//===-- Function.cpp - Implement the Global object classes ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Function class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/IntrinsicInst.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/ManagedStatic.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; BasicBlock *ilist_traits::createSentinel() { BasicBlock *Ret = new BasicBlock(); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Function *F) { return F->getBasicBlockList(); } Argument *ilist_traits::createSentinel() { Argument *Ret = new Argument(Type::Int32Ty); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Function *F) { return F->getArgumentList(); } // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file... template class SymbolTableListTraits; template class SymbolTableListTraits; //===----------------------------------------------------------------------===// // Argument Implementation //===----------------------------------------------------------------------===// Argument::Argument(const Type *Ty, const std::string &Name, Function *Par) : Value(Ty, Value::ArgumentVal) { Parent = 0; // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (Par) Par->getArgumentList().push_back(this); setName(Name); } void Argument::setParent(Function *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } //===----------------------------------------------------------------------===// // ParamAttrsList Implementation //===----------------------------------------------------------------------===// uint16_t ParamAttrsList::getParamAttrs(uint16_t Index) const { unsigned limit = attrs.size(); for (unsigned i = 0; i < limit && attrs[i].index <= Index; ++i) if (attrs[i].index == Index) return attrs[i].attrs; return ParamAttr::None; } std::string ParamAttrsList::getParamAttrsText(uint16_t Attrs) { std::string Result; if (Attrs & ParamAttr::ZExt) Result += "zeroext "; if (Attrs & ParamAttr::SExt) Result += "signext "; if (Attrs & ParamAttr::NoReturn) Result += "noreturn "; if (Attrs & ParamAttr::NoUnwind) Result += "nounwind "; if (Attrs & ParamAttr::InReg) Result += "inreg "; if (Attrs & ParamAttr::NoAlias) Result += "noalias "; if (Attrs & ParamAttr::StructRet) Result += "sret "; if (Attrs & ParamAttr::ByVal) Result += "byval "; if (Attrs & ParamAttr::Nest) Result += "nest "; if (Attrs & ParamAttr::ReadNone) Result += "readnone "; if (Attrs & ParamAttr::ReadOnly) Result += "readonly "; return Result; } /// onlyInformative - Returns whether only informative attributes are set. static inline bool onlyInformative(uint16_t attrs) { return !(attrs & ~ParamAttr::Informative); } bool ParamAttrsList::areCompatible(const ParamAttrsList *A, const ParamAttrsList *B){ if (A == B) return true; unsigned ASize = A ? A->size() : 0; unsigned BSize = B ? B->size() : 0; unsigned AIndex = 0; unsigned BIndex = 0; while (AIndex < ASize && BIndex < BSize) { uint16_t AIdx = A->getParamIndex(AIndex); uint16_t BIdx = B->getParamIndex(BIndex); uint16_t AAttrs = A->getParamAttrsAtIndex(AIndex); uint16_t BAttrs = B->getParamAttrsAtIndex(AIndex); if (AIdx < BIdx) { if (!onlyInformative(AAttrs)) return false; ++AIndex; } else if (BIdx < AIdx) { if (!onlyInformative(BAttrs)) return false; ++BIndex; } else { if (!onlyInformative(AAttrs ^ BAttrs)) return false; ++AIndex; ++BIndex; } } for (; AIndex < ASize; ++AIndex) if (!onlyInformative(A->getParamAttrsAtIndex(AIndex))) return false; for (; BIndex < BSize; ++BIndex) if (!onlyInformative(B->getParamAttrsAtIndex(AIndex))) return false; return true; } void ParamAttrsList::Profile(FoldingSetNodeID &ID) const { for (unsigned i = 0; i < attrs.size(); ++i) { uint32_t val = uint32_t(attrs[i].attrs) << 16 | attrs[i].index; ID.AddInteger(val); } } static ManagedStatic > ParamAttrsLists; const ParamAttrsList * ParamAttrsList::get(const ParamAttrsVector &attrVec) { // If there are no attributes then return a null ParamAttrsList pointer. if (attrVec.empty()) return 0; #ifndef NDEBUG for (unsigned i = 0, e = attrVec.size(); i < e; ++i) { assert(attrVec[i].attrs != ParamAttr::None && "Pointless parameter attribute!"); assert((!i || attrVec[i-1].index < attrVec[i].index) && "Misordered ParamAttrsList!"); } #endif // Otherwise, build a key to look up the existing attributes. ParamAttrsList key(attrVec); FoldingSetNodeID ID; key.Profile(ID); void *InsertPos; ParamAttrsList* PAL = ParamAttrsLists->FindNodeOrInsertPos(ID, InsertPos); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PAL) { PAL = new ParamAttrsList(attrVec); ParamAttrsLists->InsertNode(PAL, InsertPos); } // Return the ParamAttrsList that we found or created. return PAL; } const ParamAttrsList * ParamAttrsList::getModified(const ParamAttrsList *PAL, const ParamAttrsVector &modVec) { if (modVec.empty()) return PAL; #ifndef NDEBUG for (unsigned i = 0, e = modVec.size(); i < e; ++i) assert((!i || modVec[i-1].index < modVec[i].index) && "Misordered ParamAttrsList!"); #endif if (!PAL) { // Strip any instances of ParamAttr::None from modVec before calling 'get'. ParamAttrsVector newVec; for (unsigned i = 0, e = modVec.size(); i < e; ++i) if (modVec[i].attrs != ParamAttr::None) newVec.push_back(modVec[i]); return get(newVec); } const ParamAttrsVector &oldVec = PAL->attrs; ParamAttrsVector newVec; unsigned oldI = 0; unsigned modI = 0; unsigned oldE = oldVec.size(); unsigned modE = modVec.size(); while (oldI < oldE && modI < modE) { uint16_t oldIndex = oldVec[oldI].index; uint16_t modIndex = modVec[modI].index; if (oldIndex < modIndex) { newVec.push_back(oldVec[oldI]); ++oldI; } else if (modIndex < oldIndex) { if (modVec[modI].attrs != ParamAttr::None) newVec.push_back(modVec[modI]); ++modI; } else { // Same index - overwrite or delete existing attributes. if (modVec[modI].attrs != ParamAttr::None) newVec.push_back(modVec[modI]); ++oldI; ++modI; } } for (; oldI < oldE; ++oldI) newVec.push_back(oldVec[oldI]); for (; modI < modE; ++modI) if (modVec[modI].attrs != ParamAttr::None) newVec.push_back(modVec[modI]); return get(newVec); } ParamAttrsList::~ParamAttrsList() { ParamAttrsLists->RemoveNode(this); } //===----------------------------------------------------------------------===// // Function Implementation //===----------------------------------------------------------------------===// Function::Function(const FunctionType *Ty, LinkageTypes Linkage, const std::string &name, Module *ParentModule) : GlobalValue(PointerType::get(Ty), Value::FunctionVal, 0, 0, Linkage, name), ParamAttrs(0) { SymTab = new ValueSymbolTable(); assert((getReturnType()->isFirstClassType() ||getReturnType() == Type::VoidTy) && "LLVM functions cannot return aggregate values!"); // If the function has arguments, mark them as lazily built. if (Ty->getNumParams()) SubclassData = 1; // Set the "has lazy arguments" bit. // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (ParentModule) ParentModule->getFunctionList().push_back(this); } Function::~Function() { dropAllReferences(); // After this it is safe to delete instructions. // Delete all of the method arguments and unlink from symbol table... ArgumentList.clear(); delete SymTab; // Drop our reference to the parameter attributes, if any. if (ParamAttrs) ParamAttrs->dropRef(); } void Function::BuildLazyArguments() const { // Create the arguments vector, all arguments start out unnamed. const FunctionType *FT = getFunctionType(); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { assert(FT->getParamType(i) != Type::VoidTy && "Cannot have void typed arguments!"); ArgumentList.push_back(new Argument(FT->getParamType(i))); } // Clear the lazy arguments bit. const_cast(this)->SubclassData &= ~1; } size_t Function::arg_size() const { return getFunctionType()->getNumParams(); } bool Function::arg_empty() const { return getFunctionType()->getNumParams() == 0; } void Function::setParent(Module *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } void Function::setParamAttrs(const ParamAttrsList *attrs) { // Avoid deleting the ParamAttrsList if they are setting the // attributes to the same list. if (ParamAttrs == attrs) return; // Drop reference on the old ParamAttrsList if (ParamAttrs) ParamAttrs->dropRef(); // Add reference to the new ParamAttrsList if (attrs) attrs->addRef(); // Set the new ParamAttrsList. ParamAttrs = attrs; } const