//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass eliminates LDS uses from non-kernel functions. // // The strategy is to create a new struct with a field for each LDS variable // and allocate that struct at the same address for every kernel. Uses of the // original LDS variables are then replaced with compile time offsets from that // known address. AMDGPUMachineFunction allocates the LDS global. // // Local variables with constant annotation or non-undef initializer are passed // through unchanged for simplication or error diagnostics in later passes. // // To reduce the memory overhead variables that are only used by kernels are // excluded from this transform. The analysis to determine whether a variable // is only used by a kernel is cheap and conservative so this may allocate // a variable in every kernel when it was not strictly necessary to do so. // // A possible future refinement is to specialise the structure per-kernel, so // that fields can be elided based on more expensive analysis. // // NOTE: Since this pass will directly pack LDS (assume large LDS) into a struct // type which would cause allocating huge memory for struct instance within // every kernel. Hence, before running this pass, it is advisable to run the // pass "amdgpu-replace-lds-use-with-pointer" which will replace LDS uses within // non-kernel functions by pointers and thereby minimizes the unnecessary per // kernel allocation of LDS memory. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "Utils/AMDGPUBaseInfo.h" #include "Utils/AMDGPULDSUtils.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/OptimizedStructLayout.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #define DEBUG_TYPE "amdgpu-lower-module-lds" using namespace llvm; static cl::opt SuperAlignLDSGlobals( "amdgpu-super-align-lds-globals", cl::desc("Increase alignment of LDS if it is not on align boundary"), cl::init(true), cl::Hidden); namespace { class AMDGPULowerModuleLDS : public ModulePass { static void removeFromUsedList(Module &M, StringRef Name, SmallPtrSetImpl &ToRemove) { GlobalVariable *GV = M.getNamedGlobal(Name); if (!GV || ToRemove.empty()) { return; } SmallVector Init; auto *CA = cast(GV->getInitializer()); for (auto &Op : CA->operands()) { // ModuleUtils::appendToUsed only inserts Constants Constant *C = cast(Op); if (!ToRemove.contains(C->stripPointerCasts())) { Init.push_back(C); } } if (Init.size() == CA->getNumOperands()) { return; // none to remove } GV->eraseFromParent(); for (Constant *C : ToRemove) { C->removeDeadConstantUsers(); } if (!Init.empty()) { ArrayType *ATy = ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size()); GV = new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage, ConstantArray::get(ATy, Init), Name); GV->setSection("llvm.metadata"); } } static void removeFromUsedLists(Module &M, const std::vector &LocalVars) { SmallPtrSet LocalVarsSet; for (size_t I = 0; I < LocalVars.size(); I++) { if (Constant *C = dyn_cast(LocalVars[I]->stripPointerCasts())) { LocalVarsSet.insert(C); } } removeFromUsedList(M, "llvm.used", LocalVarsSet); removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet); } static void markUsedByKernel(IRBuilder<> &Builder, Function *Func, GlobalVariable *SGV) { // The llvm.amdgcn.module.lds instance is implicitly used by all kernels // that might call a function which accesses a field within it. This is // presently approximated to 'all kernels' if there are any such functions // in the module. This implicit use is reified as an explicit use here so // that later passes, specifically PromoteAlloca, account for the required // memory without any knowledge of this transform. // An operand bundle on llvm.donothing works because the call instruction // survives until after the last pass that needs to account for LDS. It is // better than inline asm as the latter survives until the end of codegen. A // totally robust solution would be a function with the same semantics as // llvm.donothing that takes a pointer to the instance and is lowered to a // no-op after LDS is allocated, but that is not presently necessary. LLVMContext &Ctx = Func->getContext(); Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI()); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {}); Function *Decl = Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {}); Value *UseInstance[1] = {Builder.CreateInBoundsGEP( SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))}; Builder.CreateCall(FTy, Decl, {}, {OperandBundleDefT("ExplicitUse", UseInstance)}, ""); } private: SmallPtrSet UsedList; public: static char ID; AMDGPULowerModuleLDS() : ModulePass(ID) { initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { UsedList = AMDGPU::getUsedList(M); bool Changed = processUsedLDS(M); for (Function &F : M.functions()) { if (!AMDGPU::isKernelCC(&F)) continue; Changed |= processUsedLDS(M, &F); } UsedList.clear(); return Changed; } private: bool processUsedLDS(Module &M, Function *F = nullptr) { LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); // Find variables to move into new struct instance std::vector FoundLocalVars = AMDGPU::findVariablesToLower(M, F); if (FoundLocalVars.empty()) { // No variables to rewrite, no changes made. return false; } // Increase the alignment of LDS globals if necessary to maximise the chance // that we can use aligned LDS instructions to access them. if (SuperAlignLDSGlobals) { for (auto *GV : FoundLocalVars) { Align Alignment = AMDGPU::getAlign(DL, GV); TypeSize GVSize = DL.getTypeAllocSize(GV->getValueType()); if (GVSize > 8) { // We might want to use a b96 or b128 load/store Alignment = std::max(Alignment, Align(16)); } else if (GVSize > 4) { // We might want to