT_EQ(&D2F, C1Call->getCalledFunction()); ASSERT_EQ(&D2F, D1Call->getCalledFunction()); C1Call->setCalledFunction(&D3.getFunction()); D1Call->setCalledFunction(&D3.getFunction()); ASSERT_EQ(0u, D2F.getNumUses()); // Insert new edges first. CRC.insertTrivialCallEdge(C1, D3); DRC.insertTrivialCallEdge(D1, D3); // Then remove the old ones. LazyCallGraph::SCC &DC = *CG.lookupSCC(D2); auto NewCs = DRC.switchInternalEdgeToRef(D1, D2); EXPECT_EQ(&DC, CG.lookupSCC(D2)); EXPECT_EQ(NewCs.end(), std::next(NewCs.begin())); LazyCallGraph::SCC &NewDC = *NewCs.begin(); EXPECT_EQ(&NewDC, CG.lookupSCC(D1)); EXPECT_EQ(&NewDC, CG.lookupSCC(D3)); auto NewRCs = DRC.removeInternalRefEdge(D1, {&D2}); ASSERT_EQ(2u, NewRCs.size()); LazyCallGraph::RefSCC &NewDRC = *NewRCs[0]; EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1)); EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3)); LazyCallGraph::RefSCC &D2RC = *NewRCs[1]; EXPECT_EQ(&D2RC, CG.lookupRefSCC(D2)); EXPECT_FALSE(NewDRC.isParentOf(D2RC)); EXPECT_TRUE(CRC.isParentOf(D2RC)); EXPECT_TRUE(CRC.isParentOf(NewDRC)); EXPECT_TRUE(D2RC.isParentOf(NewDRC)); CRC.removeOutgoingEdge(C1, D2); EXPECT_FALSE(CRC.isParentOf(D2RC)); EXPECT_TRUE(CRC.isParentOf(NewDRC)); EXPECT_TRUE(D2RC.isParentOf(NewDRC)); // Now that we've updated the call graph, D2 is dead, so remove it. CG.removeDeadFunction(D2F); // Check that the graph still looks the same. EXPECT_EQ(&ARC, CG.lookupRefSCC(A1)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A2)); EXPECT_EQ(&ARC, CG.lookupRefSCC(A3)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B1)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B2)); EXPECT_EQ(&BRC, CG.lookupRefSCC(B3)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C1)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C2)); EXPECT_EQ(&CRC, CG.lookupRefSCC(C3)); EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1)); EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3)); EXPECT_TRUE(CRC.isParentOf(NewDRC)); // Verify the post-order walk hasn't changed. auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); ASSERT_NE(I, E); EXPECT_EQ(&NewDRC, &*I) << "Actual RefSCC: " << *I; ASSERT_NE(++I, E); EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I; ASSERT_NE(++I, E); EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I; ASSERT_NE(++I, E); EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I; EXPECT_EQ(++I, E); } TEST(LazyCallGraphTest, InternalEdgeMutation) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @b()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @a()\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); EXPECT_EQ(&RC, CG.lookupRefSCC(A)); EXPECT_EQ(&RC, CG.lookupRefSCC(B)); EXPECT_EQ(&RC, CG.lookupRefSCC(C)); EXPECT_EQ(1, RC.size()); EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A)); EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B)); EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C)); // Insert an edge from 'a' to 'c'. Nothing changes about the graph. RC.insertInternalRefEdge(A, C); EXPECT_EQ(2, std::distance(A->begin(), A->end())); EXPECT_EQ(&RC, CG.lookupRefSCC(A)); EXPECT_EQ(&RC, CG.lookupRefSCC(B)); EXPECT_EQ(&RC, CG.lookupRefSCC(C)); EXPECT_EQ(1, RC.size()); EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A)); EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B)); EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C)); // Switch the call edge from 'b' to 'c' to a ref edge. This will break the // call cycle and cause us to form more SCCs. The RefSCC will