//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tool implements a just-in-time compiler for LLVM, allowing direct // execution of LLVM bitcode in an efficient manner. // //===----------------------------------------------------------------------===// #include "JIT.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/ModuleProvider.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Support/MutexGuard.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetJITInfo.h" #include "llvm/Config/config.h" using namespace llvm; #ifdef __APPLE__ // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead // of atexit). It passes the address of linker generated symbol __dso_handle // to the function. // This configuration change happened at version 5330. # include # if defined(MAC_OS_X_VERSION_10_4) && \ ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ __APPLE_CC__ >= 5330)) # ifndef HAVE___DSO_HANDLE # define HAVE___DSO_HANDLE 1 # endif # endif #endif #if HAVE___DSO_HANDLE extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); #endif static struct RegisterJIT { RegisterJIT() { JIT::Register(); } } JITRegistrator; namespace llvm { void LinkInJIT() { } } JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji) : ExecutionEngine(MP), TM(tm), TJI(tji), jitstate(MP) { setTargetData(TM.getTargetData()); // Initialize MCE MCE = createEmitter(*this); // Add target data MutexGuard locked(lock); FunctionPassManager &PM = jitstate.getPM(locked); PM.add(new TargetData(*TM.getTargetData())); // Turn the machine code intermediate representation into bytes in memory that // may be executed. if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) { cerr << "Target does not support machine code emission!\n"; abort(); } // Initialize passes. PM.doInitialization(); } JIT::~JIT() { delete MCE; delete &TM; } /// run - Start execution with the specified function and arguments. /// GenericValue JIT::runFunction(Function *F, const std::vector &ArgValues) { assert(F && "Function *F was null at entry to run()"); void *FPtr = getPointerToFunction(F); assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); const FunctionType *FTy = F->getFunctionType(); const Type *RetTy = FTy->getReturnType(); assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) && "Too many arguments passed into function!"); assert(FTy->getNumParams() == ArgValues.size() && "This doesn't support passing arguments through varargs (yet)!"); // Handle some common cases first. These cases correspond to common `main' // prototypes. if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) { switch (ArgValues.size()) { case 3: if (FTy->getParamType(0) == Type::Int32Ty && isa(FTy->getParamType(1)) && isa(FTy->getParamType(2))) { int (*PF)(int, char **, const char **) = (int(*)(int, char **, const char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]), (const char **)GVTOP(ArgValues[2]))); return rv; } break; case 2: if (FTy->getParamType(0) == Type::Int32Ty && isa(FTy->getParamType(1))) { int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]))); return rv; } break; case 1: if (FTy->getNumParams() == 1 && FTy->getParamType(0) == Type::Int32Ty) { GenericValue rv; int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); return rv; } break; } } // Handle cases where no arguments are passed first. if (ArgValues.empty()) { GenericValue rv; switch (RetTy->getTypeID()) { default: assert(0 && "Unknown return type for function call!"); case Type::IntegerTyID: { unsigned BitWidth = cast(RetTy)->getBitWidth(); if (BitWidth == 1) rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); else if (BitWidth <= 8) rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); else if (BitWidth <= 16) rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); else if (BitWidth <= 32) rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); else if (BitWidth <= 64) rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); else assert(0 && "Integer types > 64 bits not supported"); return rv; } case Type::VoidTyID: rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); return rv; case Type::FloatTyID: rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); return rv; case Type::DoubleTyID: rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); return rv; case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: assert(0 && "long double not supported yet"); return rv; case Type::PointerTyID: return PTOGV(((void*(*)())(intptr_t)FPtr)()); } } // Okay, this is not one of our quick and easy cases. Because we don't have a // full FFI, we have to codegen a nullary stub function that just calls the // function we are interested in, passing in constants for all of the // arguments. Make this function and return. // First, create the function. FunctionType *STy=FunctionType::get(RetTy, std::vector(), false); Function *Stub = new Function(STy, Function::InternalLinkage, "", F->getParent()); // Insert a basic block. BasicBlock *StubBB = new BasicBlock("", Stub); // Convert all of the GenericValue arguments over to constants. Note that we // currently don't support varargs. SmallVector Args; for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { Constant *C = 0; const Type *ArgTy = FTy->getParamType(i); const GenericValue &AV = ArgValues[i]; switch (ArgTy->getTypeID()) { default: assert(0 && "Unknown argument