use a b64 load/store Alignment = std::max(Alignment, Align(8)); } else if (GVSize > 2) { // We might want to use a b32 load/store Alignment = std::max(Alignment, Align(4)); } else if (GVSize > 1) { // We might want to use a b16 load/store Alignment = std::max(Alignment, Align(2)); } GV->setAlignment(Alignment); } } SmallVector LayoutFields; LayoutFields.reserve(FoundLocalVars.size()); for (GlobalVariable *GV : FoundLocalVars) { OptimizedStructLayoutField F(GV, DL.getTypeAllocSize(GV->getValueType()), AMDGPU::getAlign(DL, GV)); LayoutFields.emplace_back(F); } performOptimizedStructLayout(LayoutFields); std::vector LocalVars; LocalVars.reserve(FoundLocalVars.size()); // will be at least this large { // This usually won't need to insert any padding, perhaps avoid the alloc uint64_t CurrentOffset = 0; for (size_t I = 0; I < LayoutFields.size(); I++) { GlobalVariable *FGV = static_cast( const_cast(LayoutFields[I].Id)); Align DataAlign = LayoutFields[I].Alignment; uint64_t DataAlignV = DataAlign.value(); if (uint64_t Rem = CurrentOffset % DataAlignV) { uint64_t Padding = DataAlignV - Rem; // Append an array of padding bytes to meet alignment requested // Note (o + (a - (o % a)) ) % a == 0 // (offset + Padding ) % align == 0 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding); LocalVars.push_back(new GlobalVariable( M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false)); CurrentOffset += Padding; } LocalVars.push_back(FGV); CurrentOffset += LayoutFields[I].Size; } } std::vector LocalVarTypes; LocalVarTypes.reserve(LocalVars.size()); std::transform( LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes), [](const GlobalVariable *V) -> Type * { return V->getValueType(); }); std::string VarName( F ? (Twine("llvm.amdgcn.kernel.") + F->getName() + ".lds").str() : "llvm.amdgcn.module.lds"); StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t"); Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]); GlobalVariable *SGV = new GlobalVariable( M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy), VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false); SGV->setAlignment(StructAlign); if (!F) { appendToCompilerUsed( M, {static_cast( ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast(SGV), Type::getInt8PtrTy(Ctx)))}); } // The verifier rejects used lists containing an inttoptr of a constant // so remove the variables from these lists before replaceAllUsesWith removeFromUsedLists(M, LocalVars); // Replace uses of ith variable with a constantexpr to the ith field of the // instance that will be allocated by AMDGPUMachineFunction Type *I32 = Type::getInt32Ty(Ctx); for (size_t I = 0; I < LocalVars.size(); I++) { GlobalVariable *GV = LocalVars[I]; Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)}; Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx); if (F) { // Replace all constant uses with instructions if they belong to the // current kernel. for (User *U : make_early_inc_range(GV->users())) { if (ConstantExpr *C = dyn_cast(U)) AMDGPU::replaceConstantUsesInFunction(C, F); } GV->removeDeadConstantUsers(); GV->replaceUsesWithIf(GEP, [F](Use &U) { Instruction *I = dyn_cast(U.getUser()); return I && I->getFunction() == F; }); } else { GV->replaceAllUsesWith(GEP); } if (GV->use_empty()) { UsedList.erase(GV); GV->eraseFromParent(); } uint64_t Off = DL.getStructLayout(LDSTy)->getElementOffset(I); Align A = commonAlignment(StructAlign, Off); refineUsesAlignment(GEP, A, DL); } // Mark kernels with asm that reads the address of the allocated structure // This is not necessary for lowering. This lets other passes, specifically // PromoteAlloca, accurately calculate how much LDS will be used by the // kernel after lowering. if (!F) { IRBuilder<> Builder(Ctx); SmallPtrSet Kernels; for (auto &I : M.functions()) { Function *Func = &I; if (AMDGPU::isKernelCC(Func) && !Kernels.contains(Func)) { markUsedByKernel(Builder, Func, SGV); Kernels.insert(Func); } } } return true; } void refineUsesAlignment(Value *Ptr, Align A, const DataLayout &DL, unsigned MaxDepth = 5) { if (!MaxDepth || A == 1) return; for (User *U : Ptr->users()) { if (auto *LI = dyn_cast(U)) { LI->setAlignment(std::max(A, LI->getAlign())); continue; } if (auto *SI = dyn_cast(U)) { if (SI->getPointerOperand() == Ptr) SI->setAlignment(std::max(A, SI->getAlign())); continue; } if (auto *AI = dyn_cast(U)) { // None of atomicrmw operations can work on pointers, but let's // check it anyway in case it will or we will process ConstantExpr. if (AI->getPointerOperand() == Ptr) AI->setAlignment(std::max(A, AI->getAlign())); continue; } if (auto *AI = dyn_cast(U)) { if (AI->getPointerOperand() == Ptr) AI->setAlignment(std::max(A, AI->getAlign())); continue; } if (auto *GEP = dyn_cast(U)) { unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); APInt Off(BitWidth, 0); if (GEP->getPointerOperand() == Ptr && GEP->accumulateConstantOffset(DL, Off)) { Align GA = commonAlignment(A, Off.getLimitedValue()); refineUsesAlignment(GEP, GA, DL, MaxDepth - 1); } continue; } if (auto *I = dyn_cast(U)) { if (I->getOpcode() == Instruction::BitCast || I->getOpcode() == Instruction::AddrSpaceCast) refineUsesAlignment(I, A, DL, MaxDepth - 1); } } } }; } // namespace char AMDGPULowerModuleLDS::ID = 0; char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID; INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE, "Lower uses of LDS variables from non-kernel functions", false, false) ModulePass *llvm::createAMDGPULowerModuleLDSPass() { return new AMDGPULowerModuleLDS(); } PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M, ModuleAnalysisManager &) { return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none() : PreservedAnalyses::all(); }