//===- Local.cpp - Compute a local data structure graph for a function ----===// // // Compute the local version of the data structure graph for a function. The // external interface to this file is the DSGraph constructor. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DSGraph.h" #include "llvm/Analysis/DataStructure.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Target/TargetData.h" #include "Support/Statistic.h" // FIXME: This should eventually be a FunctionPass that is automatically // aggregated into a Pass. // #include "llvm/Module.h" using std::map; using std::vector; static RegisterAnalysis X("datastructure", "Local Data Structure Analysis"); using namespace DataStructureAnalysis; namespace DataStructureAnalysis { // FIXME: Do something smarter with target data! TargetData TD("temp-td"); unsigned PointerSize(TD.getPointerSize()); // isPointerType - Return true if this type is big enough to hold a pointer. bool isPointerType(const Type *Ty) { if (isa(Ty)) return true; else if (Ty->isPrimitiveType() && Ty->isInteger()) return Ty->getPrimitiveSize() >= PointerSize; return false; } } namespace { //===--------------------------------------------------------------------===// // GraphBuilder Class //===--------------------------------------------------------------------===// // /// This class is the builder class that constructs the local data structure /// graph by performing a single pass over the function in question. /// class GraphBuilder : InstVisitor { DSGraph &G; vector &Nodes; DSNodeHandle &RetNode; // Node that gets returned... map &ValueMap; vector &FunctionCalls; public: GraphBuilder(DSGraph &g, vector &nodes, DSNodeHandle &retNode, map &vm, vector &fc) : G(g), Nodes(nodes), RetNode(retNode), ValueMap(vm), FunctionCalls(fc) { // Create scalar nodes for all pointer arguments... for (Function::aiterator I = G.getFunction().abegin(), E = G.getFunction().aend(); I != E; ++I) if (isPointerType(I->getType())) getValueDest(*I); visit(G.getFunction()); // Single pass over the function // Not inlining, only eliminate trivially dead nodes. G.removeTriviallyDeadNodes(); } private: // Visitor functions, used to handle each instruction type we encounter... friend class InstVisitor; void visitMallocInst(MallocInst &MI) { handleAlloc(MI, DSNode::NewNode); } void visitAllocaInst(AllocaInst &AI) { handleAlloc(AI, DSNode::AllocaNode);} void handleAlloc(AllocationInst &AI, DSNode::NodeTy NT); void visitPHINode(PHINode &PN); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitReturnInst(ReturnInst &RI); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void visitCallInst(CallInst &CI); void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored void visitFreeInst(FreeInst &FI) {} // Ignore free instructions void visitCastInst(CastInst &CI); void visitInstruction(Instruction &I) {} private: // Helper functions used to implement the visitation functions... /// createNode - Create a new DSNode, ensuring that it is properly added to /// the graph. /// DSNode *createNode(DSNode::NodeTy NodeType, const Type *Ty); /// getValueNode - Return a DSNode that corresponds the the specified LLVM /// value. This either returns the already existing node, or creates a new /// one and adds it to the graph, if none exists. /// DSNodeHandle getValueNode(Value &V); /// getValueDest - Return the DSNode that the actual value points to. This /// is basically the same thing as: getLink(getValueNode(V), 0) /// DSNodeHandle &getValueDest(Value &V); /// getGlobalNode - Just like getValueNode, except the global node itself is /// returned, not a scalar node pointing to a global. /// DSNodeHandle &getGlobalNode(GlobalValue &V); /// getLink - This method is used to return the specified link in the /// specified node if one exists. If a link does not already exist (it's /// null), then we create a new node, link it, then return it. We must /// specify the type of the Node field we are accessing so that we know what /// type should be linked to if we need to create a new node. /// DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link, const Type *FieldTy); }; } //===----------------------------------------------------------------------===// // DSGraph constructor - Simply use the GraphBuilder to construct the local // graph. DSGraph::DSGraph(Function &F) : Func(&F) { // Use the graph builder to construct the local version of the graph GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls); markIncompleteNodes(); } //===----------------------------------------------------------------------===// // Helper method implementations... // // createNode - Create a new DSNode, ensuring that it is properly added to the // graph. // DSNode *GraphBuilder::createNode(DSNode::NodeTy NodeType, const Type *Ty) { DSNode *N = new DSNode(NodeType, Ty); Nodes.push_back(N); return N; } // getGlobalNode - Just like getValueNode, except the global node itself is // returned, not a scalar node pointing to a global. // DSNodeHandle &GraphBuilder::getGlobalNode(GlobalValue &V) { DSNodeHandle &NH = ValueMap[&V]; if (NH.getNode()) return NH; // Already have a node? Just return it... // Create a new global node for this global variable... DSNode *G = createNode(DSNode::GlobalNode, V.getType()->getElementType()); G->addGlobal(&V); // If this node has outgoing edges, make sure to recycle the same node for // each use. For functions and other global variables, this is unneccesary, // so avoid excessive merging by cloning these nodes on demand. // NH.setNode(G); return NH; } // getValueNode - Return a DSNode that corresponds the the specified LLVM value. // This either returns the already existing node, or creates a new one and adds // it to the graph, if none exists. // DSNodeHandle GraphBuilder::getValueNode(Value &V) { assert(isPointerType(V.getType()) && "Should only use pointer scalars!"); // Do not share the pointer value to globals... this would cause way too much // false merging. // DSNodeHandle &NH = ValueMap[&V]; if (!isa(V) && NH.getNode()) return NH; // Already have a node? Just return it... // Otherwise we need to create a new scalar node... DSNode *N = createNode(DSNode::ScalarNode, V.getType()); // If this is a global value, create the global pointed to. if (GlobalValue *GV = dyn_cast(&V)) { N->addEdgeTo(0, getGlobalNode(*GV)); return DSNodeHandle(N, 0); } else { NH.setOffset(0); NH.setNode(N); } return NH; } /// getValueDest - Return the DSNode that the actual value points to. This /// is basically the same thing as: getLink(getValueNode(V), 0) /// DSNodeHandle &GraphBuilder::getValueDest(Value &V) { return getLink(getValueNode(V), 0, V.getType()); } /// getLink - This method is used to return the specified link in the /// specified node if one exists. If a link does not already exist (it's /// null), then we create a new node, link it, then return it. We must /// specify the type of the Node field we are accessing so that we know what /// type should be linked to if we need to create a new node. /// DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node, unsigned LinkNo, const Type *FieldTy) { DSNodeHandle &Node = const_cast(node); DSNodeHandle *Link = Node.getLink(LinkNo); if (Link) return *Link; // If the link hasn't been created yet, make and return a new shadow node of // the appropriate type for FieldTy... // // If we are indexing with a typed pointer, then the thing we are pointing // to is of the pointed type. If we are pointing to it with an integer // (because of cast to an integer), we represent it with a void type. // const Type *ReqTy; if (const PointerType *Ptr = dyn_cast(FieldTy)) ReqTy = Ptr->getElementType(); else ReqTy = Type::VoidTy; DSNode *N = createNode(DSNode::ShadowNode, ReqTy); Node.setLink(LinkNo, N); return *Node.getLink(LinkNo); } //===----------------------------------------------------------------------===// // Specific instruction type handler implementations... // /// Alloca & Malloc instruction implementation - Simply create a new memory /// object, pointing the scalar to it. /// void GraphBuilder::handleAlloc(AllocationInst &AI, DSNode::NodeTy NodeType) { DSNode *New = createNode(NodeType, AI.getAllocatedType()); // Make the scalar point to the new node... getValueNode(AI).addEdgeTo(New); } // PHINode - Make the scalar for the PHI node point to all of the things the // incoming values point to... which effectively causes them to be merged. // void GraphBuilder::visitPHINode(PHINode &PN) { if (!isPointerType(PN.getType())) return; // Only pointer PHIs DSNodeHandle &ScalarDest = getValueDest(PN); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) if (!isa(PN.getIncomingValue(i))) ScalarDest.mergeWith(getValueDest(*PN.getIncomingValue(i))); } void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) { DSNodeHandle Value = getValueDest(*GEP.getOperand(0)); unsigned Offset = 0; const Type *CurTy = GEP.getOperand(0)->getType(); for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i) if (GEP.getOperand(i)->getType() == Type::LongTy) { // Get the type indexing into... const SequentialType *STy = cast(CurTy); CurTy = STy->getElementType(); if (ConstantSInt *CS = dyn_cast(GEP.getOperand(i))) { if (isa(STy)) std::cerr << "Pointer indexing not handled yet!\n"; else Offset += CS->getValue()*TD.getTypeSize(CurTy); } else { // Variable index into a node. We must merge all of the elements of the // sequential type here. if (isa(STy)) std::cerr << "Pointer indexing not handled yet!\n"; else { const ArrayType *ATy = cast(STy); unsigned ElSize = TD.getTypeSize(CurTy); DSNode *N = Value.getNode(); assert(N && "Value must have a node!"); unsigned RawOffset = Offset+Value.getOffset(); // Loop over all of the elements of the array, merging them into the // zero'th element. for (unsigned i = 1, e = ATy->getNumElements(); i != e; ++i) // Merge all of the byte components of this array element for (unsigned j = 0; j != ElSize; ++j) N->mergeIndexes(RawOffset+j, RawOffset+i*ElSize+j); } } } else if (GEP.getOperand(i)->getType() == Type::UByteTy) { unsigned FieldNo = cast(GEP.getOperand(i))->getValue(); const StructType *STy = cast(CurTy); Offset += TD.getStructLayout(STy)->MemberOffsets[FieldNo]; CurTy = STy->getContainedType(FieldNo); } // Add in the offset calculated... Value.setOffset(Value.getOffset()+Offset); // Value is now the pointer we want to GEP to be... getValueNode(GEP).addEdgeTo(Value); } void GraphBuilder::visitLoadInst(LoadInst &LI) { DSNodeHandle &Ptr = getValueDest(*LI.getOperand(0)); Ptr.getNode()->NodeType |= DSNode::Read; if (isPointerType(LI.getType())) getValueNode(LI).addEdgeTo(getLink(Ptr, 0, LI.getType())); } void GraphBuilder::visitStoreInst(StoreInst &SI) { DSNodeHandle &Dest = getValueDest(*SI.getOperand(1)); Dest.getNode()->NodeType |= DSNode::Modified; // Avoid adding edges from null, or processing non-"pointer" stores if (isPointerType(SI.getOperand(0)->getType()) && !isa(SI.getOperand(0))) { Dest.addEdgeTo(getValueDest(*SI.getOperand(0))); } } void GraphBuilder::visitReturnInst(ReturnInst &RI) { if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType()) && !isa(RI.getOperand(0))) { DSNodeHandle &Value = getValueDest(*RI.getOperand(0)); Value.mergeWith(RetNode); RetNode = Value; } } void GraphBuilder::visitCallInst(CallInst &CI) { // Add a new function call entry... FunctionCalls.push_back(DSCallSite(G.getFunction(), CI)); DSCallSite &Args = FunctionCalls.back(); // Set up the return value... if (isPointerType(CI.getType())) Args.push_back(getLink(getValueNode(CI), 0, CI.getType())); else Args.push_back(DSNodeHandle()); unsigned Start = 0; // Special case for a direct call, avoid creating spurious scalar node... if (GlobalValue *GV = dyn_cast(CI.getOperand(0))) { Args.push_back(getGlobalNode(*GV)); Start = 1; } // Pass the arguments in... for (unsigned i = Start, e = CI.getNumOperands(); i != e; ++i) if (isPointerType(CI.getOperand(i)->getType())) Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0, CI.getOperand(i)->getType())); } /// Handle casts... void GraphBuilder::visitCastInst(CastInst &CI) { if (isPointerType(CI.getType()) && isPointerType(CI.getOperand(0)->getType())) getValueNode(CI).addEdgeTo(getLink(getValueNode(*CI.getOperand(0)), 0, CI.getOperand(0)->getType())); } //===----------------------------------------------------------------------===// // LocalDataStructures Implementation //===----------------------------------------------------------------------===// // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void LocalDataStructures::releaseMemory() { for (std::map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) delete I->second; // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); } bool LocalDataStructures::run(Module &M) { // Calculate all of the graphs... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) DSInfo.insert(std::make_pair(I, new DSGraph(*I))); return false; }