type for function call!"); case Type::IntegerTyID: C = ConstantInt::get(AV.IntVal); break; case Type::FloatTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.FloatVal)); break; case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, APFloat(AV.DoubleVal)); break; case Type::PPC_FP128TyID: case Type::X86_FP80TyID: case Type::FP128TyID: C = ConstantFP ::get(ArgTy, APFloat(AV.IntVal)); break; case Type::PointerTyID: void *ArgPtr = GVTOP(AV); if (sizeof(void*) == 4) { C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr); } else { C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr); } C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer break; } Args.push_back(C); } CallInst *TheCall = new CallInst(F, Args.begin(), Args.end(), "", StubBB); TheCall->setTailCall(); if (TheCall->getType() != Type::VoidTy) new ReturnInst(TheCall, StubBB); // Return result of the call. else new ReturnInst(StubBB); // Just return void. // Finally, return the value returned by our nullary stub function. return runFunction(Stub, std::vector()); } /// runJITOnFunction - Run the FunctionPassManager full of /// just-in-time compilation passes on F, hopefully filling in /// GlobalAddress[F] with the address of F's machine code. /// void JIT::runJITOnFunction(Function *F) { static bool isAlreadyCodeGenerating = false; MutexGuard locked(lock); assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); // JIT the function isAlreadyCodeGenerating = true; jitstate.getPM(locked).run(*F); isAlreadyCodeGenerating = false; // If the function referred to a global variable that had not yet been // emitted, it allocates memory for the global, but doesn't emit it yet. Emit // all of these globals now. while (!jitstate.getPendingGlobals(locked).empty()) { const GlobalVariable *GV = jitstate.getPendingGlobals(locked).back(); jitstate.getPendingGlobals(locked).pop_back(); EmitGlobalVariable(GV); } } /// getPointerToFunction - This method is used to get the address of the /// specified function, compiling it if neccesary. /// void *JIT::getPointerToFunction(Function *F) { MutexGuard locked(lock); if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; // Check if function already code gen'd // Make sure we read in the function if it exists in this Module. if (F->hasNotBeenReadFromBitcode()) { // Determine the module provider this function is provided by. Module *M = F->getParent(); ModuleProvider *MP = 0; for (unsigned i = 0, e = Modules.size(); i != e; ++i) { if (Modules[i]->getModule() == M) { MP = Modules[i]; break; } } assert(MP && "Function isn't in a module we know about!"); std::string ErrorMsg; if (MP->materializeFunction(F, &ErrorMsg)) { cerr << "Error reading function '" << F->getName() << "' from bitcode file: " << ErrorMsg << "\n"; abort(); } } if (F->isDeclaration()) { void *Addr = getPointerToNamedFunction(F->getName()); addGlobalMapping(F, Addr); return Addr; } runJITOnFunction(F); void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr && "Code generation didn't add function to GlobalAddress table!"); return Addr; } /// getOrEmitGlobalVariable - Return the address of the specified global /// variable, possibly emitting it to memory if needed. This is used by the /// Emitter. void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { MutexGuard locked(lock); void *Ptr = getPointerToGlobalIfAvailable(GV); if (Ptr) return Ptr; // If the global is external, just remember the address. if (GV->isDeclaration()) { #if HAVE___DSO_HANDLE if (GV->getName() == "__dso_handle") return (void*)&__dso_handle; #endif Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str()); if (Ptr == 0) { cerr << "Could not resolve external global address: " << GV->getName() << "\n"; abort(); } } else { // If the global hasn't been emitted to memory yet, allocate space. We will // actually initialize the global after current function has finished // compilation. const Type *GlobalType = GV->getType()->getElementType(); size_t S = getTargetData()->getABITypeSize(GlobalType); size_t A = getTargetData()->getPrefTypeAlignment(GlobalType); if (A <= 8) { Ptr = malloc(S); } else { // Allocate S+A bytes of memory, then use an aligned pointer within that // space. Ptr = malloc(S+A); unsigned MisAligned = ((intptr_t)Ptr & (A-1)); Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0); } jitstate.getPendingGlobals(locked).push_back(GV); } addGlobalMapping(GV, Ptr); return Ptr; } /// recompileAndRelinkFunction - This method is used to force a function /// which has already been compiled, to be compiled again, possibly /// after it has been modified. Then the entry to the old copy is overwritten /// with a branch to the new copy. If there was no old copy, this acts /// just like JIT::getPointerToFunction(). /// void *JIT::recompileAndRelinkFunction(Function *F) { void *OldAddr = getPointerToGlobalIfAvailable(F); // If it's not already compiled there is no reason to patch it up. if (OldAddr == 0) { return getPointerToFunction(F); } // Delete the old function mapping. addGlobalMapping(F, 0); // Recodegen the function runJITOnFunction(F); // Update state, forward the old function to the new function. void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr && "Code generation didn't add function to GlobalAddress table!"); TJI.replaceMachineCodeForFunction(OldAddr, Addr); return Addr; }