remain the same // though. auto NewCs = RC.switchInternalEdgeToRef(B, C); EXPECT_EQ(&RC, CG.lookupRefSCC(A)); EXPECT_EQ(&RC, CG.lookupRefSCC(B)); EXPECT_EQ(&RC, CG.lookupRefSCC(C)); auto J = RC.begin(); // The SCCs must be in *post-order* which means successors before // predecessors. At this point we have call edges from C to A and from A to // B. The only valid postorder is B, A, C. EXPECT_EQ(&*J++, CG.lookupSCC(B)); EXPECT_EQ(&*J++, CG.lookupSCC(A)); EXPECT_EQ(&*J++, CG.lookupSCC(C)); EXPECT_EQ(RC.end(), J); // And the returned range must be the slice of this sequence containing new // SCCs. EXPECT_EQ(RC.begin(), NewCs.begin()); EXPECT_EQ(std::prev(RC.end()), NewCs.end()); // Test turning the ref edge from A to C into a call edge. This will form an // SCC out of A and C. Since we previously had a call edge from C to A, the // C SCC should be preserved and have A merged into it while the A SCC should // be invalidated. LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &CC = *CG.lookupSCC(C); EXPECT_TRUE(RC.switchInternalEdgeToCall(A, C, [&](ArrayRef MergedCs) { ASSERT_EQ(1u, MergedCs.size()); EXPECT_EQ(&AC, MergedCs[0]); })); EXPECT_EQ(2, CC.size()); EXPECT_EQ(&CC, CG.lookupSCC(A)); EXPECT_EQ(&CC, CG.lookupSCC(C)); J = RC.begin(); EXPECT_EQ(&*J++, CG.lookupSCC(B)); EXPECT_EQ(&*J++, CG.lookupSCC(C)); EXPECT_EQ(RC.end(), J); } TEST(LazyCallGraphTest, InternalEdgeRemoval) { LLVMContext Context; // A nice fully connected (including self-edges) RefSCC. std::unique_ptr M = parseAssembly( Context, "define void @a(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @b(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @c(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); LazyCallGraph::RefSCC &RC = *I; EXPECT_EQ(E, std::next(I)); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); EXPECT_EQ(&RC, CG.lookupRefSCC(A)); EXPECT_EQ(&RC, CG.lookupRefSCC(B)); EXPECT_EQ(&RC, CG.lookupRefSCC(C)); // Remove the edge from b -> a, which should leave the 3 functions still in // a single connected component because of a -> b -> c -> a. SmallVector NewRCs = RC.removeInternalRefEdge(B, {&A}); EXPECT_EQ(0u, NewRCs.size()); EXPECT_EQ(&RC, CG.lookupRefSCC(A)); EXPECT_EQ(&RC, CG.lookupRefSCC(B)); EXPECT_EQ(&RC, CG.lookupRefSCC(C)); auto J = CG.postorder_ref_scc_begin(); EXPECT_EQ(I, J); EXPECT_EQ(&RC, &*J); EXPECT_EQ(E, std::next(J)); // Increment I before we actually mutate the structure so that it remains // a valid iterator. ++I; // Remove the edge from c -> a, which should leave 'a' in the original RefSCC // and form a new RefSCC for 'b' and 'c'. NewRCs = RC.removeInternalRefEdge(C, {&A}); ASSERT_EQ(2u, NewRCs.size()); LazyCallGraph::RefSCC &BCRC = *NewRCs[0]; LazyCallGraph::RefSCC &ARC = *NewRCs[1]; EXPECT_EQ(&ARC, CG.lookupRefSCC(A)); EXPECT_EQ(1, std::distance(ARC.begin(), ARC.end())); EXPECT_EQ(&BCRC, CG.lookupRefSCC(B)); EXPECT_EQ(&BCRC, CG.lookupRefSCC(C)); J = CG.postorder_ref_scc_begin(); EXPECT_NE(I, J); EXPECT_EQ(&BCRC, &*J); ++J; EXPECT_NE(I, J); EXPECT_EQ(&ARC, &*J); ++J; EXPECT_EQ(I, J); EXPECT_EQ(E, J); } TEST(LazyCallGraphTest, InternalMultiEdgeRemoval) { LLVMContext Context; // A nice fully connected (including self-edges) RefSCC. std::unique_ptr M = parseAssembly( Context, "define void @a(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @b(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @c(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); LazyCallGraph::RefSCC &RC = *I; EXPECT_EQ(E, std::next(I)); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); EXPECT_EQ(&RC, CG.lookupRefSCC(A)); EXPECT_EQ(&RC, CG.lookupRefSCC(B)); EXPECT_EQ(&RC, CG.lookupRefSCC(C)); // Increment I before we actually mutate the structure so that it remains // a valid iterator. ++I; // Remove the edges from b -> a and b -> c, leaving b in its own RefSCC. SmallVector NewRCs = RC.removeInternalRefEdge(B, {&A, &C}); ASSERT_EQ(2u, NewRCs.size()); LazyCallGraph::RefSCC &BRC = *NewRCs[0]; LazyCallGraph::RefSCC &ACRC = *NewRCs[1]; EXPECT_EQ(&BRC, CG.lookupRefSCC(B)); EXPECT_EQ(1, std::distance(BRC.begin(), BRC.end())); EXPECT_EQ(&ACRC, CG.lookupRefSCC(A)); EXPECT_EQ(&ACRC, CG.lookupRefSCC(C)); auto J = CG.postorder_ref_scc_begin(); EXPECT_NE(I, J); EXPECT_EQ(&BRC, &*J); ++J; EXPECT_NE(I, J); EXPECT_EQ(&ACRC, &*J); ++J; EXPECT_EQ(I, J); EXPECT_EQ(E, J); } TEST(LazyCallGraphTest, InternalNoOpEdgeRemoval) { LLVMContext Context; // A graph with a single cycle formed both from call and reference edges // which makes the reference edges trivial to delete. The graph looks like: // // Reference edges: a -> b -> c -> a // Call edges: a -> c -> b -> a std::unique_ptr M = parseAssembly( Context, "define void @a(i8** %ptr) {\n" "entry:\n" " call void @b(i8** %ptr)\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @b(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n" " call void @c(i8** %ptr)\n" " ret void\n" "}\n" "define void @c(i8** %ptr) {\n" "entry:\n" " call void @a(i8** %ptr)\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end(); LazyCallGraph::RefSCC &RC = *I; EXPECT_EQ(E, std::next(I)); LazyCallGraph::SCC &C = *RC.begin(); EXPECT_EQ(RC.end(), std::next(RC.begin())); LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); EXPECT_EQ(&C, CG.lookupSCC(AN)); EXPECT_EQ(&C, CG.lookupSCC(BN)); EXPECT_EQ(&C, CG.lookupSCC(CN)); // Remove the edge from a -> c which doesn't change anything. SmallVector NewRCs = RC.removeInternalRefEdge(AN, {&CN}); EXPECT_EQ(0u, NewRCs.size()); EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); EXPECT_EQ(&C, CG.lookupSCC(AN)); EXPECT_EQ(&C, CG.lookupSCC(BN)); EXPECT_EQ(&C, CG.lookupSCC(CN)); auto J = CG.postorder_ref_scc_begin(); EXPECT_EQ(I, J); EXPECT_EQ(&RC, &*J); EXPECT_EQ(E, std::next(J)); // Remove the edge from b -> a and c -> b; again this doesn't change // anything. NewRCs = RC.removeInternalRefEdge(BN, {&AN}); NewRCs = RC.removeInternalRefEdge(CN, {&BN}); EXPECT_EQ(0u, NewRCs.size()); EXPECT_EQ(&RC, CG.lookupRefSCC(AN)); EXPECT_EQ(&RC, CG.lookupRefSCC(BN)); EXPECT_EQ(&RC, CG.lookupRefSCC(CN)); EXPECT_EQ(&C, CG.lookupSCC(AN)); EXPECT_EQ(&C, CG.lookupSCC(BN)); EXPECT_EQ(&C, CG.lookupSCC(CN)); J = CG.postorder_ref_scc_begin(); EXPECT_EQ(I, J); EXPECT_EQ(&RC, &*J); EXPECT_EQ(E, std::next(J)); } TEST(LazyCallGraphTest, InternalCallEdgeToRef) { LLVMContext Context; // A nice fully connected (including self-edges) SCC (and RefSCC) std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); EXPECT_EQ(1, RC.size()); LazyCallGraph::SCC &AC = *RC.begin(); LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); EXPECT_EQ(&AC, CG.lookupSCC(AN)); EXPECT_EQ(&AC, CG.lookupSCC(BN)); EXPECT_EQ(&AC, CG.lookupSCC(CN)); // Remove the call edge from b -> a to a ref edge, which should leave the // 3 functions still in a single connected component because of a -> b -> // c -> a. auto NewCs = RC.switchInternalEdgeToRef(BN, AN); EXPECT_EQ(NewCs.begin(), NewCs.end()); EXPECT_EQ(1, RC.size()); EXPECT_EQ(&AC, CG.lookupSCC(AN)); EXPECT_EQ(&AC, CG.lookupSCC(BN)); EXPECT_EQ(&AC, CG.lookupSCC(CN)); // Remove the