//===-- Constants.cpp - Implement Constant nodes --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Constant* classes. // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "LLVMContextImpl.h" #include "ConstantFold.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Operator.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// // Constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(const Type *Ty) { switch (Ty->getTypeID()) { case Type::IntegerTyID: return ConstantInt::get(Ty, 0); case Type::FloatTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEsingle)); case Type::DoubleTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEdouble)); case Type::X86_FP80TyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::x87DoubleExtended)); case Type::FP128TyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEquad)); case Type::PPC_FP128TyID: return ConstantFP::get(Ty->getContext(), APFloat(APInt::getNullValue(128))); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); case Type::StructTyID: case Type::ArrayTyID: case Type::VectorTyID: return ConstantAggregateZero::get(Ty); default: // Function, Label, or Opaque type? assert(!"Cannot create a null constant of that type!"); return 0; } } Constant *Constant::getIntegerValue(const Type *Ty, const APInt &V) { const Type *ScalarTy = Ty->getScalarType(); // Create the base integer constant. Constant *C = ConstantInt::get(Ty->getContext(), V); // Convert an integer to a pointer, if necessary. if (const PointerType *PTy = dyn_cast(ScalarTy)) C = ConstantExpr::getIntToPtr(C, PTy); // Broadcast a scalar to a vector, if necessary. if (const VectorType *VTy = dyn_cast(Ty)) C = ConstantVector::get(std::vector(VTy->getNumElements(), C)); return C; } Constant *Constant::getAllOnesValue(const Type *Ty) { if (const IntegerType *ITy = dyn_cast(Ty)) return ConstantInt::get(Ty->getContext(), APInt::getAllOnesValue(ITy->getBitWidth())); if (Ty->isFloatingPointTy()) { APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), !Ty->isPPC_FP128Ty()); return ConstantFP::get(Ty->getContext(), FL); } SmallVector Elts; const VectorType *VTy = cast(Ty); Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); assert(Elts[0] && "Not a vector integer type!"); return cast(ConstantVector::get(Elts)); } void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependent on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) { dbgs() << "While deleting: " << *this << "\n\nUse still stuck around after Def is destroyed: " << *V << "\n\n"; } #endif assert(isa(V) && "References remain to Constant being destroyed"); Constant *CV = cast(V); CV->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() != V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... delete this; } /// canTrap - Return true if evaluation of this constant could trap. This is /// true for things like constant expressions that could divide by zero. bool Constant::canTrap() const { assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); // The only thing that could possibly trap are constant exprs. const ConstantExpr *CE = dyn_cast(this); if (!CE) return false; // ConstantExpr traps if any operands can trap. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (CE->getOperand(i)->canTrap()) return true; // Otherwise, only specific operations can trap. switch (CE->getOpcode()) { default: return false; case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: // Div and rem can trap if the RHS is not known to be non-zero. if (!isa(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) return true; return false; } } /// isConstantUsed - Return true if the constant has users other than constant /// exprs and other dangling things. bool Constant::isConstantUsed() const { for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { const Constant *UC = dyn_cast(*UI); if (UC == 0 || isa(UC)) return true; if (UC->isConstantUsed()) return true; } return false; } /// getRelocationInfo - This method classifies the entry according to /// whether or not it may generate a relocation entry. This must be /// conservative, so if it might codegen to a relocatable entry, it should say /// so. The return values are: /// /// NoRelocation: This constant pool entry is guaranteed to never have a /// relocation applied to it (because it holds a simple constant like /// '4'). /// LocalRelocation: This entry has relocations, but the entries are /// guaranteed to be resolvable by the static linker, so the dynamic /// linker will never see them. /// GlobalRelocations: This entry may have arbitrary relocations. /// /// FIXME: This really should not be in VMCore. Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { if (const GlobalValue *GV = dyn_cast(this)) { if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return LocalRelocation; // Local to this file/library. return GlobalRelocations; // Global reference. } if (const BlockAddress *BA = dyn_cast(this)) return BA->getFunction()->getRelocationInfo(); // While raw uses of blockaddress need to be relocated, differences between // two of them don't when they are for labels in the same function. This is a // common idiom when creating a table for the indirect goto extension, so we // handle it efficiently here. if (const ConstantExpr *CE = dyn_cast(this)) if (CE->getOpcode() == Instruction::Sub) { ConstantExpr *LHS = dyn_cast(CE->getOperand(0)); ConstantExpr *RHS = dyn_cast(CE->getOperand(1)); if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && RHS->getOpcode() == Instruction::PtrToInt && isa(LHS->getOperand(0)) && isa(RHS->getOperand(0)) && cast(LHS->getOperand(0))->getFunction() == cast(RHS->getOperand(0))->getFunction()) return NoRelocation; } PossibleRelocationsTy Result = NoRelocation; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) Result = std::max(Result, cast(getOperand(i))->getRelocationInfo()); return Result; } /// getVectorElements - This method, which is only valid on constant of vector /// type, returns the elements of the vector in the specified smallvector. /// This handles breaking down a vector undef into undef elements, etc. For /// constant exprs and other cases we can't handle, we return an empty vector. void Constant::getVectorElements(SmallVectorImpl &Elts) const { assert(getType()->isVectorTy() && "Not a vector constant!"); if (const ConstantVector *CV = dyn_cast(this)) { for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) Elts.push_back(CV->getOperand(i)); return; } const VectorType *VT = cast(getType()); if (isa(this)) { Elts.assign(VT->getNumElements(), Constant::getNullValue(VT->getElementType())); return; } if (isa(this)) { Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType())); return; } // Unknown type, must be constant expr etc. } /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove /// it. This involves recursively eliminating any dead users of the /// constantexpr. static bool removeDeadUsersOfConstant(const Constant *C) { if (isa(C)) return false; // Cannot remove this while (!C->use_empty()) { const Constant *User = dyn_cast(C->use_back()); if (!User) return false; // Non-constant usage; if (!removeDeadUsersOfConstant(User)) return false; // Constant wasn't dead } const_cast(C)->destroyConstant(); return true; } /// removeDeadConstantUsers - If there are any dead constant users dangling /// off of this constant, remove them. This method is useful for clients /// that want to check to see if a global is unused, but don't want to deal /// with potentially dead constants hanging off of the globals. void Constant::removeDeadConstantUsers() const { Value::const_use_iterator I = use_begin(), E = use_end(); Value::const_use_iterator LastNonDeadUser = E; while (I != E) { const Constant *User = dyn_cast(*I); if (User == 0) { LastNonDeadUser = I; ++I; continue; } if (!removeDeadUsersOfConstant(User)) { // If the constant wasn't dead, remember that this was the last live use // and move on to the next constant. LastNonDeadUser = I; ++I; continue; } // If the constant was dead, then the iterator is invalidated. if (LastNonDeadUser == E) { I = use_begin(); if (I == E) break; } else { I = LastNonDeadUser; ++I; } } } //===----------------------------------------------------------------------===// // ConstantInt //===----------------------------------------------------------------------===// ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { LLVMContextImpl *pImpl = Context.pImpl; if (!pImpl->TheTrueVal) pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); return pImpl->TheTrueVal; } ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { LLVMContextImpl *pImpl = Context.pImpl; if (!pImpl->TheFalseVal) pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); return pImpl->TheFalseVal; } Constant *ConstantInt::getTrue(const Type *Ty) { const VectorType *VTy = dyn_cast(Ty); if (!VTy) { assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); return ConstantInt::getTrue(Ty->getContext()); } assert(VTy->getElementType()->isIntegerTy(1) && "True must be vector of i1 or i1."); SmallVector Splat(VTy->getNumElements(), ConstantInt::getTrue(Ty->getContext())); return ConstantVector::get(Splat); } Constant *ConstantInt::getFalse(const Type *Ty) { const VectorType *VTy = dyn_cast(Ty); if (!VTy) { assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); return ConstantInt::getFalse(Ty->getContext()); } assert(VTy->getElementType()->isIntegerTy(1) && "False must be vector of i1 or i1."); SmallVector Splat(VTy->getNumElements(), ConstantInt::getFalse(Ty->getContext())); return ConstantVector::get(Splat); } // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the // operator== and operator!