FunctionType *Function::getFunctionType() const { return cast(getType()->getElementType()); } bool Function::isVarArg() const { return getFunctionType()->isVarArg(); } const Type *Function::getReturnType() const { return getFunctionType()->getReturnType(); } void Function::removeFromParent() { getParent()->getFunctionList().remove(this); } void Function::eraseFromParent() { getParent()->getFunctionList().erase(this); } // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is deleted for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void Function::dropAllReferences() { for (iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); BasicBlocks.clear(); // Delete all basic blocks... } /// getIntrinsicID - This method returns the ID number of the specified /// function, or Intrinsic::not_intrinsic if the function is not an /// intrinsic, or if the pointer is null. This value is always defined to be /// zero to allow easy checking for whether a function is intrinsic or not. The /// particular intrinsic functions which correspond to this value are defined in /// llvm/Intrinsics.h. /// unsigned Function::getIntrinsicID(bool noAssert) const { const ValueName *ValName = this->getValueName(); if (!ValName) return 0; unsigned Len = ValName->getKeyLength(); const char *Name = ValName->getKeyData(); if (Len < 5 || Name[4] != '.' || Name[0] != 'l' || Name[1] != 'l' || Name[2] != 'v' || Name[3] != 'm') return 0; // All intrinsics start with 'llvm.' assert((Len != 5 || noAssert) && "'llvm.' is an invalid intrinsic name!"); #define GET_FUNCTION_RECOGNIZER #include "llvm/Intrinsics.gen" #undef GET_FUNCTION_RECOGNIZER assert(noAssert && "Invalid LLVM intrinsic name"); return 0; } std::string Intrinsic::getName(ID id, const Type **Tys, unsigned numTys) { assert(id < num_intrinsics && "Invalid intrinsic ID!"); const char * const Table[] = { "not_intrinsic", #define GET_INTRINSIC_NAME_TABLE #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_NAME_TABLE }; if (numTys == 0) return Table[id]; std::string Result(Table[id]); for (unsigned i = 0; i < numTys; ++i) if (Tys[i]) Result += "." + MVT::getValueTypeString(MVT::getValueType(Tys[i])); return Result; } const FunctionType *Intrinsic::getType(ID id, const Type **Tys, unsigned numTys) { const Type *ResultTy = NULL; std::vector ArgTys; bool IsVarArg = false; #define GET_INTRINSIC_GENERATOR #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_GENERATOR return FunctionType::get(ResultTy, ArgTys, IsVarArg); } const ParamAttrsList *Intrinsic::getParamAttrs(ID id) { static const ParamAttrsList *IntrinsicAttributes[Intrinsic::num_intrinsics]; if (IntrinsicAttributes[id]) return IntrinsicAttributes[id]; ParamAttrsVector Attrs; uint16_t Attr = ParamAttr::None; #define GET_INTRINSIC_ATTRIBUTES #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_ATTRIBUTES // Intrinsics cannot throw exceptions. Attr |= ParamAttr::NoUnwind; Attrs.push_back(ParamAttrsWithIndex::get(0, Attr)); IntrinsicAttributes[id] = ParamAttrsList::get(Attrs); return IntrinsicAttributes[id]; } Function *Intrinsic::getDeclaration(Module *M, ID id, const Type **Tys, unsigned numTys) { // There can never be multiple globals with the same name of different types, // because intrinsics must be a specific type. Function *F = cast(M->getOrInsertFunction(getName(id, Tys, numTys), getType(id, Tys, numTys))); F->setParamAttrs(getParamAttrs(id)); return F; } Value *IntrinsicInst::StripPointerCasts(Value *Ptr) { if (ConstantExpr *CE = dyn_cast(Ptr)) { if (CE->getOpcode() == Instruction::BitCast) { if (isa(CE->getOperand(0)->getType())) return StripPointerCasts(CE->getOperand(0)); } else if (CE->getOpcode() == Instruction::GetElementPtr) { for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) if (!CE->getOperand(i)->isNullValue()) return Ptr; return StripPointerCasts(CE->getOperand(0)); } return Ptr; } if (BitCastInst *CI = dyn_cast(Ptr)) { if (isa(CI->getOperand(0)->getType())) return StripPointerCasts(CI->getOperand(0)); } else if (GetElementPtrInst *GEP = dyn_cast(Ptr)) { if (GEP->hasAllZeroIndices()) return StripPointerCasts(GEP->getOperand(0)); } return Ptr; } // vim: sw=2 ai