edge from c -> a, which should leave 'a' in the original SCC // and form a new SCC for 'b' and 'c'. NewCs = RC.switchInternalEdgeToRef(CN, AN); EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end())); EXPECT_EQ(2, RC.size()); EXPECT_EQ(&AC, CG.lookupSCC(AN)); LazyCallGraph::SCC &BC = *CG.lookupSCC(BN); EXPECT_NE(&BC, &AC); EXPECT_EQ(&BC, CG.lookupSCC(CN)); auto J = RC.find(AC); EXPECT_EQ(&AC, &*J); --J; EXPECT_EQ(&BC, &*J); EXPECT_EQ(RC.begin(), J); EXPECT_EQ(J, NewCs.begin()); // Remove the edge from c -> b, which should leave 'b' in the original SCC // and form a new SCC for 'c'. It shouldn't change 'a's SCC. NewCs = RC.switchInternalEdgeToRef(CN, BN); EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end())); EXPECT_EQ(3, RC.size()); EXPECT_EQ(&AC, CG.lookupSCC(AN)); EXPECT_EQ(&BC, CG.lookupSCC(BN)); LazyCallGraph::SCC &CC = *CG.lookupSCC(CN); EXPECT_NE(&CC, &AC); EXPECT_NE(&CC, &BC); J = RC.find(AC); EXPECT_EQ(&AC, &*J); --J; EXPECT_EQ(&BC, &*J); --J; EXPECT_EQ(&CC, &*J); EXPECT_EQ(RC.begin(), J); EXPECT_EQ(J, NewCs.begin()); } TEST(LazyCallGraphTest, InternalRefEdgeToCall) { LLVMContext Context; // Basic tests for making a ref edge a call. This hits the basics of the // process only. std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @c()\n" " store void()* @d, void()** undef\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " store void()* @c, void()** undef\n" " call void @d()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " store void()* @b, void()** undef\n" " call void @d()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " store void()* @a, void()** undef\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &BC = *CG.lookupSCC(B); LazyCallGraph::SCC &CC = *CG.lookupSCC(C); LazyCallGraph::SCC &DC = *CG.lookupSCC(D); // Check the initial post-order. Note that B and C could be flipped here (and // in our mutation) without changing the nature of this test. ASSERT_EQ(4, RC.size()); EXPECT_EQ(&DC, &RC[0]); EXPECT_EQ(&BC, &RC[1]); EXPECT_EQ(&CC, &RC[2]); EXPECT_EQ(&AC, &RC[3]); // Switch the ref edge from A -> D to a call edge. This should have no // effect as it is already in postorder and no new cycles are formed. EXPECT_FALSE(RC.switchInternalEdgeToCall(A, D)); ASSERT_EQ(4, RC.size()); EXPECT_EQ(&DC, &RC[0]); EXPECT_EQ(&BC, &RC[1]); EXPECT_EQ(&CC, &RC[2]); EXPECT_EQ(&AC, &RC[3]); // Switch B -> C to a call edge. This doesn't form any new cycles but does // require reordering the SCCs. EXPECT_FALSE(RC.switchInternalEdgeToCall(B, C)); ASSERT_EQ(4, RC.size()); EXPECT_EQ(&DC, &RC[0]); EXPECT_EQ(&CC, &RC[1]); EXPECT_EQ(&BC, &RC[2]); EXPECT_EQ(&AC, &RC[3]); // Switch C -> B to a call edge. This forms a cycle and forces merging SCCs. EXPECT_TRUE(RC.switchInternalEdgeToCall(C, B, [&](ArrayRef MergedCs) { ASSERT_EQ(1u, MergedCs.size()); EXPECT_EQ(&CC, MergedCs[0]); })); ASSERT_EQ(3, RC.size()); EXPECT_EQ(&DC, &RC[0]); EXPECT_EQ(&BC, &RC[1]); EXPECT_EQ(&AC, &RC[2]); EXPECT_EQ(2, BC.size()); EXPECT_EQ(&BC, CG.lookupSCC(B)); EXPECT_EQ(&BC, CG.lookupSCC(C)); } TEST(LazyCallGraphTest, InternalRefEdgeToCallNoCycleInterleaved) { LLVMContext Context; // Test for having a post-order prior to changing a ref edge to a call edge // with SCCs connecting to the source and connecting to the target, but not // connecting to both, interleaved between the source and target. This // ensures we correctly partition the range rather than simply moving one or // the other. std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @b1()\n" " call void @c1()\n" " ret