= to ensure that the DenseMap doesn't attempt to // compare APInt's of different widths, which would violate an APInt class // invariant which generates an assertion. ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { // Get the corresponding integer type for the bit width of the value. const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); // get an existing value or the insertion position DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; if (!Slot) Slot = new ConstantInt(ITy, V); return Slot; } Constant *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) { Constant *C = get(cast(Ty->getScalarType()), V, isSigned); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get(SmallVector(VTy->getNumElements(), C)); return C; } ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, bool isSigned) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); } ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) { return get(Ty, V, true); } Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) { return get(Ty, V, true); } Constant *ConstantInt::get(const Type* Ty, const APInt& V) { ConstantInt *C = get(Ty->getContext(), V); assert(C->getType() == Ty->getScalarType() && "ConstantInt type doesn't match the type implied by its value!"); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get( SmallVector(VTy->getNumElements(), C)); return C; } ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str, uint8_t radix) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); } //===----------------------------------------------------------------------===// // ConstantFP //===----------------------------------------------------------------------===// static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { if (Ty->isFloatTy()) return &APFloat::IEEEsingle; if (Ty->isDoubleTy()) return &APFloat::IEEEdouble; if (Ty->isX86_FP80Ty()) return &APFloat::x87DoubleExtended; else if (Ty->isFP128Ty()) return &APFloat::IEEEquad; assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); return &APFloat::PPCDoubleDouble; } /// get() - This returns a constant fp for the specified value in the /// specified type. This should only be used for simple constant values like /// 2.0/1.0 etc, that are known-valid both as double and as the target format. Constant *ConstantFP::get(const Type* Ty, double V) { LLVMContext &Context = Ty->getContext(); APFloat FV(V); bool ignored; FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), APFloat::rmNearestTiesToEven, &ignored); Constant *C = get(Context, FV); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get( SmallVector(VTy->getNumElements(), C)); return C; } Constant *ConstantFP::get(const Type* Ty, StringRef Str) { LLVMContext &Context = Ty->getContext(); APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); Constant *C = get(Context, FV); // For vectors, broadcast the value. if (const VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get( SmallVector(VTy->getNumElements(), C)); return C; } ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) { LLVMContext &Context = Ty->getContext(); APFloat apf = cast (Constant::getNullValue(Ty))->getValueAPF(); apf.changeSign(); return get(Context, apf); } Constant *ConstantFP::getZeroValueForNegation(const Type* Ty) { if (const VectorType *PTy = dyn_cast(Ty)) if (PTy->getElementType()->isFloatingPointTy()) { SmallVector zeros(PTy->getNumElements(), getNegativeZero(PTy->getElementType())); return ConstantVector::get(zeros); } if (Ty->isFloatingPointTy()) return getNegativeZero(Ty); return Constant::getNullValue(Ty); } // ConstantFP accessors. ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { DenseMapAPFloatKeyInfo::KeyTy Key(V); LLVMContextImpl* pImpl = Context.pImpl; ConstantFP *&Slot = pImpl->FPConstants[Key]; if (!Slot) { const Type *Ty; if (&V.getSemantics() == &APFloat::IEEEsingle) Ty = Type::getFloatTy(Context); else if (&V.getSemantics() == &APFloat::IEEEdouble) Ty = Type::getDoubleTy(Context); else if (&V.getSemantics() == &APFloat::x87DoubleExtended) Ty = Type::getX86_FP80Ty(Context); else if (&V.getSemantics() == &APFloat::IEEEquad) Ty = Type::getFP128Ty(Context); else { assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && "Unknown FP format"); Ty = Type::getPPC_FP128Ty(Context); } Slot = new ConstantFP(Ty, V); } return Slot; } ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) { const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); return ConstantFP::get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); } ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && "FP type Mismatch"); } bool ConstantFP::isNullValue() const { return Val.isZero() && !Val.isNegative(); } bool ConstantFP::isExactlyValue(const APFloat& V) const { return