//===- InductionVars.cpp - Induction Variable Cannonicalization code --------=// // // This file implements induction variable cannonicalization of loops. // // Specifically, after this executes, the following is true: // - There is a single induction variable for each loop (at least loops that // used to contain at least one induction variable) // * This induction variable starts at 0 and steps by 1 per iteration // * This induction variable is represented by the first PHI node in the // Header block, allowing it to be found easily. // - All other preexisting induction variables are adjusted to operate in // terms of this primary induction variable // - Induction variables with a step size of 0 have been eliminated. // // This code assumes the following is true to perform its full job: // - The CFG has been simplified to not have multiple entrances into an // interval header. Interval headers should only have two predecessors, // one from inside of the loop and one from outside of the loop. // //===----------------------------------------------------------------------===// #include "llvm/Optimizations/InductionVars.h" #include "llvm/ConstPoolVals.h" #include "llvm/Analysis/IntervalPartition.h" #include "llvm/Assembly/Writer.h" #include "llvm/Tools/STLExtras.h" #include "llvm/SymbolTable.h" #include "llvm/iOther.h" #include "llvm/CFG.h" #include #include "llvm/Analysis/LoopDepth.h" using namespace opt; // isLoopInvariant - Return true if the specified value/basic block source is // an interval invariant computation. // static bool isLoopInvariant(cfg::Interval *Int, Value *V) { assert(V->isConstant() || V->isInstruction() || V->isMethodArgument()); if (!V->isInstruction()) return true; // Constants and arguments are always loop invariant BasicBlock *ValueBlock = ((Instruction*)V)->getParent(); assert(ValueBlock && "Instruction not embedded in basic block!"); // For now, only consider values from outside of the interval, regardless of // whether the expression could be lifted out of the loop by some LICM. // // TODO: invoke LICM library if we find out it would be useful. // return !Int->contains(ValueBlock); } // isLinearInductionVariableH - Return isLIV if the expression V is a linear // expression defined in terms of loop invariant computations, and a single // instance of the PHI node PN. Return isLIC if the expression V is a loop // invariant computation. Return isNLIV if the expression is a negated linear // induction variable. Return isOther if it is neither. // // Currently allowed operators are: ADD, SUB, NEG // TODO: This should allow casts! // enum LIVType { isLIV, isLIC, isNLIV, isOther }; // // neg - Negate the sign of a LIV expression. inline LIVType neg(LIVType T) { assert(T == isLIV || T == isNLIV && "Negate Only works on LIV expressions"); return T == isLIV ? isNLIV : isLIV; } // static LIVType isLinearInductionVariableH(cfg::Interval *Int, Value *V, PHINode *PN) { if (V == PN) { return isLIV; } // PHI node references are (0+PHI) if (isLoopInvariant(Int, V)) return isLIC; // loop variant computations must be instructions! Instruction *I = V->castInstructionAsserting(); switch (I->getInstType()) { // Handle each instruction seperately case Instruction::Neg: { Value *SubV = ((UnaryOperator*)I)->getOperand(0); LIVType SubLIVType = isLinearInductionVariableH(Int, SubV, PN); switch (SubLIVType) { case isLIC: // Loop invariant & other computations remain the same case isOther: return SubLIVType; case isLIV: // Return the opposite signed LIV type case isNLIV: return neg(isLIV); } } case Instruction::Add: case Instruction::Sub: { Value *SubV1 = ((BinaryOperator*)I)->getOperand(0); Value *SubV2 = ((BinaryOperator*)I)->getOperand(1); LIVType SubLIVType1 = isLinearInductionVariableH(Int, SubV1, PN); if (SubLIVType1 == isOther) return isOther; // Early bailout LIVType SubLIVType2 = isLinearInductionVariableH(Int, SubV2, PN); switch (SubLIVType2) { case isOther: return isOther; // Unknown subexpression type case isLIC: return SubLIVType1; // Constant offset, return type #1 case isLIV: case isNLIV: // So now we know that we have a linear induction variable on the RHS of // the ADD or SUB instruction. SubLIVType1 cannot be isOther, so it is // either a Loop Invariant computation, or a LIV type. if (SubLIVType1 == isLIC) { // Loop invariant computation, we know this is a LIV then. return (I->getInstType() == Instruction::Add) ? SubLIVType2 : neg(SubLIVType2); } // If the LHS is also a LIV Expression, we cannot add two LIVs together if (I->getInstType() == Instruction::Add) return isOther; // We can only subtract two LIVs if they are the same type, which yields // a LIC, because the LIVs cancel each other out. return (SubLIVType1 == SubLIVType2) ? isLIC : isOther; } // NOT REACHED } default: // Any other instruction is not a LINEAR induction var return isOther; } } // isLinearInductionVariable - Return true if the specified expression is a // "linear induction variable", which is an expression involving a single // instance of the PHI node and a loop invariant value that is added or // subtracted to the PHI node. This is calculated by walking the SSA graph // static inline bool isLinearInductionVariable(cfg::Interval *Int, Value *V, PHINode *PN) { return isLinearInductionVariableH(Int, V, PN) == isLIV; } // isSimpleInductionVar - Return true iff the cannonical induction variable PN // has an initializer of the constant value 0, and has a step size of constant // 1. static inline bool isSimpleInductionVar(PHINode *PN) { assert(PN->getNumIncomingValues() == 2 && "Must have cannonical PHI node!"); Value *Initializer = PN->getIncomingValue(0); if (!Initializer->isConstant()) return false; if (Initializer->getType()->isSigned()) { // Signed constant value... if (((ConstPoolSInt*)Initializer)->getValue() != 0) return false; } else if (Initializer->getType()->isUnsigned()) { // Unsigned constant value if (((ConstPoolUInt*)Initializer)->getValue() != 0) return false; } else { return false; // Not signed or unsigned? Must be FP type or something } Value *StepExpr = PN->getIncomingValue(1); if (!StepExpr->isInstruction() || ((Instruction*)StepExpr)->getInstType() != Instruction::Add) return false; BinaryOperator *I = (BinaryOperator*)StepExpr; assert(I->getOperand(0)->isInstruction() && ((Instruction*)I->getOperand(0))->isPHINode() && "PHI node should be first operand of ADD instruction!"); // Get the right hand side of the ADD node. See if it is a constant 1. Value *StepSize = I->getOperand(1); if (!StepSize->isConstant()) return false; if (StepSize->getType()->isSigned()) { // Signed constant value... if (((ConstPoolSInt*)StepSize)->getValue() != 1) return false; } else if (StepSize->getType()->isUnsigned()) { // Unsigned constant value if (((ConstPoolUInt*)StepSize)->getValue() != 1) return false; } else { return false; // Not signed or unsigned? Must be FP type or something } // At this point, we know the initializer is a constant value 0 and the step // size is a constant value 1. This is our simple induction variable! return true; } // InjectSimpleInductionVariable - Insert a cannonical induction variable into // the interval header Header. This assumes that the flow graph is in // simplified form (so we know that the header block has exactly 2 predecessors) // // TODO: This should inherit the largest type that is being used by the already // present induction variables (instead of always using uint) // static PHINode *InjectSimpleInductionVariable(cfg::Interval *Int) { string PHIName, AddName; BasicBlock *Header = Int->getHeaderNode(); Method *M = Header->getParent(); if (M->hasSymbolTable()) { // Only name the induction variable if the method isn't stripped. PHIName = M->getSymbolTable()->getUniqueName(Type::UIntTy, "ind_var"); AddName = M->getSymbolTable()->getUniqueName(Type::UIntTy, "ind_var_next"); } // Create the neccesary instructions... PHINode *PN = new PHINode(Type::UIntTy, PHIName); ConstPoolVal *One = new ConstPoolUInt(Type::UIntTy, 1); ConstPoolVal *Zero = new ConstPoolUInt(Type::UIntTy, 0); BinaryOperator *AddNode = BinaryOperator::create(Instruction::Add, PN, One, AddName); // Figure out which predecessors I have to play with... there should be // exactly two... one of which is a loop predecessor, and one of which is not. // cfg::pred_iterator PI = cfg::pred_begin(Header); assert(PI != cfg::pred_end(Header) && "Header node should have 2 preds!"); BasicBlock *Pred1 = *PI; ++PI; assert(PI != cfg::pred_end(Header) && "Header node should have 2 preds!"); BasicBlock *Pred2 = *PI; assert(++PI == cfg::pred_end(Header) && "Header node should have 2 preds!"); // Make Pred1 be the loop entrance predecessor, Pred2 be the Loop predecessor if (Int->contains(Pred1)) swap(Pred1, Pred2); assert(!Int->contains(Pred1) && "Pred1 should be loop entrance!"); assert( Int->contains(Pred2) && "Pred2 should be looping edge!"); // Link the instructions into the PHI node... PN->addIncoming(Zero, Pred1); // The initializer is first argument PN->addIncoming(AddNode, Pred2); // The step size is second PHI argument // Insert the PHI node into the Header of the loop. It shall be the first // instruction, because the "Simple" Induction Variable must be first in the // block. // BasicBlock::InstListType &IL = Header->getInstList(); IL.push_front(PN); // Insert the Add instruction as the first (non-phi) instruction in the // header node's basic block. BasicBlock::iterator I = IL.begin(); while ((*I)->isPHINode()) ++I; IL.insert(I, AddNode); // Insert the constants into the constant pool for the method... M->getConstantPool().insert(One); M->getConstantPool().insert(Zero); return PN; } // ProcessInterval - This function is invoked once for each interval in the // IntervalPartition of the program. It looks for auxilliary induction // variables in loops. If it finds one, it: // * Cannonicalizes the induction variable. This consists of: // A. Making the first element of the PHI node be the loop invariant // computation, and the second element be the linear induction portion. // B. Changing the first element of the linear induction portion of the PHI // node to be of the form ADD(PHI, ). // * Add the induction variable PHI to a list of induction variables found. // // After this, a list of cannonical induction variables is known. This list // is searched to see if there is an induction variable that counts from // constant 0 with a step size of constant 1. If there is not one, one is // injected