//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Evan Cheng and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "ARMISelLowering.h" #include "ARMMachineFunctionInfo.h" #include "ARMRegisterInfo.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/VectorExtras.h" using namespace llvm; ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) : TargetLowering(TM), ARMPCLabelIndex(0) { Subtarget = &TM.getSubtarget(); // Uses VFP for Thumb libfuncs if available. if (!UseSoftFloat && Subtarget->isThumb() && Subtarget->hasVFP2()) { // Single-precision floating-point arithmetic. setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); // Double-precision floating-point arithmetic. setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); // Single-precision comparisons. setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); // Double-precision comparisons. setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); // Floating-point to integer conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); // Conversions between floating types. setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); // Integer to floating-point conversions. // i64 conversions are done via library routines even when generating VFP // instructions, so use the same ones. // FIXME: There appears to be some naming inconsistency in ARM libgcc: e.g. // __floatunsidf vs. __floatunssidfvfp. setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); } addRegisterClass(MVT::i32, ARM::GPRRegisterClass); if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) { addRegisterClass(MVT::f32, ARM::SPRRegisterClass); addRegisterClass(MVT::f64, ARM::DPRRegisterClass); } // ARM does not have f32 extending load. setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand); // ARM supports all 4 flavors of integer indexed load / store. for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i1, Legal); setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i1, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); } // i64 operation support. if (Subtarget->isThumb()) { setOperationAction(ISD::MUL, MVT::i64, Expand); setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::MULHS, MVT::i32, Expand); } else { setOperationAction(ISD::MUL, MVT::i64, Custom); setOperationAction(ISD::MULHU, MVT::i32, Custom); if (!Subtarget->hasV6Ops()) setOperationAction(ISD::MULHS, MVT::i32, Custom); } setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL, MVT::i64, Custom); setOperationAction(ISD::SRA, MVT::i64, Custom); // ARM does not have ROTL. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::CTTZ , MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasV5TOps() || Subtarget->isThumb()) setOperationAction(ISD::CTLZ, MVT::i32, Expand); // These are expanded into libcalls. setOperationAction(ISD::SDIV, MVT::i32, Expand); setOperationAction(ISD::UDIV, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); // Support label based line numbers. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); // FIXME - use subtarget debug flags if (!Subtarget->isTargetDarwin()) setOperationAction(ISD::LABEL, MVT::Other, Expand); setOperationAction(ISD::RET, MVT::Other, Custom); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); // Expand mem operations genericly. setOperationAction(ISD::MEMSET , MVT::Other, Expand); setOperationAction(ISD::MEMCPY , MVT::Other, Expand); setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); // Use the default implementation. setOperationAction(ISD::VASTART , MVT::Other, Expand); setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); if (!Subtarget->hasV6Ops()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); } setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) // Turn f64->i64 into FMRRD iff target supports vfp2. setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom); setOperationAction(ISD::SETCC , MVT::i32, Expand); setOperationAction(ISD::SETCC , MVT::f32, Expand); setOperationAction(ISD::SETCC , MVT::f64, Expand); setOperationAction(ISD::SELECT , MVT::i32, Expand); setOperationAction(ISD::SELECT , MVT::f32, Expand); setOperationAction(ISD::SELECT , MVT::f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BRCOND , MVT::Other, Expand); setOperationAction(ISD::BR_CC , MVT::i32, Custom); setOperationAction(ISD::BR_CC , MVT::f32, Custom); setOperationAction(ISD::BR_CC , MVT::f64, Custom); setOperationAction(ISD::BR_JT , MVT::Other, Custom); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); // FP Constants can't be immediates. setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); // We don't support sin/cos/fmod/copysign setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // int <-> fp are custom expanded into bit_convert + ARMISD