Val.bitwiseIsEqual(V); } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T, ConstantArrayVal, OperandTraits::op_end(this) - V.size(), V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant array"); Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; assert(C->getType() == T->getElementType() && "Initializer for array element doesn't match array element type!"); *OL = C; } } Constant *ConstantArray::get(const ArrayType *Ty, const std::vector &V) { for (unsigned i = 0, e = V.size(); i != e; ++i) { assert(V[i]->getType() == Ty->getElementType() && "Wrong type in array element initializer"); } LLVMContextImpl *pImpl = Ty->getContext().pImpl; // If this is an all-zero array, return a ConstantAggregateZero object if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) return pImpl->ArrayConstants.getOrCreate(Ty, V); for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) return pImpl->ArrayConstants.getOrCreate(Ty, V); } return ConstantAggregateZero::get(Ty); } Constant *ConstantArray::get(const ArrayType* T, Constant *const* Vals, unsigned NumVals) { // FIXME: make this the primary ctor method. return get(T, std::vector(Vals, Vals+NumVals)); } /// ConstantArray::get(const string&) - Return an array that is initialized to /// contain the specified string. If length is zero then a null terminator is /// added to the specified string so that it may be used in a natural way. /// Otherwise, the length parameter specifies how much of the string to use /// and it won't be null terminated. /// Constant *ConstantArray::get(LLVMContext &Context, StringRef Str, bool AddNull) { std::vector ElementVals; ElementVals.reserve(Str.size() + size_t(AddNull)); for (unsigned i = 0; i < Str.size(); ++i) ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i])); // Add a null terminator to the string... if (AddNull) { ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0)); } ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size()); return get(ATy, ElementVals); } ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) : Constant(T, ConstantStructVal, OperandTraits::op_end(this) - V.size(), V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant structure"); Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; assert(C->getType() == T->getElementType(I-V.begin()) && "Initializer for struct element doesn't match struct element type!"); *OL = C; } } // ConstantStruct accessors. Constant *ConstantStruct::get(const StructType* T, const std::vector& V) { LLVMContextImpl* pImpl = T->getContext().pImpl; // Create a ConstantAggregateZero value if all elements are zeros... for (unsigned i = 0, e = V.size(); i != e; ++i) if (!V[i]->isNullValue()) return pImpl->StructConstants.getOrCreate(T, V); return ConstantAggregateZero::get(T); } Constant *ConstantStruct::get(LLVMContext &Context, const std::vector& V, bool packed) { std::vector StructEls; StructEls.reserve(V.size()); for (unsigned i = 0, e = V.size(); i != e; ++i) StructEls.push_back(V[i]->getType()); return get(StructType::get(Context, StructEls, packed), V); } Constant *ConstantStruct::get(LLVMContext &Context, Constant *const *Vals, unsigned NumVals, bool Packed) { // FIXME: make this the primary ctor method. return get(Context, std::vector(Vals, Vals+NumVals), Packed); } Constant* ConstantStruct::get(LLVMContext &Context, bool Packed, Constant * Val, ...) { va_list ap; std::vector Values; va_start(ap, Val); while (Val) { Values.push_back(Val); Val = va_arg(ap, llvm::Constant*); } va_end(ap); return get(Context, Values, Packed); } ConstantVector::ConstantVector(const VectorType *T, const std::vector &V) : Constant(T, ConstantVectorVal, OperandTraits::op_end(this) - V.size(), V.size()) { Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; assert(C->getType() == T->getElementType() && "Initializer for vector element doesn't match vector element type!"); *OL = C; } } // ConstantVector accessors. Constant *ConstantVector::get(const VectorType *T, const std::vector &V) { assert(!V.empty() && "Vectors can't be empty"); LLVMContextImpl *pImpl = T->getContext().pImpl; // If this is an all-undef or all-zero vector, return a // ConstantAggregateZero or UndefValue. Constant *C = V[0]; bool isZero = C->isNullValue(); bool isUndef = isa(C); if (isZero || isUndef) { for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) { isZero = isUndef = false; break; } } if (isZero) return ConstantAggregateZero::get(T); if (isUndef) return UndefValue::get(T); return pImpl->VectorConstants.getOrCreate(T, V); } Constant *ConstantVector::get(ArrayRef V) { // FIXME: make this the primary ctor method. assert(!V.empty() && "Vectors cannot be empty"); return get(VectorType::get(V.front()->getType(), V.size()), V.vec()); } // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into // Constant.h bool ConstantExpr::isCast() const { return