into the loop. Thus a "simple" induction variable is always known // // One a simple induction variable is known, all other induction variables are // modified to refer to the "simple" induction variable. // static bool ProcessInterval(cfg::Interval *Int) { if (!Int->isLoop()) return false; // Not a loop? Ignore it! vector InductionVars; BasicBlock *Header = Int->getHeaderNode(); // Loop over all of the PHI nodes in the interval header... for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E && (*I)->isPHINode(); ++I) { PHINode *PN = (PHINode*)*I; if (PN->getNumIncomingValues() != 2) { // These should be eliminated by now. cerr << "Found interval header with more than 2 predecessors! Ignoring\n"; return false; // Todo, make an assertion. } // For this to be an induction variable, one of the arguments must be a // loop invariant expression, and the other must be an expression involving // the PHI node, along with possible additions and subtractions of loop // invariant values. // BasicBlock *BB1 = PN->getIncomingBlock(0); Value *V1 = PN->getIncomingValue(0); BasicBlock *BB2 = PN->getIncomingBlock(1); Value *V2 = PN->getIncomingValue(1); // Figure out which computation is loop invariant... if (!isLoopInvariant(Int, V1)) { // V1 is *not* loop invariant. Check to see if V2 is: if (isLoopInvariant(Int, V2)) { // They *are* loop invariant. Exchange BB1/BB2 and V1/V2 so that // V1 is always the loop invariant computation. swap(V1, V2); swap(BB1, BB2); } else { // Neither value is loop invariant. Must not be an induction variable. // This case can happen if there is an unreachable loop in the CFG that // has two tail loops in it that was not split by the cleanup phase // before. continue; } } // At this point, we know that BB1/V1 are loop invariant. We don't know // anything about BB2/V2. Check now to see if V2 is a linear induction // variable. // cerr << "Found loop invariant computation: " << V1 << endl; if (!isLinearInductionVariable(Int, V2, PN)) continue; // No, it is not a linear ind var, ignore the PHI node. cerr << "Found linear induction variable: " << V2; // TODO: Cannonicalize V2 // Add this PHI node to the list of induction variables found... InductionVars.push_back(PN); } // No induction variables found? if (InductionVars.empty()) return false; // Search to see if there is already a "simple" induction variable. vector::iterator It = find_if(InductionVars.begin(), InductionVars.end(), isSimpleInductionVar); PHINode *PrimaryIndVar; // A simple induction variable was not found, inject one now... if (It == InductionVars.end()) { PrimaryIndVar = InjectSimpleInductionVariable(Int); } else { // Move the PHI node for this induction variable to the start of the PHI // list in HeaderNode... we do not need to do this for the inserted case // because the inserted node will always be placed at the beginning of // HeaderNode. // PrimaryIndVar = *It; BasicBlock::iterator i = find(Header->begin(), Header->end(), PrimaryIndVar); assert(i != Header->end() && "How could Primary IndVar not be in the header!?!!?"); if (i != Header->begin()) iter_swap(i, Header->begin()); } // Now we know that there is a simple induction variable PrimaryIndVar. // Simplify all of the other induction variables to use this induction // variable as their counter, and destroy the PHI nodes that correspond to // the old indvars. // // TODO cerr << "Found Interval Header with indvars (primary indvar should be first " << "phi): \n" << Header << "\nPrimaryIndVar: " << PrimaryIndVar; return false; // TODO: true; } // ProcessIntervalPartition - This function loops over the interval partition // processing each interval with ProcessInterval // static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) { // This currently just prints out information about the interval structure // of the method... #if 0 static unsigned N = 0; cerr << "\n***********Interval Partition #" << (++N) << "************\n\n"; copy(IP.begin(), IP.end(), ostream_iterator(cerr, "\n")); cerr << "\n*********** PERFORMING WORK ************\n\n"; #endif // Loop over all of the intervals in the partition and look for induction // variables in intervals that represent loops. // return reduce_apply(IP.begin(), IP.end(), bitwise_or(), false, ptr_fun(ProcessInterval)); } // DoInductionVariableCannonicalize - Simplify induction variables in loops. // This function loops over an interval partition of a program, reducing it // until the graph is gone. // bool opt::DoInductionVariableCannonicalize(Method *M) { // TODO: REMOVE if (0) { // Print basic blocks with their depth LoopDepthCalculator LDC(M); for (Method::iterator I = M->begin(); I != M->end(); ++I) { cerr << "Basic Block Depth: " << LDC.getLoopDepth(*I) << *I; } } cfg::IntervalPartition *IP = new cfg::IntervalPartition(M); bool Changed = false; while (!IP->isDegeneratePartition()) { Changed |= ProcessIntervalPartition(*IP); // Calculate the reduced version of this graph until we get to an // irreducible graph or a degenerate graph... // cfg::IntervalPartition *NewIP = new cfg::IntervalPartition(*IP, false); if (NewIP->size() == IP->size()) { cerr << "IRREDUCIBLE GRAPH FOUND!!!\n"; return Changed; } delete IP; IP = NewIP; } delete IP; return Changed; }