//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===// // // This pass is used to promote memory references to be register references. A // simple example of the transformation performed by this pass is: // // FROM CODE TO CODE // %X = alloca int, uint 1 ret int 42 // store int 42, int *%X // %Y = load int* %X // ret int %Y // // To do this transformation, a simple analysis is done to ensure it is safe. // Currently this just loops over all alloca instructions, looking for // instructions that are only used in simple load and stores. // // After this, the code is transformed by...something magical :) // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/Dominators.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/Constant.h" #include "llvm/Type.h" #include "Support/StatisticReporter.h" static Statistic<> NumPromoted("mem2reg\t\t- Number of alloca's promoted"); using std::vector; using std::map; using std::set; namespace { struct PromotePass : public FunctionPass { vector Allocas; // the alloca instruction.. map AllocaLookup; // reverse mapping of above vector > PhiNodes; // index corresponds to Allocas // List of instructions to remove at end of pass vector KillList; map > NewPhiNodes; // the PhiNodes we're adding public: const char *getPassName() const { return "Promote Memory to Register"; } // runOnFunction - To run this pass, first we calculate the alloca // instructions that are safe for promotion, then we promote each one. // virtual bool runOnFunction(Function *F); // getAnalysisUsage - We need dominance frontiers // virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(DominanceFrontier::ID); AU.preservesCFG(); } private: void Traverse(BasicBlock *BB, BasicBlock *Pred, vector &IncVals, set &Visited); bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx); void FindSafeAllocas(Function *F); }; } // end of anonymous namespace // isSafeAlloca - This predicate controls what types of alloca instructions are // allowed to be promoted... // static inline bool isSafeAlloca(const AllocaInst *AI) { if (AI->isArrayAllocation()) return false; for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) { // Loop over all of the uses of the alloca // Only allow nonindexed memory access instructions... if (MemAccessInst *MAI = dyn_cast(*UI)) { if (MAI->getPointerOperand() != (Value*)AI) return false; // Reject stores of alloca pointer into some other loc. if (MAI->hasIndices()) { // indexed? // Allow the access if there is only one index and the index is // zero. if (*MAI->idx_begin() != Constant::getNullValue(Type::UIntTy) || MAI->idx_begin()+1 != MAI->idx_end()) return false; } } else { return false; // Not a load or store? } } return true; } // FindSafeAllocas - Find allocas that are safe to promote // void PromotePass::FindSafeAllocas(Function *F) { BasicBlock *BB = F->getEntryNode(); // Get the entry node for the function // Look at all instructions in the entry node for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(*I)) // Is it an alloca? if (isSafeAlloca(AI)) { // If safe alloca, add alloca to safe list AllocaLookup[AI] = Allocas.size(); // Keep reverse mapping Allocas.push_back(AI); } } bool PromotePass::runOnFunction(Function *F) { // Calculate the set of safe allocas FindSafeAllocas(F); // If there is nothing to do, bail out... if (Allocas.empty()) return false; // Add each alloca to the KillList. Note: KillList is destroyed MOST recently // added to least recently. KillList.assign(Allocas.begin(), Allocas.end()); // Calculate the set of write-locations for each alloca. This is analogous to // counting the number of 'redefinitions' of each variable. vector > WriteSets; // index corresponds to Allocas WriteSets.resize(Allocas.size()); for (unsigned i = 0; i != Allocas.size(); ++i) { AllocaInst *AI = Allocas[i]; for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U) if (StoreInst *SI = dyn_cast(*U)) // jot down the basic-block it came from WriteSets[i].push_back(SI->getParent()); } // Get dominance frontier information... DominanceFrontier &DF = getAnalysis(); // Compute the locations where PhiNodes need to be inserted. Look at the // dominance frontier of EACH basic-block we have a write in // PhiNodes.resize(Allocas.size()); for (unsigned i = 0; i != Allocas.size(); ++i) { for (unsigned j = 0; j != WriteSets[i].size(); j++) { // Look up the DF for this write, add it to PhiNodes DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]); DominanceFrontier::DomSetType S = it->second; for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end(); P != PE; ++P) QueuePhiNode(*P, i); } // Perform iterative step for (unsigned k = 0; k != PhiNodes[i].size(); k++) { DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]); DominanceFrontier::DomSetType S = it->second; for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end(); P != PE; ++P) QueuePhiNode(*P, i); } } // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. // vector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary // set Visited; // The basic blocks we've already visited Traverse(F->front(), 0, Values, Visited); // Remove all instructions marked by being placed in the KillList... // while (!KillList.empty()) { Instruction *I = KillList.back(); KillList.pop_back(); I->getParent()->getInstList().remove(I); delete I; } NumPromoted += Allocas.size(); // Purge data structurse so they are available the next iteration... Allocas.clear(); AllocaLookup.clear(); PhiNodes.clear(); NewPhiNodes.clear(); return true; } // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific // Alloca returns true if there wasn't already a phi-node for that variable // bool PromotePass::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) { // Look up the basic-block in question vector &BBPNs = NewPhiNodes[BB]; if (BBPNs.empty()) BBPNs.resize(Allocas.size()); // If the BB already has a phi node added for the i'th alloca then we're done! if (BBPNs[AllocaNo]) return false; // Create a PhiNode using the dereferenced type... PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(), Allocas[AllocaNo]->getName()+".mem2reg"); BBPNs[AllocaNo] = PN; // Add the phi-node to the basic-block BB->getInstList().push_front(PN); PhiNodes[AllocaNo].push_back(BB); return true; } void PromotePass::Traverse(BasicBlock *BB, BasicBlock *Pred, vector &IncomingVals, set &Visited) { // If this is a BB needing a phi node, lookup/create the phinode for each // variable we need phinodes for. vector &BBPNs = NewPhiNodes[BB]; for (unsigned k = 0; k != BBPNs.size(); ++k) if (PHINode *PN = BBPNs[k]) { // at this point we can assume that the array has phi nodes.. let's add // the incoming data PN->addIncoming(IncomingVals[k], Pred); // also note that the active variable IS designated by the phi node IncomingVals[k] = PN; } // don't revisit nodes if (Visited.count(BB)) return; // mark as visited Visited.insert(BB); // keep track of the value of each variable we're watching.. how? for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) { Instruction *I = *II; //get the instruction if (LoadInst *LI = dyn_cast(I)) { Value *Ptr = LI->getPointerOperand(); if (AllocaInst *Src = dyn_cast(Ptr)) { map::iterator AI = AllocaLookup.find(Src); if (AI != AllocaLookup.end()) { Value *V = IncomingVals[AI->second]; // walk the use list of this load and replace all uses with r LI->replaceAllUsesWith(V); KillList.push_back(LI); // Mark the load to be deleted } } } else if (StoreInst *SI = dyn_cast(I)) { // delete this instruction and mark the name as the current holder of the // value Value *Ptr = SI->getPointerOperand(); if (AllocaInst *Dest = dyn_cast(Ptr)) { map::iterator ai = AllocaLookup.find(Dest); if (ai != AllocaLookup.end()) { // what value were we writing? IncomingVals[ai->second] = SI->getOperand(0); KillList.push_back(SI); // Mark the store to be deleted } } } else if (TerminatorInst *TI = dyn_cast(I)) { // Recurse across our successors for (unsigned i = 0; i != TI->getNumSuccessors(); i++) { vector OutgoingVals(IncomingVals); Traverse(TI->getSuccessor(i), BB, OutgoingVals, Visited); } } } } // createPromoteMemoryToRegister - Provide an entry point to create this pass. // Pass *createPromoteMemoryToRegister() { return new PromotePass(); }