ops. setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setStackPointerRegisterToSaveRestore(ARM::SP); setSchedulingPreference(SchedulingForRegPressure); computeRegisterProperties(); } const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case ARMISD::Wrapper: return "ARMISD::Wrapper"; case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; case ARMISD::CALL: return "ARMISD::CALL"; case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; case ARMISD::tCALL: return "ARMISD::tCALL"; case ARMISD::BRCOND: return "ARMISD::BRCOND"; case ARMISD::BR_JT: return "ARMISD::BR_JT"; case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; case ARMISD::CMP: return "ARMISD::CMP"; case ARMISD::CMPFP: return "ARMISD::CMPFP"; case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; case ARMISD::CMOV: return "ARMISD::CMOV"; case ARMISD::CNEG: return "ARMISD::CNEG"; case ARMISD::FTOSI: return "ARMISD::FTOSI"; case ARMISD::FTOUI: return "ARMISD::FTOUI"; case ARMISD::SITOF: return "ARMISD::SITOF"; case ARMISD::UITOF: return "ARMISD::UITOF"; case ARMISD::MULHILOU: return "ARMISD::MULHILOU"; case ARMISD::MULHILOS: return "ARMISD::MULHILOS"; case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; case ARMISD::RRX: return "ARMISD::RRX"; case ARMISD::FMRRD: return "ARMISD::FMRRD"; case ARMISD::FMDRR: return "ARMISD::FMDRR"; } } //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { switch (CC) { default: assert(0 && "Unknown condition code!"); case ISD::SETNE: return ARMCC::NE; case ISD::SETEQ: return ARMCC::EQ; case ISD::SETGT: return ARMCC::GT; case ISD::SETGE: return ARMCC::GE; case ISD::SETLT: return ARMCC::LT; case ISD::SETLE: return ARMCC::LE; case ISD::SETUGT: return ARMCC::HI; case ISD::SETUGE: return ARMCC::HS; case ISD::SETULT: return ARMCC::LO; case ISD::SETULE: return ARMCC::LS; } } /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It /// returns true if the operands should be inverted to form the proper /// comparison. static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, ARMCC::CondCodes &CondCode2) { bool Invert = false; CondCode2 = ARMCC::AL; switch (CC) { default: assert(0 && "Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = ARMCC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = ARMCC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = ARMCC::GE; break; case ISD::SETOLT: CondCode = ARMCC::MI; break; case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break; case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; case ISD::SETO: CondCode = ARMCC::VC; break; case ISD::SETUO: CondCode = ARMCC::VS; break; case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; case ISD::SETUGT: CondCode = ARMCC::HI; break; case ISD::SETUGE: CondCode = ARMCC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = ARMCC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = ARMCC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = ARMCC::NE; break; } return Invert; } static void HowToPassArgument(MVT::ValueType ObjectVT, unsigned NumGPRs, unsigned StackOffset, unsigned &NeededGPRs, unsigned &NeededStackSize, unsigned &GPRPad, unsigned &StackPad, unsigned Flags) { NeededStackSize = 0; NeededGPRs = 0; StackPad = 0; GPRPad = 0; unsigned align = (Flags >> ISD::ParamFlags::OrigAlignmentOffs); GPRPad = NumGPRs % ((align + 3)/4); StackPad = StackOffset % align; unsigned firstGPR = NumGPRs + GPRPad; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i32: case MVT::f32: if (firstGPR < 4) NeededGPRs = 1; else NeededStackSize = 4; break; case MVT::i64: case MVT::f64: if (firstGPR < 3) NeededGPRs = 2; else if (firstGPR == 3) { NeededGPRs = 1; NeededStackSize = 4; } else NeededStackSize = 8; } } /// LowerCALL - Lowering a ISD::CALL node into a callseq_start <- /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter /// nodes. SDOperand ARMTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType RetVT= Op.Val->getValueType(0); SDOperand Chain = Op.getOperand(0); unsigned CallConv = cast(Op.getOperand(1))->getValue(); assert((CallConv == CallingConv::C || CallConv == CallingConv::Fast) && "unknown calling convention"); SDOperand Callee = Op.getOperand(4); unsigned NumOps = (Op.getNumOperands() - 5) / 2; unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot unsigned NumGPRs = 0; // GPRs used for parameter passing. // Count how many bytes are to be pushed on the stack. unsigned NumBytes = 0; // Add up all the space actually used. for (unsigned i = 0; i < NumOps; ++i) { unsigned ObjSize; unsigned ObjGPRs; unsigned StackPad; unsigned GPRPad; MVT::ValueType ObjectVT = Op.getOperand(5+2*i).getValueType(); unsigned Flags = Op.getConstantOperandVal(5+2*i+1); HowToPassArgument(ObjectVT, NumGPRs, NumBytes, ObjGPRs, ObjSize, GPRPad, StackPad, Flags); NumBytes += ObjSize + StackPad; NumGPRs += ObjGPRs + GPRPad; } // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, MVT::i32)); SDOperand StackPtr = DAG.getRegister(ARM::SP, MVT::i32); static const unsigned GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; NumGPRs = 0; std::vector > RegsToPass; std::vector MemOpChains; for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); unsigned Flags = Op.getConstantOperandVal(5+2*i+1); MVT::ValueType ArgVT = Arg.getValueType(); unsigned ObjSize; unsigned ObjGPRs; unsigned GPRPad; unsigned StackPad; HowToPassArgument(ArgVT, NumGPRs, ArgOffset, ObjGPRs, ObjSize, GPRPad, StackPad, Flags); NumGPRs += GPRPad; ArgOffset += StackPad; if (ObjGPRs > 0) { switch (ArgVT) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i32: RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Arg)); break; case MVT::f32: RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg))); break; case MVT::i64: { SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg, DAG.getConstant(0, getPointerTy())); SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg, DAG.getConstant(1, getPointerTy())); RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Lo)); if (ObjGPRs == 2) RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], Hi)); else { SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Hi, PtrOff, NULL, 0)); } break; } case MVT::f64: { SDOperand Cvt = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Cvt)); if (ObjGPRs == 2) RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], Cvt.getValue(1))); else { SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Cvt.getValue(1), PtrOff, NULL, 0)); } break; } } } else { assert(ObjSize != 0); SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); } NumGPRs += ObjGPRs; ArgOffset += ObjSize; } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDOperand InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. bool isDirect = false; bool isARMFunc = false; if (GlobalAddressSDNode *G = dyn_cast(Callee)) { GlobalValue *GV = G->getGlobal(); isDirect = true; bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); bool isStub = (isExt && Subtarget->isTargetDarwin()) && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || isStub; // tBX takes a register source operand. if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) { ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPStub, 4); SDOperand CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2); CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0); SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel); } else Callee = DAG.getTargetGlobalAddress(GV, getPointerTy()); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { isDirect = true; bool isStub = Subtarget->isTargetDarwin() && getTargetMachine().getRelocationModel() != Reloc::Static; isARMFunc = !Subtarget->isThumb() || isStub; // tBX takes a register source operand. const char *Sym = S->getSymbol(); if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) { ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex, ARMCP::CPStub, 4); SDOperand CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2); CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0); SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel); } else Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // FIXME: handle tail calls differently. unsigned CallOpc; if (Subtarget->isThumb()) { if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc)) CallOpc = ARMISD::CALL_NOLINK; else CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; } else { CallOpc = (isDirect || Subtarget->hasV5TOps()) ? ARMISD::CALL : ARMISD::CALL_NOLINK; } if (InFlag.Val) Ops.push_back(InFlag); Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); SDOperand CSOps[] = { Chain, DAG.getConstant(NumBytes, MVT::i32), InFlag }; Chain = DAG.getNode(ISD::CALLSEQ_END, DAG.getNodeValueTypes(MVT::Other, MVT::Flag), ((RetVT != MVT::Other) ? 2 : 1), CSOps, 3); if (RetVT != MVT::Other) InFlag = Chain.getValue(1); std::vector ResultVals; NodeTys.clear(); // If the call has results, copy the values out of the ret val registers. switch (RetVT) { default: assert(0 && "Unexpected ret value!"); case MVT::Other: break; case MVT::i32: Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1); ResultVals.push_back(Chain.getValue(0)); if (Op.Val->getValueType(1) == MVT::i32) { // Returns a i64 value. Chain = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32, Chain.getValue(2)).getValue(1); ResultVals.push_back(Chain.getValue(0)); NodeTys.push_back(MVT::i32); } NodeTys.push_back(MVT::i32); break; case MVT::f32: Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1); ResultVals.push_back(DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Chain.getValue(0))); NodeTys.push_back(MVT::f32); break; case MVT::f64: { SDOperand Lo = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag); SDOperand