//===-- TargetData.cpp - Data size & alignment routines --------------------==// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines target properties related to datatype size/offset/alignment // information. // // This structure should be created once, filled in if the defaults are not // correct and then passed around by const&. None of the members functions // require modification to the object. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/StringExtras.h" #include #include #include using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. namespace { // Register the default SparcV9 implementation... RegisterPass X("targetdata", "Target Data Layout"); } static inline void getTypeInfoABI(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment); static inline void getTypeInfoPref(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment); //===----------------------------------------------------------------------===// // Support for StructLayout //===----------------------------------------------------------------------===// StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { StructAlignment = 0; StructSize = 0; // Loop over each of the elements, placing them in memory... for (StructType::element_iterator TI = ST->element_begin(), TE = ST->element_end(); TI != TE; ++TI) { const Type *Ty = *TI; unsigned char A; unsigned TyAlign; uint64_t TySize; getTypeInfoABI(Ty, &TD, TySize, A); TyAlign = ST->isPacked() ? 1 : A; // Add padding if necessary to make the data element aligned properly... if (StructSize % TyAlign != 0) StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... // Keep track of maximum alignment constraint StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets.push_back(StructSize); StructSize += TySize; // Consume space for this data item } // Empty structures have alignment of 1 byte. if (StructAlignment == 0) StructAlignment = 1; // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. if (StructSize % StructAlignment != 0) StructSize = (StructSize/StructAlignment + 1) * StructAlignment; } /// getElementContainingOffset - Given a valid offset into the structure, /// return the structure index that contains it. unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { std::vector::const_iterator SI = std::upper_bound(MemberOffsets.begin(), MemberOffsets.end(), Offset); assert(SI != MemberOffsets.begin() && "Offset not in structure type!"); --SI; assert(*SI <= Offset && "upper_bound didn't work"); assert((SI == MemberOffsets.begin() || *(SI-1) < Offset) && (SI+1 == MemberOffsets.end() || *(SI+1) > Offset) && "Upper bound didn't work!"); return SI-MemberOffsets.begin(); } //===----------------------------------------------------------------------===// // TargetData Class Implementation //===----------------------------------------------------------------------===// void TargetData::init(const std::string &TargetDescription) { std::string temp = TargetDescription; LittleEndian = false; PointerMemSize = 8; PointerABIAlignment = 8; DoubleABIAlignment = 8; FloatABIAlignment = 4; LongABIAlignment = 8; IntABIAlignment = 4; ShortABIAlignment = 2; ByteABIAlignment = 1; BoolABIAlignment = 1; BoolPrefAlignment = BoolABIAlignment; BytePrefAlignment = ByteABIAlignment; ShortPrefAlignment = ShortABIAlignment; IntPrefAlignment = IntABIAlignment; LongPrefAlignment = LongABIAlignment; FloatPrefAlignment = FloatABIAlignment; DoublePrefAlignment = DoubleABIAlignment; PointerPrefAlignment = PointerABIAlignment; AggMinPrefAlignment = 0; while (!temp.empty()) { std::string token = getToken(temp, "-"); char signal = getToken(token, ":")[0]; switch(signal) { case 'E': LittleEndian = false; break; case 'e': LittleEndian = true; break; case 'p': PointerMemSize = atoi(getToken(token,":").c_str()) / 8; PointerABIAlignment = atoi(getToken(token,":").c_str()) / 8; PointerPrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (PointerPrefAlignment == 0) PointerPrefAlignment = PointerABIAlignment; break; case 'd': DoubleABIAlignment = atoi(getToken(token,":").c_str()) / 8; DoublePrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (DoublePrefAlignment == 0) DoublePrefAlignment = DoubleABIAlignment; break; case 'f': FloatABIAlignment = atoi(getToken(token, ":").c_str()) / 8; FloatPrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (FloatPrefAlignment == 0) FloatPrefAlignment = FloatABIAlignment; break; case 'l': LongABIAlignment = atoi(getToken(token, ":").c_str()) / 8; LongPrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (LongPrefAlignment == 0) LongPrefAlignment = LongABIAlignment; break; case 'i': IntABIAlignment = atoi(getToken(token, ":").c_str()) / 8; IntPrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (IntPrefAlignment == 0) IntPrefAlignment = IntABIAlignment; break; case 's': ShortABIAlignment = atoi(getToken(token, ":").c_str()) / 8; ShortPrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (ShortPrefAlignment == 0) ShortPrefAlignment = ShortABIAlignment; break; case 'b': ByteABIAlignment = atoi(getToken(token, ":").c_str()) / 8; BytePrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (BytePrefAlignment == 0) BytePrefAlignment = ByteABIAlignment; break; case 'B': BoolABIAlignment = atoi(getToken(token, ":").c_str()) / 8; BoolPrefAlignment = atoi(getToken(token,":").c_str()) / 8; if (BoolPrefAlignment == 0) BoolPrefAlignment = BoolABIAlignment; break; case 'A': AggMinPrefAlignment = atoi(getToken(token,":").c_str()) / 8; break; default: break; } } } TargetData::TargetData(const Module *M) { LittleEndian = M->getEndianness() != Module::BigEndian; PointerMemSize = M->getPointerSize() != Module::Pointer64 ? 