//===- llvm/unittest/DebugInfo/PDB/MappedBlockStreamTest.cpp --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ErrorChecking.h" #include "llvm/DebugInfo/MSF/ByteStream.h" #include "llvm/DebugInfo/MSF/IMSFFile.h" #include "llvm/DebugInfo/MSF/MappedBlockStream.h" #include "llvm/DebugInfo/MSF/MSFStreamLayout.h" #include "llvm/DebugInfo/MSF/StreamReader.h" #include "llvm/DebugInfo/MSF/StreamRef.h" #include "llvm/DebugInfo/MSF/StreamWriter.h" #include "gtest/gtest.h" #include using namespace llvm; using namespace llvm::msf; namespace { static const uint32_t BlocksAry[] = {0, 1, 2, 5, 4, 3, 6, 7, 8, 9}; static uint8_t DataAry[] = {'A', 'B', 'C', 'F', 'E', 'D', 'G', 'H', 'I', 'J'}; class DiscontiguousStream : public WritableStream { public: DiscontiguousStream(ArrayRef Blocks, MutableArrayRef Data) : Blocks(Blocks.begin(), Blocks.end()), Data(Data.begin(), Data.end()) {} uint32_t block_size() const { return 1; } uint32_t block_count() const { return Blocks.size(); } Error readBytes(uint32_t Offset, uint32_t Size, ArrayRef &Buffer) const override { if (Offset + Size > Data.size()) return make_error(msf_error_code::insufficient_buffer); Buffer = Data.slice(Offset, Size); return Error::success(); } Error readLongestContiguousChunk(uint32_t Offset, ArrayRef &Buffer) const override { if (Offset >= Data.size()) return make_error(msf_error_code::insufficient_buffer); Buffer = Data.drop_front(Offset); return Error::success(); } uint32_t getLength() const override { return Data.size(); } Error writeBytes(uint32_t Offset, ArrayRef SrcData) const override { if (Offset + SrcData.size() > Data.size()) return make_error(msf_error_code::insufficient_buffer); ::memcpy(&Data[Offset], SrcData.data(), SrcData.size()); return Error::success(); } Error commit() const override { return Error::success(); } MSFStreamLayout layout() const { return MSFStreamLayout{static_cast(Data.size()), Blocks}; } private: std::vector Blocks; MutableArrayRef Data; }; // Tests that a read which is entirely contained within a single block works // and does not allocate. TEST(MappedBlockStreamTest, ReadBeyondEndOfStreamRef) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); ReadableStreamRef SR; EXPECT_NO_ERROR(R.readStreamRef(SR, 0U)); ArrayRef Buffer; EXPECT_ERROR(SR.readBytes(0U, 1U, Buffer)); EXPECT_NO_ERROR(R.readStreamRef(SR, 1U)); EXPECT_ERROR(SR.readBytes(1U, 1U, Buffer)); } // Tests that a read which outputs into a full destination buffer works and // does not fail due to the length of the output buffer. TEST(MappedBlockStreamTest, ReadOntoNonEmptyBuffer) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str = "ZYXWVUTSRQPONMLKJIHGFEDCBA"; EXPECT_NO_ERROR(R.readFixedString(Str, 1)); EXPECT_EQ(Str, StringRef("A")); EXPECT_EQ(0U, S->getNumBytesCopied()); } // Tests that a read which crosses a block boundary, but where the subsequent // blocks are still contiguous in memory to the previous block works and does // not allocate memory. TEST(MappedBlockStreamTest, ZeroCopyReadContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str; EXPECT_NO_ERROR(R.readFixedString(Str, 2)); EXPECT_EQ(Str, StringRef("AB")); EXPECT_EQ(0U, S->getNumBytesCopied()); R.setOffset(6); EXPECT_NO_ERROR(R.readFixedString(Str, 4)); EXPECT_EQ(Str, StringRef("GHIJ")); EXPECT_EQ(0U, S->getNumBytesCopied()); } // Tests that a read which crosses a block boundary and cannot be referenced // contiguously works and allocates