Hi = DAG.getCopyFromReg(Lo, ARM::R1, MVT::i32, Lo.getValue(2)); ResultVals.push_back(DAG.getNode(ARMISD::FMDRR, MVT::f64, Lo, Hi)); NodeTys.push_back(MVT::f64); break; } } NodeTys.push_back(MVT::Other); if (ResultVals.empty()) return Chain; ResultVals.push_back(Chain); SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0], ResultVals.size()); return Res.getValue(Op.ResNo); } static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) { SDOperand Copy; SDOperand Chain = Op.getOperand(0); switch(Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: { SDOperand LR = DAG.getRegister(ARM::LR, MVT::i32); return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain); } case 3: Op = Op.getOperand(1); if (Op.getValueType() == MVT::f32) { Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); } else if (Op.getValueType() == MVT::f64) { // Recursively legalize f64 -> i64. Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Op); return DAG.getNode(ISD::RET, MVT::Other, Chain, Op, DAG.getConstant(0, MVT::i32)); } Copy = DAG.getCopyToReg(Chain, ARM::R0, Op, SDOperand()); if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(ARM::R0); break; case 5: Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand()); Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1)); // If we haven't noted the R0+R1 are live out, do so now. if (DAG.getMachineFunction().liveout_empty()) { DAG.getMachineFunction().addLiveOut(ARM::R0); DAG.getMachineFunction().addLiveOut(ARM::R1); } break; } //We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); } // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as // their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is // one of the above mentioned nodes. It has to be wrapped because otherwise // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only // be used to form addressing mode. These wrapped nodes will be selected // into MOVri. static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); ConstantPoolSDNode *CP = cast(Op); SDOperand Res; if (CP->isMachineConstantPoolEntry()) Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlignment()); else Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment()); return DAG.getNode(ARMISD::Wrapper, MVT::i32, Res); } /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol /// even in dynamic-no-pic mode. static bool GVIsIndirectSymbol(GlobalValue *GV) { return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || (GV->isDeclaration() && !GV->hasNotBeenReadFromBytecode())); } SDOperand ARMTargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = getPointerTy(); GlobalValue *GV = cast(Op)->getGlobal(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); bool IsIndirect = Subtarget->isTargetDarwin() && GVIsIndirectSymbol(GV); SDOperand CPAddr; if (RelocM == Reloc::Static) CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2); else { unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8); ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr : ARMCP::CPValue; ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, Kind, PCAdj); CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2); } CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0); SDOperand Chain = Result.getValue(1); if (RelocM == Reloc::PIC_) { SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); Result = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel); } if (IsIndirect) Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0); return Result; } static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG, unsigned VarArgsFrameIndex) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); SrcValueSDNode *SV = cast(Op.getOperand(2)); return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(), SV->getOffset()); } static SDOperand LowerFORMAL_ARGUMENT(SDOperand Op, SelectionDAG &DAG, unsigned *vRegs, unsigned ArgNo, unsigned &NumGPRs, unsigned &ArgOffset) { MachineFunction &MF = DAG.getMachineFunction(); MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); SDOperand Root = Op.getOperand(0); std::vector ArgValues; SSARegMap *RegMap = MF.getSSARegMap(); static const unsigned GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; unsigned ObjSize; unsigned ObjGPRs; unsigned GPRPad; unsigned StackPad; unsigned Flags = Op.getConstantOperandVal(ArgNo + 3); HowToPassArgument(ObjectVT, NumGPRs, ArgOffset, ObjGPRs, ObjSize, GPRPad, StackPad, Flags); NumGPRs += GPRPad; ArgOffset += StackPad; SDOperand ArgValue; if (ObjGPRs == 1) { unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); MF.addLiveIn(GPRArgRegs[NumGPRs], VReg); vRegs[NumGPRs] = VReg; ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32); if (ObjectVT == MVT::f32) ArgValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, ArgValue); } else if (ObjGPRs == 2) { unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); MF.addLiveIn(GPRArgRegs[NumGPRs], VReg); vRegs[NumGPRs] = VReg; ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32); VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); MF.addLiveIn(GPRArgRegs[NumGPRs+1], VReg); vRegs[NumGPRs+1] = VReg; SDOperand ArgValue2 = DAG.getCopyFromReg(Root, VReg, MVT::i32); if (ObjectVT == MVT::i64) ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); else ArgValue = DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2); } NumGPRs += ObjGPRs; if (ObjSize) { // If the argument is actually used, emit a load from the right stack // slot. if (!Op.Val->hasNUsesOfValue(0, ArgNo)) { MachineFrameInfo *MFI = MF.getFrameInfo(); int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); if (ObjGPRs == 0) ArgValue = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); else { SDOperand ArgValue2 = DAG.getLoad(MVT::i32, Root, FIN, NULL, 0); if (ObjectVT == MVT::i64) ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); else ArgValue= DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2); } } else { // Don't emit a dead load. ArgValue = DAG.getNode(ISD::UNDEF, ObjectVT); } ArgOffset += ObjSize; // Move on to the next argument. } return ArgValue; } SDOperand ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { std::vector ArgValues; SDOperand Root = Op.getOperand(0); unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot unsigned NumGPRs = 0; // GPRs used for parameter passing. unsigned VRegs[4]; unsigned NumArgs = Op.Val->getNumValues()-1; for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) ArgValues.push_back(LowerFORMAL_ARGUMENT(Op, DAG, VRegs, ArgNo, NumGPRs, ArgOffset)); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; if (isVarArg) { static const unsigned GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; MachineFunction &MF = DAG.getMachineFunction(); SSARegMap *RegMap = MF.getSSARegMap(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned VARegSize = (4 - NumGPRs) * 4; unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); if (VARegSaveSize) { // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing // the result of va_next. AFI->setVarArgsRegSaveSize(VARegSaveSize); VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset + VARegSaveSize - VARegSize); SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); SmallVector MemOps; for (; NumGPRs < 4; ++NumGPRs) { unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); MF.addLiveIn(GPRArgRegs[NumGPRs], VReg); SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getConstant(4, getPointerTy())); } if (!MemOps.empty()) Root = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); } else // This will point to the next argument passed via stack. VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); } ArgValues.push_back(Root); // Return the new list of results. std::vector RetVT(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); } /// isFloatingPointZero - Return true if this is +0.0. static bool isFloatingPointZero(SDOperand Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->isExactlyValue(0.0); else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) { // Maybe this has already been legalized into the constant pool? if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { SDOperand WrapperOp = Op.getOperand(1).getOperand(0); if (ConstantPoolSDNode *CP = dyn_cast(WrapperOp)) if (ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->isExactlyValue(0.0); } } return false; } static bool isLegalCmpImmediate(unsigned C, bool isThumb) { return ( isThumb && (C & ~255U) == 0) || (!isThumb && ARM_AM::getSOImmVal(C) != -1); } /// Returns appropriate ARM CMP (cmp) and corresponding condition code for /// the given operands. static SDOperand getARMCmp(SDOperand LHS, SDOperand RHS, ISD::CondCode CC, SDOperand &ARMCC, SelectionDAG &DAG, bool isThumb) { if (ConstantSDNode *RHSC = dyn_cast(RHS.Val)) { unsigned C = RHSC->getValue(); if (!isLegalCmpImmediate(C, isThumb)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if (isLegalCmpImmediate(C-1, isThumb)) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; RHS = DAG.getConstant(C-1, MVT::i32); } break; case ISD::SETULT: case ISD::SETUGE: if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; RHS = DAG.getConstant(C-1, MVT::i32); } break; case ISD::SETLE: case ISD::SETGT: if (isLegalCmpImmediate(C+1, isThumb)) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; RHS = DAG.getConstant(C+1, MVT::i32); } break; case ISD::SETULE: case ISD::SETUGT: if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; RHS = DAG.getConstant(C+1, MVT::i32); } break; } } } ARMCC::CondCodes CondCode = IntCCToARMCC(CC); ARMCC = DAG.getConstant(CondCode, MVT::i32); return