4 : 8; PointerABIAlignment = PointerMemSize; DoubleABIAlignment = PointerMemSize; FloatABIAlignment = 4; LongABIAlignment = PointerMemSize; IntABIAlignment = 4; ShortABIAlignment = 2; ByteABIAlignment = 1; BoolABIAlignment = 1; BoolPrefAlignment = BoolABIAlignment; BytePrefAlignment = ByteABIAlignment; ShortPrefAlignment = ShortABIAlignment; IntPrefAlignment = IntABIAlignment; LongPrefAlignment = LongABIAlignment; FloatPrefAlignment = FloatABIAlignment; DoublePrefAlignment = DoubleABIAlignment; PointerPrefAlignment = PointerABIAlignment; AggMinPrefAlignment = 0; } /// Layouts - The lazy cache of structure layout information maintained by /// TargetData. /// static std::map, StructLayout> *Layouts = 0; TargetData::~TargetData() { if (Layouts) { // Remove any layouts for this TD. std::map, StructLayout>::iterator I = Layouts->lower_bound(std::make_pair(this, (const StructType*)0)); while (I != Layouts->end() && I->first.first == this) Layouts->erase(I++); if (Layouts->empty()) { delete Layouts; Layouts = 0; } } } std::string TargetData::getStringRepresentation() const { std::stringstream repr; if (LittleEndian) repr << "e"; else repr << "E"; repr << "-p:" << (PointerMemSize * 8) << ":" << (PointerABIAlignment * 8); repr << "-d:" << (DoubleABIAlignment * 8) << ":" << (DoublePrefAlignment * 8); repr << "-f:" << (FloatABIAlignment * 8) << ":" << (FloatPrefAlignment * 8); repr << "-l:" << (LongABIAlignment * 8) << ":" << (LongPrefAlignment * 8); repr << "-i:" << (IntABIAlignment * 8) << ":" << (IntPrefAlignment * 8); repr << "-s:" << (ShortABIAlignment * 8) << ":" << (ShortPrefAlignment * 8); repr << "-b:" << (ByteABIAlignment * 8) << ":" << (BytePrefAlignment * 8); repr << "-B:" << (BoolABIAlignment * 8) << ":" << (BoolPrefAlignment * 8); repr << "-A:" << (AggMinPrefAlignment * 8); return repr.str(); } const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { if (Layouts == 0) Layouts = new std::map, StructLayout>(); std::map, StructLayout>::iterator I = Layouts->lower_bound(std::make_pair(this, Ty)); if (I != Layouts->end() && I->first.first == this && I->first.second == Ty) return &I->second; else { return &Layouts->insert(I, std::make_pair(std::make_pair(this, Ty), StructLayout(Ty, *this)))->second; } } /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout /// objects. If a TargetData object is alive when types are being refined and /// removed, this method must be called whenever a StructType is removed to /// avoid a dangling pointer in this cache. void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { if (!Layouts) return; // No cache. std::map, StructLayout>::iterator I = Layouts->find(std::make_pair(this, Ty)); if (I != Layouts->end()) Layouts->erase(I); } static inline void getTypeInfoABI(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment) { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::IntegerTyID: { unsigned BitWidth = cast(Ty)->getBitWidth(); if (BitWidth <= 8) { Size = 1; Alignment = TD->getByteABIAlignment(); } else if (BitWidth <= 16) { Size = 2; Alignment = TD->getShortABIAlignment(); } else if (BitWidth <= 32) { Size = 4; Alignment = TD->getIntABIAlignment(); } else if (BitWidth <= 64) { Size = 8; Alignment = TD->getLongABIAlignment(); } else assert(0 && "Integer types > 64 bits not supported."); return; } case Type::VoidTyID: Size = 1; Alignment = TD->getByteABIAlignment(); return; case Type::FloatTyID: Size = 4; Alignment = TD->getFloatABIAlignment(); return; case Type::DoubleTyID: Size = 8; Alignment = TD->getDoubleABIAlignment(); return; case Type::LabelTyID: case Type::PointerTyID: Size = TD->getPointerSize(); Alignment = TD->getPointerABIAlignment(); return; case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); getTypeInfoABI(ATy->getElementType(), TD, Size, Alignment); unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; Size = AlignedSize*ATy->getNumElements(); return; } case Type::PackedTyID: { const PackedType *PTy = cast(Ty); getTypeInfoABI(PTy->getElementType(), TD, Size, Alignment); unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; Size = AlignedSize*PTy->getNumElements(); // FIXME: The alignments of specific packed types are target dependent. // For now, just set it to be equal to Size. Alignment = Size; return; } case Type::StructTyID: { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = TD->getStructLayout(cast(Ty)); Size = Layout->StructSize; Alignment = Layout->StructAlignment; return; } default: assert(0 && "Bad type for getTypeInfo!!!"); return; } } static inline void getTypeInfoPref(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment) { assert(Ty->isSized() && "Cannot getTypeInfoPref() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::IntegerTyID: { unsigned BitWidth = cast(Ty)->getBitWidth(); if (BitWidth <= 8) { Size = 1; Alignment = TD->getBytePrefAlignment(); } else if (BitWidth <= 16) { Size = 2; Alignment = TD->getShortPrefAlignment(); } else if (BitWidth <= 32) { Size = 4; Alignment = TD->getIntPrefAlignment(); } else if (BitWidth <= 64) { Size = 8; Alignment = TD->getLongPrefAlignment(); } else assert(0 && "Integer types > 64 bits not supported."); return; } case Type::VoidTyID: Size = 1; Alignment = TD->getBytePrefAlignment(); return; case Type::FloatTyID: Size = 4; Alignment = TD->getFloatPrefAlignment(); return; case Type::DoubleTyID: Size = 8; Alignment = TD->getDoublePrefAlignment(); return; case Type::LabelTyID: case Type::PointerTyID: Size = TD->getPointerSize(); Alignment = TD->getPointerPrefAlignment(); return; case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); getTypeInfoPref(ATy->getElementType(), TD, Size, Alignment); unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; Size = AlignedSize*ATy->getNumElements(); return; } case Type::PackedTyID: { const PackedType *PTy = cast(Ty); getTypeInfoPref(PTy->getElementType(), TD, Size, Alignment); unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; Size = AlignedSize*PTy->getNumElements(); // FIXME: The alignments of specific packed types are target dependent. // For now, just set it to be equal to Size. Alignment = Size; return; } case Type::StructTyID: { // Get the layout annotation... which is lazily created on demand; // enforce minimum aggregate alignment. const StructLayout *Layout = TD->getStructLayout(cast(Ty)); Size = Layout->StructSize; Alignment = std::max(Layout->StructAlignment, (const unsigned int) TD->getAggMinPrefAlignment()); return; } default: assert(0 && "Bad type for getTypeInfoPref!!!"); return; } } uint64_t TargetData::getTypeSize(const Type *Ty) const { uint64_t Size; unsigned char Align; getTypeInfoABI(Ty, this, Size, Align); return Size; } unsigned char TargetData::getTypeAlignmentABI(const Type *Ty) const { uint64_t Size; unsigned char Align; getTypeInfoABI(Ty, this, Size, Align); return Align; } unsigned char TargetData::getTypeAlignmentPref(const Type *Ty) const { uint64_t Size; unsigned char Align; getTypeInfoPref(Ty, this, Size, Align); return Align; } unsigned char TargetData::getTypeAlignmentShift(const Type *Ty) const { unsigned Align = getTypeAlignmentABI(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. const Type *TargetData::getIntPtrType() const { switch (getPointerSize()) { default: assert(0 && "Unknown pointer size!"); case 2: return Type::Int16Ty; case 4: return Type::Int32Ty; case 8: return Type::Int64Ty; } } uint64_t TargetData::getIndexedOffset(const Type *ptrTy, const std::vector &Idx) const { const Type *Ty = ptrTy; assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; generic_gep_type_iterator::const_iterator> TI = gep_type_begin(ptrTy, Idx.begin(), Idx.end()); for (unsigned CurIDX = 0; CurIDX != Idx.size(); ++CurIDX, ++TI) { if (const StructType *STy = dyn_cast(*TI)) { assert(Idx[CurIDX]->getType() == Type::Int32Ty && "Illegal struct idx"); unsigned FieldNo = cast(Idx[CurIDX])->getZExtValue(); // Get structure layout information... const StructLayout *Layout = getStructLayout(STy); // Add in the offset, as calculated by the structure layout info... assert(FieldNo < Layout->MemberOffsets.size() &&"FieldNo out of range!"); Result += Layout->MemberOffsets[FieldNo]; // Update Ty to refer to current element Ty = STy->getElementType(FieldNo); } else { // Update Ty to refer to current element Ty = cast(Ty)->getElementType(); // Get the array index and the size of each array element. int64_t arrayIdx = cast(Idx[CurIDX])->getSExtValue(); Result += arrayIdx * (int64_t)getTypeSize(Ty); } } return Result; } /// getPreferredAlignmentLog - Return the preferred alignment of the /// specified global, returned in log form. This includes an explicitly /// requested alignment (if the global has one). unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { const Type *ElemType = GV->getType()->getElementType(); unsigned Alignment = getTypeAlignmentShift(ElemType); if (GV->getAlignment() > (1U << Alignment)) Alignment = Log2_32(GV->getAlignment()); if (GV->hasInitializer()) { // Always round up alignment of global doubles to 8 bytes. if (GV->getType()->getElementType() == Type::DoubleTy && Alignment < 3) Alignment = 3; if (Alignment < 4) { // If the global is not external, see if it is large. If so, give it a // larger alignment. if (getTypeSize(ElemType) > 128) Alignment = 4; // 16-byte alignment. } } return Alignment; }