only the precise amount of bytes // requested. TEST(MappedBlockStreamTest, CopyReadNonContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str; EXPECT_NO_ERROR(R.readFixedString(Str, 10)); EXPECT_EQ(Str, StringRef("ABCDEFGHIJ")); EXPECT_EQ(10U, S->getNumBytesCopied()); } // Test that an out of bounds read which doesn't cross a block boundary // fails and allocates no memory. TEST(MappedBlockStreamTest, InvalidReadSizeNoBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str; R.setOffset(10); EXPECT_ERROR(R.readFixedString(Str, 1)); EXPECT_EQ(0U, S->getNumBytesCopied()); } // Test that an out of bounds read which crosses a contiguous block boundary // fails and allocates no memory. TEST(MappedBlockStreamTest, InvalidReadSizeContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str; R.setOffset(6); EXPECT_ERROR(R.readFixedString(Str, 5)); EXPECT_EQ(0U, S->getNumBytesCopied()); } // Test that an out of bounds read which crosses a discontiguous block // boundary fails and allocates no memory. TEST(MappedBlockStreamTest, InvalidReadSizeNonContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str; EXPECT_ERROR(R.readFixedString(Str, 11)); EXPECT_EQ(0U, S->getNumBytesCopied()); } // Tests that a read which is entirely contained within a single block but // beyond the end of a StreamRef fails. TEST(MappedBlockStreamTest, ZeroCopyReadNoBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str; EXPECT_NO_ERROR(R.readFixedString(Str, 1)); EXPECT_EQ(Str, StringRef("A")); EXPECT_EQ(0U, S->getNumBytesCopied()); } // Tests that a read which is not aligned on the same boundary as a previous // cached request, but which is known to overlap that request, shares the // previous allocation. TEST(MappedBlockStreamTest, UnalignedOverlappingRead) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str1; StringRef Str2; EXPECT_NO_ERROR(R.readFixedString(Str1, 7)); EXPECT_EQ(Str1, StringRef("ABCDEFG")); EXPECT_EQ(7U, S->getNumBytesCopied()); R.setOffset(2); EXPECT_NO_ERROR(R.readFixedString(Str2, 3)); EXPECT_EQ(Str2, StringRef("CDE")); EXPECT_EQ(Str1.data() + 2, Str2.data()); EXPECT_EQ(7U, S->getNumBytesCopied()); } // Tests that a read which is not aligned on the same boundary as a previous // cached request, but which only partially overlaps a previous cached request, // still works correctly and allocates again from the shared pool. TEST(MappedBlockStreamTest, UnalignedOverlappingReadFail) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.block_count(), F.layout(), F); StreamReader R(*S); StringRef Str1; StringRef Str2; EXPECT_NO_ERROR(R.readFixedString(Str1, 6)); EXPECT_EQ(Str1, StringRef("ABCDEF")); EXPECT_EQ(6U, S->getNumBytesCopied()); R.setOffset(4); EXPECT_NO_ERROR(R.readFixedString(Str2, 4)); EXPECT_EQ(Str2, StringRef("EFGH")); EXPECT_EQ(10U, S->getNumBytesCopied()); } TEST(MappedBlockStreamTest, WriteBeyondEndOfStream) { static uint8_t Data[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'}; static uint8_t LargeBuffer[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A'}; static uint8_t SmallBuffer[] = {'0', '1', '2'}; static_assert(sizeof(LargeBuffer) > sizeof(Data), "LargeBuffer is not big enough"); DiscontiguousStream F(BlocksAry, Data); auto S = WritableMappedBlockStream::createStream( F.block_size(), F.block_count(), F.layout(), F); ArrayRef