DAG.getNode(ARMISD::CMP, MVT::Flag, LHS, RHS); } /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. static SDOperand getVFPCmp(SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) { SDOperand Cmp; if (!isFloatingPointZero(RHS)) Cmp = DAG.getNode(ARMISD::CMPFP, MVT::Flag, LHS, RHS); else Cmp = DAG.getNode(ARMISD::CMPFPw0, MVT::Flag, LHS); return DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp); } static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG, const ARMSubtarget *ST) { MVT::ValueType VT = Op.getValueType(); SDOperand LHS = Op.getOperand(0); SDOperand RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDOperand TrueVal = Op.getOperand(2); SDOperand FalseVal = Op.getOperand(3); if (LHS.getValueType() == MVT::i32) { SDOperand ARMCC; SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb()); return DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, ARMCC, Cmp); } ARMCC::CondCodes CondCode, CondCode2; if (FPCCToARMCC(CC, CondCode, CondCode2)) std::swap(TrueVal, FalseVal); SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32); SDOperand Cmp = getVFPCmp(LHS, RHS, DAG); SDOperand Result = DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, ARMCC, Cmp); if (CondCode2 != ARMCC::AL) { SDOperand ARMCC2 = DAG.getConstant(CondCode2, MVT::i32); // FIXME: Needs another CMP because flag can have but one use. SDOperand Cmp2 = getVFPCmp(LHS, RHS, DAG); Result = DAG.getNode(ARMISD::CMOV, VT, Result, TrueVal, ARMCC2, Cmp2); } return Result; } static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG, const ARMSubtarget *ST) { SDOperand Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDOperand LHS = Op.getOperand(2); SDOperand RHS = Op.getOperand(3); SDOperand Dest = Op.getOperand(4); if (LHS.getValueType() == MVT::i32) { SDOperand ARMCC; SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb()); return DAG.getNode(ARMISD::BRCOND, MVT::Other, Chain, Dest, ARMCC, Cmp); } assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); ARMCC::CondCodes CondCode, CondCode2; if (FPCCToARMCC(CC, CondCode, CondCode2)) // Swap the LHS/RHS of the comparison if needed. std::swap(LHS, RHS); SDOperand Cmp = getVFPCmp(LHS, RHS, DAG); SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32); SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag); SDOperand Ops[] = { Chain, Dest, ARMCC, Cmp }; SDOperand Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 4); if (CondCode2 != ARMCC::AL) { ARMCC = DAG.getConstant(CondCode2, MVT::i32); SDOperand Ops[] = { Res, Dest, ARMCC, Res.getValue(1) }; Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 4); } return Res; } SDOperand ARMTargetLowering::LowerBR_JT(SDOperand Op, SelectionDAG &DAG) { SDOperand Chain = Op.getOperand(0); SDOperand Table = Op.getOperand(1); SDOperand Index = Op.getOperand(2); MVT::ValueType PTy = getPointerTy(); JumpTableSDNode *JT = cast(Table); ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo(); SDOperand UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); Table = DAG.getNode(ARMISD::WrapperJT, MVT::i32, JTI, UId); Index = DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(4, PTy)); SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; Addr = DAG.getLoad(isPIC ? MVT::i32 : PTy, Chain, Addr, NULL, 0); Chain = Addr.getValue(1); if (isPIC) Addr = DAG.getNode(ISD::ADD, PTy, Addr, Table); return DAG.getNode(ARMISD::BR_JT, MVT::Other, Chain, Addr, JTI, UId); } static SDOperand LowerFP_TO_INT(SDOperand Op, SelectionDAG &DAG) { unsigned Opc = Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI; Op = DAG.getNode(Opc, MVT::f32, Op.getOperand(0)); return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); } static SDOperand LowerINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType VT = Op.getValueType(); unsigned Opc = Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF; Op = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0)); return DAG.getNode(Opc, VT, Op); } static SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) { // Implement fcopysign with a fabs and a conditional fneg. SDOperand Tmp0 = Op.getOperand(0); SDOperand Tmp1 = Op.getOperand(1); MVT::ValueType VT = Op.getValueType(); MVT::ValueType SrcVT = Tmp1.getValueType(); SDOperand AbsVal = DAG.getNode(ISD::FABS, VT, Tmp0); SDOperand Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG); SDOperand ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32); return DAG.getNode(ARMISD::CNEG, VT, AbsVal, AbsVal, ARMCC, Cmp); } static SDOperand LowerBIT_CONVERT(SDOperand Op, SelectionDAG &DAG) { // Turn f64->i64 into FMRRD. assert(Op.getValueType() == MVT::i64 && Op.getOperand(0).getValueType() == MVT::f64); Op = Op.getOperand(0); SDOperand Cvt = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Cvt, Cvt.getValue(1)); } static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) { // FIXME: All this code is target-independent. Create a new target-indep // MULHILO node and move this code to the legalizer. // assert(Op.getValueType() == MVT::i64 && "Only handles i64 expand right now!"); SDOperand LL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), DAG.getConstant(0, MVT::i32)); SDOperand RL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1), DAG.getConstant(0, MVT::i32)); const TargetLowering &TL = DAG.getTargetLoweringInfo(); unsigned LHSSB = TL.ComputeNumSignBits(Op.getOperand(0)); unsigned RHSSB = TL.ComputeNumSignBits(Op.getOperand(1)); SDOperand Lo, Hi; // Figure out how to lower this multiply. if (LHSSB >= 33 && RHSSB >= 33) { // If the input values are both sign extended, we can emit a mulhs+mul. Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL); Hi = DAG.getNode(ISD::MULHS, MVT::i32, LL, RL); } else if (LHSSB == 32 && RHSSB == 32 && TL.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && TL.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { // If the inputs are zero extended, use mulhu. Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL); Hi = DAG.getNode(ISD::MULHU, MVT::i32, LL, RL); } else { SDOperand LH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), DAG.getConstant(1, MVT::i32)); SDOperand RH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1), DAG.getConstant(1, MVT::i32)); // Lo,Hi = umul LHS, RHS. SDOperand Ops[] = { LL, RL }; SDOperand UMul64 = DAG.getNode(ARMISD::MULHILOU, DAG.getVTList(MVT::i32, MVT::i32), Ops, 2); Lo = UMul64; Hi = UMul64.getValue(1); RH = DAG.getNode(ISD::MUL, MVT::i32, LL, RH); LH = DAG.getNode(ISD::MUL, MVT::i32, LH, RL); Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, RH); Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, LH); } // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); } static SDOperand LowerMULHU(SDOperand Op, SelectionDAG &DAG) { SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) }; return DAG.getNode(ARMISD::MULHILOU, DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1); } static SDOperand LowerMULHS(SDOperand Op, SelectionDAG &DAG) { SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) }; return DAG.getNode(ARMISD::MULHILOS, DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1); } static SDOperand LowerSRx(SDOperand Op, SelectionDAG &DAG, const ARMSubtarget *ST) { assert(Op.getValueType() == MVT::i64 && (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && "Unknown shift to lower!"); // We only lower SRA, SRL of 1 here, all others use generic lowering. if (!isa(Op.getOperand(1)) || cast(Op.getOperand(1))->getValue() != 1) return SDOperand(); // If we are in thumb mode, we don't have RRX. if (ST->isThumb()) return SDOperand(); // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), DAG.getConstant(0, MVT::i32)); SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), DAG.getConstant(1, MVT::i32)); // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and // captures the result into a carry flag. unsigned Opc = Op.getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; Hi = DAG.getNode(Opc, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1); // The low part is an ARMISD::RRX operand, which shifts the carry in. Lo = DAG.getNode(ARMISD::RRX, MVT::i32, Lo, Hi.getValue(1)); // Merge the pieces into a single i64 value. return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); } SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Don't know how to custom lower this!"); abort(); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::CALL: return LowerCALL(Op, DAG); case ISD::RET: return LowerRET(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget); case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); case ISD::MULHU: return LowerMULHU(Op, DAG); case ISD::MULHS: return LowerMULHS(Op, DAG); case ISD::SRL: case ISD::SRA: return LowerSRx(Op, DAG, Subtarget); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); case ISD::RETURNADDR: break; case ISD::FRAMEADDR: break; } return SDOperand(); } //===----------------------------------------------------------------------===// // ARM Scheduler Hooks //===----------------------------------------------------------------------===// MachineBasicBlock * ARMTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *BB) { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); switch (MI->getOpcode()) { default: assert(false && "Unexpected instr type to insert"); case ARM::tMOVCCr: { // To "insert" a SELECT_CC instruction, we actually have to insert the // diamond control-flow pattern. The incoming instruction knows the // destination vreg to set, the condition code register to branch on, the // true/false values to