//===-- llvm/Use.h - Definition of the Use class ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This defines the Use class. The Use class represents the operand of an // instruction or some other User instance which refers to a Value. The Use // class keeps the "use list" of the referenced value up to date. // //===----------------------------------------------------------------------===// #ifndef LLVM_USE_H #define LLVM_USE_H #include "llvm/Support/Casting.h" #include "llvm/ADT/iterator" namespace llvm { class Value; class User; //===----------------------------------------------------------------------===// // Use Class //===----------------------------------------------------------------------===// // Use is here to make keeping the "use" list of a Value up-to-date really easy. // class Use { public: inline void init(Value *V, User *U); Use(Value *V, User *U) { init(V, U); } Use(const Use &U) { init(U.Val, U.U); } inline ~Use(); /// Default ctor - This leaves the Use completely unitialized. The only thing /// that is valid to do with this use is to call the "init" method. inline Use() : Val(0) {} operator Value*() const { return Val; } Value *get() const { return Val; } User *getUser() const { return U; } inline void set(Value *Val); Value *operator=(Value *RHS) { set(RHS); return RHS; } const Use &operator=(const Use &RHS) { set(RHS.Val); return *this; } Value *operator->() { return Val; } const Value *operator->() const { return Val; } Use *getNext() const { return Next; } private: Use *Next, **Prev; Value *Val; User *U; void addToList(Use **List) { Next = *List; if (Next) Next->Prev = &Next; Prev = List; *List = this; } void removeFromList() { *Prev = Next; if (Next) Next->Prev = Prev; } friend class Value; }; // simplify_type - Allow clients to treat uses just like values when using // casting operators. template<> struct simplify_type { typedef Value* SimpleType; static SimpleType getSimplifiedValue(const Use &Val) { return static_cast(Val.get()); } }; template<> struct simplify_type { typedef Value* SimpleType; static SimpleType getSimplifiedValue(const Use &Val) { return static_cast(Val.get()); } }; template // UserTy == 'User' or 'const User' class value_use_iterator : public forward_iterator { typedef forward_iterator super; typedef value_use_iterator _Self; Use *U; value_use_iterator(Use *u) : U(u) {} friend class Value; public: typedef typename super::reference reference; typedef typename super::pointer pointer; value_use_iterator(const _Self &I) : U(I.U) {} value_use_iterator() {} bool operator==(const _Self &x) const { return U == x.U; } bool operator!=(const _Self &x) const { return !operator==(x); } // Iterator traversal: forward iteration only _Self &operator++() { // Preincrement assert(U && "Cannot increment end iterator!"); U = U->getNext(); return *this; } _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } // Retrieve a reference to the current SCC UserTy *operator*() const { assert(U && "Cannot increment end iterator!"); return U->getUser(); } UserTy *operator->() const { return operator*(); } Use &getUse() const { return *U; } /// getOperandNo - Return the operand # of this use in its User. /// unsigned getOperandNo() const { return U - U->getUser()->op_begin(); } }; template<> struct simplify_type > { typedef User* SimpleType; static SimpleType getSimplifiedValue(const value_use_iterator &Val) { return *Val; } }; template<> struct simplify_type > : public simplify_type > {}; template<> struct simplify_type > { typedef const User* SimpleType; static SimpleType getSimplifiedValue(const value_use_iterator &Val) { return *Val; } }; template<> struct simplify_type > : public simplify_type > {}; } // End llvm namespace #endif