Buffer; EXPECT_ERROR(S->writeBytes(0, ArrayRef(LargeBuffer))); EXPECT_NO_ERROR(S->writeBytes(0, ArrayRef(SmallBuffer))); EXPECT_NO_ERROR(S->writeBytes(7, ArrayRef(SmallBuffer))); EXPECT_ERROR(S->writeBytes(8, ArrayRef(SmallBuffer))); } TEST(MappedBlockStreamTest, TestWriteBytesNoBreakBoundary) { static uint8_t Data[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'}; DiscontiguousStream F(BlocksAry, Data); auto S = WritableMappedBlockStream::createStream( F.block_size(), F.block_count(), F.layout(), F); ArrayRef Buffer; EXPECT_NO_ERROR(S->readBytes(0, 1, Buffer)); EXPECT_EQ(Buffer, ArrayRef('A')); EXPECT_NO_ERROR(S->readBytes(9, 1, Buffer)); EXPECT_EQ(Buffer, ArrayRef('J')); EXPECT_NO_ERROR(S->writeBytes(0, ArrayRef('J'))); EXPECT_NO_ERROR(S->writeBytes(9, ArrayRef('A'))); EXPECT_NO_ERROR(S->readBytes(0, 1, Buffer)); EXPECT_EQ(Buffer, ArrayRef('J')); EXPECT_NO_ERROR(S->readBytes(9, 1, Buffer)); EXPECT_EQ(Buffer, ArrayRef('A')); EXPECT_NO_ERROR(S->writeBytes(0, ArrayRef('A'))); EXPECT_NO_ERROR(S->writeBytes(9, ArrayRef('J'))); EXPECT_NO_ERROR(S->readBytes(0, 1, Buffer)); EXPECT_EQ(Buffer, ArrayRef('A')); EXPECT_NO_ERROR(S->readBytes(9, 1, Buffer)); EXPECT_EQ(Buffer, ArrayRef('J')); } TEST(MappedBlockStreamTest, TestWriteBytesBreakBoundary) { static uint8_t Data[] = {'0', '0', '0', '0', '0', '0', '0', '0', '0', '0'}; static uint8_t TestData[] = {'T', 'E', 'S', 'T', 'I', 'N', 'G', '.'}; static uint8_t Expected[] = {'T', 'E', 'S', 'N', 'I', 'T', 'G', '.', '0', '0'}; DiscontiguousStream F(BlocksAry, Data); auto S = WritableMappedBlockStream::createStream( F.block_size(), F.block_count(), F.layout(), F); ArrayRef Buffer; EXPECT_NO_ERROR(S->writeBytes(0, TestData)); // First just compare the memory, then compare the result of reading the // string out. EXPECT_EQ(ArrayRef(Data), ArrayRef(Expected)); EXPECT_NO_ERROR(S->readBytes(0, 8, Buffer)); EXPECT_EQ(Buffer, ArrayRef(TestData)); } TEST(MappedBlockStreamTest, TestWriteThenRead) { std::vector DataBytes(10); MutableArrayRef Data(DataBytes); const uint32_t Blocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8}; DiscontiguousStream F(Blocks, Data); auto S = WritableMappedBlockStream::createStream( F.block_size(), F.block_count(), F.layout(), F); enum class MyEnum : uint32_t { Val1 = 2908234, Val2 = 120891234 }; using support::ulittle32_t; uint16_t u16[] = {31468, 0}; uint32_t u32[] = {890723408, 0}; MyEnum Enum[] = {MyEnum::Val1, MyEnum::Val2}; StringRef ZStr[] = {"Zero Str", ""}; StringRef FStr[] = {"Fixed Str", ""}; uint8_t byteArray0[] = {'1', '2'}; uint8_t byteArray1[] = {'0', '0'}; ArrayRef byteArrayRef0(byteArray0); ArrayRef byteArrayRef1(byteArray1); ArrayRef byteArray[] = { byteArrayRef0, byteArrayRef1 }; uint32_t intArr0[] = {890723408, 29082234}; uint32_t intArr1[] = {890723408, 29082234}; ArrayRef intArray[] = {intArr0, intArr1}; StreamReader Reader(*S); StreamWriter Writer(*S); EXPECT_NO_ERROR(Writer.writeInteger(u16[0])); EXPECT_NO_ERROR(Reader.readInteger(u16[1])); EXPECT_EQ(u16[0], u16[1]); EXPECT_EQ(std::vector({0, 0x7A, 0xEC, 0, 0, 0, 0, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_NO_ERROR(Writer.writeInteger(u32[0])); EXPECT_NO_ERROR(Reader.readInteger(u32[1])); EXPECT_EQ(u32[0], u32[1]); EXPECT_EQ(std::vector({0x17, 0x5C, 0x50, 0, 0, 0, 0x35, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_NO_ERROR(Writer.writeEnum(Enum[0])); EXPECT_NO_ERROR(Reader.readEnum(Enum[1])); EXPECT_EQ(Enum[0], Enum[1]); EXPECT_EQ(std::vector({0x2C, 0x60, 0x4A, 0, 0, 0, 0, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_NO_ERROR(Writer.writeZeroString(ZStr[0])); EXPECT_NO_ERROR(Reader.readZeroString(ZStr[1])); EXPECT_EQ(ZStr[0], ZStr[1]); EXPECT_EQ( std::vector({'r', 'e', 'Z', ' ', 'S', 't', 'o', 'r', 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_NO_ERROR(Writer.writeFixedString(FStr[0])); EXPECT_NO_ERROR(Reader.readFixedString(FStr[1], FStr[0].size())); EXPECT_EQ(FStr[0], FStr[1]); EXPECT_EQ( std::vector({'x', 'i', 'F', 'd', ' ', 'S', 'e', 't', 0, 'r'}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_NO_ERROR(Writer.writeArray(byteArray[0])); EXPECT_NO_ERROR(Reader.readArray(byteArray[1], byteArray[0].size())); EXPECT_EQ(byteArray[0], byteArray[1]); EXPECT_EQ(std::vector({0, 0x32, 0x31, 0, 0, 0, 0, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_NO_ERROR(Writer.writeArray(intArray[0])); EXPECT_NO_ERROR(Reader.readArray(intArray[1], intArray[0].size())); EXPECT_EQ(intArray[0], intArray[1]); } TEST(MappedBlockStreamTest, TestWriteContiguousStreamRef) { std::vector DestDataBytes(10); MutableArrayRef DestData(DestDataBytes); const uint32_t DestBlocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8}; std::vector SrcDataBytes(10); MutableArrayRef SrcData(SrcDataBytes); DiscontiguousStream F(DestBlocks, DestData); auto DestStream = WritableMappedBlockStream::createStream( F.block_size(), F.block_count(), F.layout(), F); // First write "Test Str" into the source stream. MutableByteStream SourceStream(SrcData); StreamWriter SourceWriter(SourceStream); EXPECT_NO_ERROR(SourceWriter.writeZeroString("Test Str")); EXPECT_EQ(SrcDataBytes, std::vector( {'T', 'e', 's', 't', ' ', 'S', 't', 'r', 0, 0})); // Then write the source stream into the dest stream. StreamWriter DestWriter(*DestStream); EXPECT_NO_ERROR(DestWriter.writeStreamRef(SourceStream)); EXPECT_EQ(DestDataBytes, std::vector( {'s', 'e', 'T', ' ', 'S', 't', 't', 'r', 0, 0})); // Then read the string back out of the dest stream. StringRef Result; StreamReader DestReader(*DestStream); EXPECT_NO_ERROR(DestReader.readZeroString(Result)); EXPECT_EQ(Result, "Test Str"); } TEST(MappedBlockStreamTest, TestWriteDiscontiguousStreamRef) { std::vector DestDataBytes(10); MutableArrayRef DestData(DestDataBytes); const uint32_t DestBlocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8}; std::vector SrcDataBytes(10); MutableArrayRef SrcData(SrcDataBytes); const uint32_t SrcBlocks[] = {1, 0, 6, 3, 4, 5, 2, 7, 8, 9}; DiscontiguousStream DestF(DestBlocks, DestData); DiscontiguousStream SrcF(SrcBlocks, SrcData); auto Dest = WritableMappedBlockStream::createStream( DestF.block_size(), DestF.block_count(), DestF.layout(), DestF); auto Src = WritableMappedBlockStream::createStream( SrcF.block_size(), SrcF.block_count(), SrcF.layout(), SrcF); // First write "Test Str" into the source stream. StreamWriter SourceWriter(*Src); EXPECT_NO_ERROR(SourceWriter.writeZeroString("Test Str")); EXPECT_EQ(SrcDataBytes, std::vector( {'e', 'T', 't', 't', ' ', 'S', 's', 'r', 0, 0})); // Then write the source stream into the dest stream. StreamWriter DestWriter(*Dest); EXPECT_NO_ERROR(DestWriter.writeStreamRef(*Src)); EXPECT_EQ(DestDataBytes, std::vector( {'s', 'e', 'T', ' ', 'S', 't', 't', 'r', 0, 0})); // Then read the string back out of the dest stream. StringRef Result; StreamReader DestReader(*Dest); EXPECT_NO_ERROR(DestReader.readZeroString(Result)); EXPECT_EQ(Result, "Test Str"); } } // end anonymous namespace