//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file transforms calls of the current function (self recursion) followed // by a return instruction with a branch to the entry of the function, creating // a loop. This pass also implements the following extensions to the basic // algorithm: // // 1. Trivial instructions between the call and return do not prevent the // transformation from taking place, though currently the analysis cannot // support moving any really useful instructions (only dead ones). // 2. This pass transforms functions that are prevented from being tail // recursive by an associative and commutative expression to use an // accumulator variable, thus compiling the typical naive factorial or // 'fib' implementation into efficient code. // 3. TRE is performed if the function returns void, if the return // returns the result returned by the call, or if the function returns a // run-time constant on all exits from the function. It is possible, though // unlikely, that the return returns something else (like constant 0), and // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in // the function return the exact same value. // 4. If it can prove that callees do not access their caller stack frame, // they are marked as eligible for tail call elimination (by the code // generator). // // There are several improvements that could be made: // // 1. If the function has any alloca instructions, these instructions will be // moved out of the entry block of the function, causing them to be // evaluated each time through the tail recursion. Safely keeping allocas // in the entry block requires analysis to proves that the tail-called // function does not read or write the stack object. // 2. Tail recursion is only performed if the call immediately preceeds the // return instruction. It's possible that there could be a jump between // the call and the return. // 3. There can be intervening operations between the call and the return that // prevent the TRE from occurring. For example, there could be GEP's and // stores to memory that will not be read or written by the call. This // requires some substantial analysis (such as with DSA) to prove safe to // move ahead of the call, but doing so could allow many more TREs to be // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. // 4. The algorithm we use to detect if callees access their caller stack // frames is very primitive. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "tailcallelim" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/Loads.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumEliminated, "Number of tail calls removed"); STATISTIC(NumAccumAdded, "Number of accumulators introduced"); namespace { struct TailCallElim : public FunctionPass { static char ID; // Pass identification, replacement for typeid TailCallElim() : FunctionPass(ID) { initializeTailCallElimPass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &F); private: bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail, SmallVector &ArgumentPHIs, bool CannotTailCallElimCallsMarkedTail); bool CanMoveAboveCall(Instruction *I, CallInst *CI); Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); }; } char TailCallElim::ID = 0; INITIALIZE_PASS(TailCallElim, "tailcallelim", "Tail Call Elimination", false, false) // Public interface to the TailCallElimination pass FunctionPass *llvm::createTailCallEliminationPass() { return new TailCallElim(); } /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by /// callees of this function. We only do very simple analysis right now, this /// could be expanded in the future to use mod/ref information for particular /// call sites if desired. static bool AllocaMightEscapeToCalls(AllocaInst *AI) { // FIXME: do simple 'address taken' analysis. return true; } /// CheckForEscapingAllocas - Scan the specified basic block for alloca /// instructions. If it contains any that might be accessed by calls, return /// true. static bool CheckForEscapingAllocas(BasicBlock *BB, bool &CannotTCETailMarkedCall) { bool RetVal = false; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) { RetVal |= AllocaMightEscapeToCalls(AI); // If this alloca is in the body of the function, or if it is a variable // sized allocation, we cannot tail call eliminate calls marked 'tail' // with this mechanism. if (BB != &BB->getParent()->getEntryBlock() || !isa(AI->getArraySize())) CannotTCETailMarkedCall = true; } return RetVal; } bool TailCallElim::runOnFunction(Function &F) { // If this function is a varargs function, we won't be able to PHI the args // right, so don't even try to convert it... if (F.getFunctionType()->isVarArg()) return false; BasicBlock *OldEntry = 0; bool TailCallsAreMarkedTail = false; SmallVector ArgumentPHIs; bool MadeChange = false; bool FunctionContainsEscapingAllocas = false; // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls // marked with the 'tail' attribute, because doing so would cause the stack // size to increase (real TCE would deallocate variable sized allocas, TCE // doesn't). bool CannotTCETailMarkedCall = false; // Loop over the function, looking for any returning blocks, and keeping track // of whether this function has any non-trivially used allocas. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall) break; FunctionContainsEscapingAllocas |= CheckForEscapingAllocas(BB, CannotTCETailMarkedCall); } /// FIXME: The code generator produces really bad code when an 'escaping /// alloca' is changed from being a static alloca to being a dynamic alloca. /// Until this is resolved, disable this transformation if that would ever /// happen. This bug is PR962. if (FunctionContainsEscapingAllocas) return false; // Second pass, change any tail calls to loops. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (ReturnInst *Ret = dyn_cast(BB->getTerminator())) MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,CannotTCETailMarkedCall); // If we eliminated any tail recursions, it's possible that we inserted some // silly PHI nodes which just merge an initial value (the incoming operand) // with themselves. Check to see if we did and clean up our mess if so. This // occurs when a function passes an argument straight through to its tail // call. if (!ArgumentPHIs.empty()) { for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { PHINode *PN = ArgumentPHIs[i]; // If the PHI Node is a dynamic constant, replace it with the value it is. if (Value *PNV = PN->hasConstantValue()) { PN->replaceAllUsesWith(PNV); PN->eraseFromParent(); } } } // Finally, if this function contains no non-escaping allocas, mark all calls // in the function as eligible for tail calls (there is no stack memory for // them to access). if (!FunctionContainsEscapingAllocas) for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (CallInst *CI = dyn_cast(I)) { CI->setTailCall(); MadeChange = true; } return MadeChange; } /// CanMoveAboveCall - Return true if it is safe to move the specified /// instruction from after the call to before the call, assuming that all /// instructions between the call and this instruction are movable. /// bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { // FIXME: We can move load/store/call/free instructions above the call if the // call does not mod/ref the memory location being processed. if (I->mayHaveSideEffects()) // This also handles volatile loads. return false; if (LoadInst *L = dyn_cast(I)) { // Loads may always be moved above calls without side effects. if (CI->mayHaveSideEffects()) { // Non-volatile loads may be moved above a call with side effects if it // does not write to memory and the load provably won't trap. // FIXME: Writes to memory only matter if they may alias the pointer // being loaded from. if (CI->mayWriteToMemory() || !isSafeToLoadUnconditionally(L->getPointerOperand(), L, L->getAlignment())) return false; } } // Otherwise, if this is a side-effect free instruction, check to make sure // that it does not use the return value of the call. If it doesn't use the // return value of the call, it must only use things that are defined before // the call, or movable instructions between the call and the instruction // itself. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (I->getOperand(i) == CI) return false; return true; } // isDynamicConstant - Return true if the specified value is the same when the // return would exit as it was when the initial iteration of the recursive // function was executed. // // We currently handle static constants and arguments that are not modified as // part of the recursion. // static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { if (isa(V)) return true; // Static constants are always dyn consts // Check to see if this is an immutable argument, if so, the value // will be available to initialize the accumulator. if (Argument *Arg = dyn_cast(V)) { // Figure out which argument number this is... unsigned ArgNo = 0; Function *F = CI->getParent()->getParent(); for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) ++ArgNo; // If we are passing this argument into call as the corresponding // argument operand, then the argument is dynamically constant. // Otherwise, we cannot transform this function safely. if (CI->getArgOperand(ArgNo) == Arg) return true; } // Switch cases are always constant integers. If the value is being switched // on and the return is only reachable from one of its cases, it's // effectively constant. if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) if (SwitchInst *SI = dyn_cast(UniquePred->getTerminator())) if (SI->getCondition() == V) return SI->getDefaultDest() != RI->getParent(); // Not a constant or immutable argument, we can't safely transform. return false; } // getCommonReturnValue - Check to see if the function containing the specified // tail call consistently returns the same runtime-constant value at all exit // points except for IgnoreRI. If so, return the returned value. // static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { Function *F = CI->getParent()->getParent(); Value *ReturnedValue = 0; for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { ReturnInst *RI = dyn_cast(BBI->getTerminator()); if (RI == 0 || RI == IgnoreRI) continue; // We can only perform this transformation if the value returned is // evaluatable at the start of the initial invocation of the function, // instead of at the end of the evaluation. // Value *RetOp = RI->getOperand(0); if (!isDynamicConstant(RetOp, CI, RI)) return 0; if (ReturnedValue && RetOp != ReturnedValue) return 0; // Cannot transform if differing values are returned. ReturnedValue = RetOp; } return ReturnedValue; } /// CanTransformAccumulatorRecursion - If the specified instruction can be /// transformed using accumulator recursion elimination, return the constant /// which is the start of the accumulator value. Otherwise return null. /// Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { if (!I->isAssociative() || !I->isCommutative()) return 0; assert(I->getNumOperands() == 2 && "Associative/commutative operations should have 2 args!"); // Exactly one operand should be the result of the call instruction. if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || (I->getOperand(0) != CI && I->getOperand(1) != CI)) return 0; // The only user of this instruction we allow is a single return instruction. if (!I->hasOneUse() || !isa(I->use_back())) return 0; // Ok, now we have to check all of the other return instructions in this // function. If they return non-constants or differing values, then we cannot // transform the function safely. return getCommonReturnValue(cast(I->use_back()), CI); } bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail, SmallVector &ArgumentPHIs, bool CannotTailCallElimCallsMarkedTail) { BasicBlock *BB = Ret->getParent(); Function *F = BB->getParent(); if (&BB->front() == Ret) // Make sure there is something before the ret... return false; // Scan backwards from the return, checking to see if there is a tail call in // this block. If so, set CI to it. CallInst *CI; BasicBlock::iterator BBI = Ret; while (1) { CI = dyn_cast(BBI); if (CI && CI->getCalledFunction() == F) break; if (BBI == BB->begin()) return false; // Didn't find a potential tail call. --BBI; } // If this call is marked as a tail call, and if there are dynamic allocas in // the function, we cannot perform this optimization. if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) return false; // As a special case, detect code like this: // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call // and disable this xform in this case, because the code generator will // lower the call to fabs into inline code. if (BB == &F->getEntryBlock() && &BB->front() == CI && &*++BB->begin() == Ret && callIsSmall(F)) { // A single-block function with just a call and a return. Check that // the arguments match. CallSite::arg_iterator I = CallSite(CI).arg_begin(), E = CallSite(CI).arg_end(); Function::arg_iterator FI = F->arg_begin(), FE = F->arg_end(); for (; I != E && FI != FE; ++I, ++FI) if (*I != &*FI) break; if (I == E && FI == FE) return false; } // If we are introducing accumulator recursion to eliminate operations after // the call instruction that are both associative and commutative, the initial // value for the accumulator is placed in this variable. If this value is set // then we actually perform accumulator recursion elimination instead of // simple tail recursion elimination. If the operation is an LLVM instruction // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then // we are handling the case when the return instruction returns a constant C // which is different to the constant returned by other return instructions // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a // special case of accumulator recursion, the operation being "return C". Value *AccumulatorRecursionEliminationInitVal = 0; Instruction *AccumulatorRecursionInstr = 0; // Ok, we found a potential tail call. We can currently only transform the // tail call if all of the instructions between the call and the return are // movable to above the call itself, leaving the call next to the return. // Check that this is the case now. for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI) { if (CanMoveAboveCall(BBI, CI)) continue; // If we can't move the instruction above the call, it might be because it // is an associative and commutative operation that could be tranformed // using accumulator recursion elimination. Check to see if this is the // case, and if so, remember the initial accumulator value for later. if ((AccumulatorRecursionEliminationInitVal = CanTransformAccumulatorRecursion(BBI, CI))) { // Yes, this is accumulator recursion. Remember which instruction // accumulates. AccumulatorRecursionInstr = BBI; } else { return false; // Otherwise, we cannot eliminate the tail recursion! } } // We can only transform call/return pairs that either ignore the return value // of the call and return void, ignore the value of the call and return a // constant, return the value returned by the tail call, or that are being // accumulator recursion variable eliminated. if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && !isa(Ret->getReturnValue()) && AccumulatorRecursionEliminationInitVal == 0 && !getCommonReturnValue(0, CI)) { // One case remains that we are able to handle: the current return // instruction returns a constant, and all other return instructions // return a different constant. if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) return false; // Current return instruction does not return a constant. // Check that all other return instructions return a common constant. If // so, record it in AccumulatorRecursionEliminationInitVal. AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); if (!AccumulatorRecursionEliminationInitVal) return false; } // OK! We can transform this tail call. If this is the first one found, // create the new entry block, allowing us to branch back to the old entry. if (OldEntry == 0) { OldEntry = &F->getEntryBlock(); BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); NewEntry->takeName(OldEntry); OldEntry->setName("tailrecurse"); BranchInst::Create(OldEntry, NewEntry); // If this tail call is marked 'tail' and if there are any allocas in the // entry block, move them up to the new entry block. TailCallsAreMarkedTail = CI->isTailCall(); if (TailCallsAreMarkedTail) // Move all fixed sized allocas from OldEntry to NewEntry. for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), NEBI = NewEntry->begin(); OEBI != E; ) if (AllocaInst *AI = dyn_cast(OEBI++)) if (isa(AI->getArraySize())) AI->moveBefore(NEBI); // Now that we have created a new block, which jumps to the entry // block, insert a PHI node for each argument of the function. // For now, we initialize each PHI to only have the real arguments // which are passed in. Instruction *InsertPos = OldEntry->begin(); for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { PHINode *PN = PHINode::Create(I->getType(), I->getName() + ".tr", InsertPos); I->replaceAllUsesWith(PN); // Everyone use the PHI node now! PN->addIncoming(I, NewEntry); ArgumentPHIs.push_back(PN); } } // If this function has self recursive calls in the tail position where some // are marked tail and some are not, only transform one flavor or another. We // have to choose whether we move allocas in the entry block to the new entry // block or not, so we can't make a good choice for both. NOTE: We could do // slightly better here in the case that the function has no entry block // allocas. if (TailCallsAreMarkedTail && !CI->isTailCall()) return false; // Ok, now that we know we have a pseudo-entry block WITH all of the // required PHI nodes, add entries into the PHI node for the actual // parameters passed into the tail-recursive call. for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); // If we are introducing an accumulator variable to eliminate the recursion, // do so now. Note that we _know_ that no subsequent tail recursion // eliminations will happen on this function because of the way the // accumulator recursion predicate is set up. // if (AccumulatorRecursionEliminationInitVal) { Instruction *AccRecInstr = AccumulatorRecursionInstr; // Start by inserting a new PHI node for the accumulator. PHINode *AccPN = PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), "accumulator.tr", OldEntry->begin()); // Loop over all of the predecessors of the tail recursion block. For the // real entry into the function we seed the PHI with the initial value, // computed earlier. For any other existing branches to this block (due to // other tail recursions eliminated) the accumulator is not modified. // Because we haven't added the branch in the current block to OldEntry yet, // it will not show up as a predecessor. for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry); PI != PE; ++PI) { BasicBlock *P = *PI; if (P == &F->getEntryBlock()) AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); else AccPN->addIncoming(AccPN, P); } if (AccRecInstr) { // Add an incoming argument for the current block, which is computed by // our associative and commutative accumulator instruction. AccPN->addIncoming(AccRecInstr, BB); // Next, rewrite the accumulator recursion instruction so that it does not // use the result of the call anymore, instead, use the PHI node we just // inserted. AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); } else { // Add an incoming argument for the current block, which is just the // constant returned by the current return instruction. AccPN->addIncoming(Ret->getReturnValue(), BB); } // Finally, rewrite any return instructions in the program to return the PHI // node instead of the "initval" that they do currently. This loop will // actually rewrite the return value we are destroying, but that's ok. for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) if (ReturnInst *RI = dyn_cast(BBI->getTerminator())) RI->setOperand(0, AccPN); ++NumAccumAdded; } // Now that all of the PHI nodes are in place, remove the call and // ret instructions, replacing them with an unconditional branch. BranchInst::Create(OldEntry, Ret); BB->getInstList().erase(Ret); // Remove return. BB->getInstList().erase(CI); // Remove call. ++NumEliminated; return true; }