void\n" "}\n" "define void @b1() {\n" "entry:\n" " call void @c1()\n" " call void @b2()\n" " ret void\n" "}\n" "define void @c1() {\n" "entry:\n" " call void @b2()\n" " call void @c2()\n" " ret void\n" "}\n" "define void @b2() {\n" "entry:\n" " call void @c2()\n" " call void @b3()\n" " ret void\n" "}\n" "define void @c2() {\n" "entry:\n" " call void @b3()\n" " call void @c3()\n" " ret void\n" "}\n" "define void @b3() {\n" "entry:\n" " call void @c3()\n" " call void @d()\n" " ret void\n" "}\n" "define void @c3() {\n" "entry:\n" " store void()* @b1, void()** undef\n" " call void @d()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " store void()* @a, void()** undef\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1")); LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2")); LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3")); LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1")); LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2")); LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &B1C = *CG.lookupSCC(B1); LazyCallGraph::SCC &B2C = *CG.lookupSCC(B2); LazyCallGraph::SCC &B3C = *CG.lookupSCC(B3); LazyCallGraph::SCC &C1C = *CG.lookupSCC(C1); LazyCallGraph::SCC &C2C = *CG.lookupSCC(C2); LazyCallGraph::SCC &C3C = *CG.lookupSCC(C3); LazyCallGraph::SCC &DC = *CG.lookupSCC(D); // Several call edges are initially present to force a particual post-order. // Remove them now, leaving an interleaved post-order pattern. RC.switchTrivialInternalEdgeToRef(B3, C3); RC.switchTrivialInternalEdgeToRef(C2, B3); RC.switchTrivialInternalEdgeToRef(B2, C2); RC.switchTrivialInternalEdgeToRef(C1, B2); RC.switchTrivialInternalEdgeToRef(B1, C1); // Check the initial post-order. We ensure this order with the extra edges // that are nuked above. ASSERT_EQ(8, RC.size()); EXPECT_EQ(&DC, &RC[0]); EXPECT_EQ(&C3C, &RC[1]); EXPECT_EQ(&B3C, &RC[2]); EXPECT_EQ(&C2C, &RC[3]); EXPECT_EQ(&B2C, &RC[4]); EXPECT_EQ(&C1C, &RC[5]); EXPECT_EQ(&B1C, &RC[6]); EXPECT_EQ(&AC, &RC[7]); // Switch C3 -> B1 to a call edge. This doesn't form any new cycles but does // require reordering the SCCs in the face of tricky internal node // structures. EXPECT_FALSE(RC.switchInternalEdgeToCall(C3, B1)); ASSERT_EQ(8, RC.size()); EXPECT_EQ(&DC, &RC[0]); EXPECT_EQ(&B3C, &RC[1]); EXPECT_EQ(&B2C, &RC[2]); EXPECT_EQ(&B1C, &RC[3]); EXPECT_EQ(&C3C, &RC[4]); EXPECT_EQ(&C2C, &RC[5]); EXPECT_EQ(&C1C, &RC[6]); EXPECT_EQ(&AC, &RC[7]); } TEST(LazyCallGraphTest, InternalRefEdgeToCallBothPartitionAndMerge) { LLVMContext Context; // Test for having a postorder where between the source and target are all // three kinds of other SCCs: // 1) One connected to the target only that have to be shifted below the // source. // 2) One connected to the source only that have to be shifted below the // target. // 3) One connected to both source and target that has to remain and get // merged away. // // To achieve this we construct a heavily connected graph to force // a particular post-order. Then we remove the forcing edges and connect // a cycle. // // Diagram for the graph we want on the left and the graph we use to force // the ordering on the right. Edges ponit down or right. // // A | A | // / \ | / \ | // B E | B \ | // |\ | | |\ | | // | D | | C-D-E | // | \| | | \| | // C F | \ F | // \ / | \ / | // G | G | // // And we form a cycle by connecting F to B. std::unique_ptr M = parseAssembly(Context, "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @e()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @c()\n" " call