select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); BuildMI(BB, TII->get(ARM::tBcc)).addMBB(sinkMBB) .addImm(MI->getOperand(3).getImm()); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, TII->get(ARM::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } } } //===----------------------------------------------------------------------===// // ARM Optimization Hooks //===----------------------------------------------------------------------===// /// isLegalAddressImmediate - Return true if the integer value or /// GlobalValue can be used as the offset of the target addressing mode. bool ARMTargetLowering::isLegalAddressImmediate(int64_t V) const { // ARM allows a 12-bit immediate field. return V == V & ((1LL << 12) - 1); } bool ARMTargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { return false; } static bool getIndexedAddressParts(SDNode *Ptr, MVT::ValueType VT, bool isSEXTLoad, SDOperand &Base, SDOperand &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) return false; if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { // AddressingMode 3 Base = Ptr->getOperand(0); if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getValue(); if (RHSC < 0 && RHSC > -256) { isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); return true; } } isInc = (Ptr->getOpcode() == ISD::ADD); Offset = Ptr->getOperand(1); return true; } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { // AddressingMode 2 if (ConstantSDNode *RHS = dyn_cast(Ptr->getOperand(1))) { int RHSC = (int)RHS->getValue(); if (RHSC < 0 && RHSC > -0x1000) { isInc = false; Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); Base = Ptr->getOperand(0); return true; } } if (Ptr->getOpcode() == ISD::ADD) { isInc = true; ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0)); if (ShOpcVal != ARM_AM::no_shift) { Base = Ptr->getOperand(1); Offset = Ptr->getOperand(0); } else { Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); } return true; } isInc = (Ptr->getOpcode() == ISD::ADD); Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); return true; } // FIXME: Use FLDM / FSTM to emulate indexed FP load / store. return false; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base, SDOperand &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) { if (Subtarget->isThumb()) return false; MVT::ValueType VT; SDOperand Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getLoadedVT(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { Ptr = ST->getBasePtr(); VT = ST->getStoredVT(); } else return false; bool isInc; bool isLegal = getIndexedAddressParts(Ptr.Val, VT, isSEXTLoad, Base, Offset, isInc, DAG); if (isLegal) { AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; return true; } return false; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDOperand &Base, SDOperand &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) { if (Subtarget->isThumb()) return false; MVT::ValueType VT; SDOperand Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getLoadedVT(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getStoredVT(); } else return false; bool isInc; bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); if (isLegal) { AM = isInc ? ISD::POST_INC : ISD::POST_DEC; return true; } return false; } void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) const { KnownZero = 0; KnownOne = 0; switch (Op.getOpcode()) { default: break; case ARMISD::CMOV: { // Bits are known zero/one if known on the LHS and RHS. ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); if (KnownZero == 0 && KnownOne == 0) return; uint64_t KnownZeroRHS, KnownOneRHS; ComputeMaskedBits(Op.getOperand(1), Mask, KnownZeroRHS, KnownOneRHS, Depth+1); KnownZero &= KnownZeroRHS; KnownOne &= KnownOneRHS; return; } } } //===----------------------------------------------------------------------===// // ARM Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. ARMTargetLowering::ConstraintType ARMTargetLowering::getConstraintType(char ConstraintLetter) const { switch (ConstraintLetter) { case 'l': return C_RegisterClass; default: return TargetLowering::getConstraintType(ConstraintLetter); } } std::pair ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() == 1) { // GCC RS6000 Constraint Letters switch (Constraint[0]) { case 'l': // FIXME: in thumb mode, 'l' is only low-regs. // FALL THROUGH. case 'r': return std::make_pair(0U, ARM::GPRRegisterClass); break; } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } std::vector ARMTargetLowering:: getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() != 1) return std::vector(); switch (Constraint[0]) { // GCC ARM Constraint Letters default: break; case 'l': case 'r': return make_vector(ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4, ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9, ARM::R10, ARM::R11, ARM::R12, ARM::LR, 0); } return std::vector(); }