void @d()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @d()\n" " call void @g()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " call void @e()\n" " call void @f()\n" " ret void\n" "}\n" "define void @e() {\n" "entry:\n" " call void @f()\n" " ret void\n" "}\n" "define void @f() {\n" "entry:\n" " store void()* @b, void()** undef\n" " call void @g()\n" " ret void\n" "}\n" "define void @g() {\n" "entry:\n" " store void()* @a, void()** undef\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e")); LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f")); LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &BC = *CG.lookupSCC(B); LazyCallGraph::SCC &CC = *CG.lookupSCC(C); LazyCallGraph::SCC &DC = *CG.lookupSCC(D); LazyCallGraph::SCC &EC = *CG.lookupSCC(E); LazyCallGraph::SCC &FC = *CG.lookupSCC(F); LazyCallGraph::SCC &GC = *CG.lookupSCC(G); // Remove the extra edges that were used to force a particular post-order. RC.switchTrivialInternalEdgeToRef(C, D); RC.switchTrivialInternalEdgeToRef(D, E); // Check the initial post-order. We ensure this order with the extra edges // that are nuked above. ASSERT_EQ(7, RC.size()); EXPECT_EQ(&GC, &RC[0]); EXPECT_EQ(&FC, &RC[1]); EXPECT_EQ(&EC, &RC[2]); EXPECT_EQ(&DC, &RC[3]); EXPECT_EQ(&CC, &RC[4]); EXPECT_EQ(&BC, &RC[5]); EXPECT_EQ(&AC, &RC[6]); // Switch F -> B to a call edge. This merges B, D, and F into a single SCC, // and has to place the C and E SCCs on either side of it: // A A | // / \ / \ | // B E | E | // |\ | \ / | // | D | -> B | // | \| / \ | // C F C | | // \ / \ / | // G G | EXPECT_TRUE(RC.switchInternalEdgeToCall( F, B, [&](ArrayRef MergedCs) { ASSERT_EQ(2u, MergedCs.size()); EXPECT_EQ(&FC, MergedCs[0]); EXPECT_EQ(&DC, MergedCs[1]); })); EXPECT_EQ(3, BC.size()); // And make sure the postorder was updated. ASSERT_EQ(5, RC.size()); EXPECT_EQ(&GC, &RC[0]); EXPECT_EQ(&CC, &RC[1]); EXPECT_EQ(&BC, &RC[2]); EXPECT_EQ(&EC, &RC[3]); EXPECT_EQ(&AC, &RC[4]); } // Test for IR containing constants using blockaddress constant expressions. // These are truly unique constructs: constant expressions with non-constant // operands. TEST(LazyCallGraphTest, HandleBlockAddress) { LLVMContext Context; std::unique_ptr M = parseAssembly(Context, "define void @f() {\n" "entry:\n" " ret void\n" "bb:\n" " unreachable\n" "}\n" "define void @g(i8** %ptr) {\n" "entry:\n" " store i8* blockaddress(@f, %bb), i8** %ptr\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &FRC = *I++; LazyCallGraph::RefSCC &GRC = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f")); LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g")); EXPECT_EQ(&FRC, CG.lookupRefSCC(F)); EXPECT_EQ(&GRC, CG.lookupRefSCC(G)); EXPECT_TRUE(GRC.isParentOf(FRC)); } TEST(LazyCallGraphTest, ReplaceNodeFunction) { LLVMContext Context; // A graph with several different kinds of edges pointing at a particular // function. std::unique_ptr M = parseAssembly(Context, "define void @a(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @b(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" " call void @d(i8** %ptr)" " ret void\n" "}\n" "define void @c(i8** %ptr) {\n" "entry:\n" " call void @d(i8** %ptr)" " call void @d(i8** %ptr)" " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @d(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " call void @c(i8** %ptr)" " call void @d(i8** %ptr)" " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &RC1 = *I++; LazyCallGraph::RefSCC &RC2 = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); ASSERT_EQ(2, RC1.size()); LazyCallGraph::SCC &C1 = RC1[0]; LazyCallGraph::SCC &C2 = RC1[1]; LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &DN = *CG.lookup(lookupFunction(*M, "d")); EXPECT_EQ(&C1, CG.lookupSCC(DN)); EXPECT_EQ(&C1, CG.lookupSCC(CN)); EXPECT_EQ(&C2, CG.lookupSCC(BN)); EXPECT_EQ(&RC1, CG.lookupRefSCC(DN)); EXPECT_EQ(&RC1, CG.lookupRefSCC(CN)); EXPECT_EQ(&RC1, CG.lookupRefSCC(BN)); EXPECT_EQ(&RC2, CG.lookupRefSCC(AN)); // Now we need to build a new function 'e' with the same signature as 'd'. Function &D = DN.getFunction(); Function &E = *Function::Create(D.getFunctionType(), D.getLinkage(), "e"); D.getParent()->getFunctionList().insert(D.getIterator(), &E); // Change each use of 'd' to use 'e'. This is particularly easy as they have // the same type. D.replaceAllUsesWith(&E); // Splice the body of the old function into the new one. E.getBasicBlockList().splice(E.begin(), D.getBasicBlockList()); // And fix up the one argument. D.arg_begin()->replaceAllUsesWith(&*E.arg_begin()); E.arg_begin()->takeName(&*D.arg_begin()); // Now replace the function in the graph. RC1.replaceNodeFunction(DN, E); EXPECT_EQ(&E, &DN.getFunction()); EXPECT_EQ(&DN, &(*CN)[DN].getNode()); EXPECT_EQ(&DN, &(*BN)[DN].getNode()); } TEST(LazyCallGraphTest, RemoveFunctionWithSpurriousRef) { LLVMContext Context; // A graph with a couple of RefSCCs. std::unique_ptr M = parseAssembly(Context, "define void @a(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @d to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @b(i8** %ptr) {\n" "entry:\n" " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @c(i8** %ptr) {\n" "entry:\n" " call void @d(i8** %ptr)" " ret void\n" "}\n" "define void @d(i8** %ptr) {\n" "entry:\n" " call void @c(i8** %ptr)" " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n" " ret void\n" "}\n" "define void @dead() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG = buildCG(*M); // Insert spurious ref edges. LazyCallGraph::Node &AN = CG.get(lookupFunction(*M, "a")); LazyCallGraph::Node &BN = CG.get(lookupFunction(*M, "b")); LazyCallGraph::Node &CN = CG.get(lookupFunction(*M, "c")); LazyCallGraph::Node &DN = CG.get(lookupFunction(*M, "d")); LazyCallGraph::Node &DeadN = CG.get(lookupFunction(*M, "dead")); AN.populate(); BN.populate(); CN.populate(); DN.populate(); DeadN.populate(); CG.insertEdge(AN, DeadN, LazyCallGraph::Edge::Ref); CG.insertEdge(BN, DeadN, LazyCallGraph::Edge::Ref); CG.insertEdge(CN, DeadN, LazyCallGraph::Edge::Ref); CG.insertEdge(DN, DeadN, LazyCallGraph::Edge::Ref); // Force the graph to be fully expanded. CG.buildRefSCCs(); auto I = CG.postorder_ref_scc_begin(); LazyCallGraph::RefSCC &DeadRC = *I++; LazyCallGraph::RefSCC &RC1 = *I++; LazyCallGraph::RefSCC &RC2 = *I++; EXPECT_EQ(CG.postorder_ref_scc_end(), I); ASSERT_EQ(2, RC1.size()); LazyCallGraph::SCC &C1 = RC1[0]; LazyCallGraph::SCC &C2 = RC1[1]; EXPECT_EQ(&DeadRC, CG.lookupRefSCC(DeadN)); EXPECT_EQ(&C1, CG.lookupSCC(DN)); EXPECT_EQ(&C1, CG.lookupSCC(CN)); EXPECT_EQ(&C2, CG.lookupSCC(BN)); EXPECT_EQ(&RC1, CG.lookupRefSCC(DN)); EXPECT_EQ(&RC1, CG.lookupRefSCC(CN)); EXPECT_EQ(&RC1, CG.lookupRefSCC(BN)); EXPECT_EQ(&RC2, CG.lookupRefSCC(AN)); // Now delete 'dead'. There are no uses of this function but there are // spurious references. CG.removeDeadFunction(DeadN.getFunction()); // The only observable change should be that the RefSCC is gone from the // postorder sequence. I = CG.postorder_ref_scc_begin(); EXPECT_EQ(&RC1, &*I++); EXPECT_EQ(&RC2, &*I++); EXPECT_EQ(CG.postorder_ref_scc_end(), I); } }