Instruction::isCast(getOpcode()); } bool ConstantExpr::isCompare() const { return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; } bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { if (getOpcode() != Instruction::GetElementPtr) return false; gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); User::const_op_iterator OI = llvm::next(this->op_begin()); // Skip the first index, as it has no static limit. ++GEPI; ++OI; // The remaining indices must be compile-time known integers within the // bounds of the corresponding notional static array types. for (; GEPI != E; ++GEPI, ++OI) { ConstantInt *CI = dyn_cast(*OI); if (!CI) return false; if (const ArrayType *ATy = dyn_cast(*GEPI)) if (CI->getValue().getActiveBits() > 64 || CI->getZExtValue() >= ATy->getNumElements()) return false; } // All the indices checked out. return true; } bool ConstantExpr::hasIndices() const { return getOpcode() == Instruction::ExtractValue || getOpcode() == Instruction::InsertValue; } ArrayRef ConstantExpr::getIndices() const { if (const ExtractValueConstantExpr *EVCE = dyn_cast(this)) return EVCE->Indices; return cast(this)->Indices; } unsigned ConstantExpr::getPredicate() const { assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp); return ((const CompareConstantExpr*)this)->predicate; } /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. Constant * ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { assert(OpNo < getNumOperands() && "Operand num is out of range!"); assert(Op->getType() == getOperand(OpNo)->getType() && "Replacing operand with value of different type!"); if (getOperand(OpNo) == Op) return const_cast(this); Constant *Op0, *Op1, *Op2; switch (getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: return ConstantExpr::getCast(getOpcode(), Op, getType()); case Instruction::Select: Op0 = (OpNo == 0) ? Op : getOperand(0); Op1 = (OpNo == 1) ? Op : getOperand(1); Op2 = (OpNo == 2) ? Op : getOperand(2); return ConstantExpr::getSelect(Op0, Op1, Op2); case Instruction::InsertElement: Op0 = (OpNo == 0) ? Op : getOperand(0); Op1 = (OpNo == 1) ? Op : getOperand(1); Op2 = (OpNo == 2) ? Op : getOperand(2); return ConstantExpr::getInsertElement(Op0, Op1, Op2); case Instruction::ExtractElement: Op0 = (OpNo == 0) ? Op : getOperand(0); Op1 = (OpNo == 1) ? Op : getOperand(1); return ConstantExpr::getExtractElement(Op0, Op1); case Instruction::ShuffleVector: Op0 = (OpNo == 0) ? Op : getOperand(0); Op1 = (OpNo == 1) ? Op : getOperand(1); Op2 = (OpNo == 2) ? Op : getOperand(2); return ConstantExpr::getShuffleVector(Op0, Op1, Op2); case Instruction::GetElementPtr: { SmallVector Ops; Ops.resize(getNumOperands()-1); for (unsigned i = 1, e = getNumOperands(); i != e; ++i) Ops[i-1] = getOperand(i); if (OpNo == 0) return cast(this)->isInBounds() ? ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) : ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); Ops[OpNo-1] = Op; return cast(this)->isInBounds() ? ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()): ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); } default: assert(getNumOperands() == 2 && "Must be binary operator?"); Op0 = (OpNo == 0) ? Op : getOperand(0); Op1 = (OpNo == 1) ? Op : getOperand(1); return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData); } } /// getWithOperands - This returns the current constant expression with the /// operands replaced with the specified values. The specified operands must /// match count and type with the existing ones. Constant *ConstantExpr:: getWithOperands(ArrayRef Ops) const { assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); bool AnyChange = false; for (unsigned i = 0; i != Ops.size(); ++i) { assert(Ops[i]->getType() == getOperand(i)->getType() && "Operand type mismatch!"); AnyChange |= Ops[i] != getOperand(i); } if (!AnyChange) // No operands changed, return self. return const_cast(this); switch (getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: return ConstantExpr::getCast(getOpcode(), Ops[0], getType()); case Instruction::Select: return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); case Instruction::InsertElement: return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: return ConstantExpr::getExtractElement(Ops[0], Ops[1]); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: return cast(this)->isInBounds() ? ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], Ops.size()-1) : ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1); case Instruction::ICmp: case Instruction::FCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); } } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1; if (NumBits >= 64) return true; // always true, has to fit in largest type uint64_t Max = (1ll << NumBits) - 1; return Val <= Max; } bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1 || Val == -1; if (NumBits >= 64) return true; // always true, has to fit in largest type int64_t Min = -(1ll << (NumBits-1)); int64_t Max = (1ll << (NumBits-1)) - 1; return (Val >= Min && Val <= Max); } bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { // convert modifies in place, so make a copy. APFloat Val2 = APFloat(Val); bool losesInfo; switch (Ty->getTypeID()) { default: return false; // These can't be represented as floating point! // FIXME rounding mode needs to be more flexible case Type::FloatTyID: { if (&Val2.getSemantics() == &APFloat::IEEEsingle) return true; Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::DoubleTyID: { if (&Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble) return true; Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::X86_FP80TyID: return &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::x87DoubleExtended; case Type::FP128TyID: return &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::IEEEquad; case Type::PPC_FP128TyID: return &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::PPCDoubleDouble; } } //===----------------------------------------------------------------------===// // Factory Function Implementation ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) { assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && "Cannot create an aggregate zero of non-aggregate type!"); LLVMContextImpl *pImpl = Ty->getContext().pImpl; return pImpl->AggZeroConstants.getOrCreate(Ty, 0); } /// destroyConstant - Remove the constant from the constant table... /// void ConstantAggregateZero::destroyConstant() { getRawType()->getContext().pImpl->AggZeroConstants.remove(this); destroyConstantImpl(); } /// destroyConstant - Remove the constant from the constant table... /// void ConstantArray::destroyConstant() { getRawType()->getContext().pImpl->ArrayConstants.remove(this); destroyConstantImpl(); } /// isString - This method returns true if the array is an array of i8, and /// if the elements of the array are all ConstantInt's. bool ConstantArray::isString() const { // Check the element type for i8... if (!getType()->getElementType()->isIntegerTy(8)) return false; // Check the elements to make sure they are all integers, not constant // expressions. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (!isa(getOperand(i))) return false; return true; } /// isCString - This method returns true if the array is a string (see /// isString) and it ends in a null byte \\0 and does not contains any other /// null bytes except its terminator. bool ConstantArray::isCString() const { // Check the element type for i8... if (!getType()->getElementType()->isIntegerTy(8)) return false; // Last element must be a null. if (!getOperand(getNumOperands()-1)->isNullValue()) return false; // Other elements must be non-null integers. for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { if (!isa(getOperand(i))) return false; if (getOperand(i)->isNullValue()) return false; } return true; } /// getAsString - If the sub-element type of this array is i8 /// then this method converts the array to an std::string and returns it. /// Otherwise, it asserts out. /// std::string ConstantArray::getAsString() const { assert(isString() && "Not a string!"); std::string Result; Result.reserve(getNumOperands()); for (unsigned i = 0, e = getNumOperands(); i != e; ++i) Result.push_back((char)cast(getOperand(i))->getZExtValue()); return Result; } //---- ConstantStruct::get() implementation... // namespace llvm { } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { getRawType()->getContext().pImpl->StructConstants.remove(this); destroyConstantImpl(); } // destroyConstant - Remove the constant from the constant table... // void ConstantVector::destroyConstant() { getRawType()->getContext().pImpl->VectorConstants.remove(this); destroyConstantImpl(); } /// This function will return true iff every element in this vector constant /// is set to all ones. /// @returns true iff this constant's emements are all set to all ones. /// @brief Determine if the value is all ones. bool ConstantVector::isAllOnesValue() const { // Check out first element. const Constant *Elt = getOperand(0); const ConstantInt *CI = dyn_cast(Elt); if (!CI || !CI->isAllOnesValue()) return false; // Then make sure all remaining elements point to the same value. for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { if (getOperand(I) != Elt) return false; } return true; } /// getSplatValue - If this is a splat constant, where all of the /// elements have the same value, return that value. Otherwise return null. Constant *ConstantVector::getSplatValue() const { // Check out first element. Constant *Elt = getOperand(0); // Then make sure all remaining elements point to the same value. for (unsigned I = 1, E = getNumOperands(); I < E; ++I) if (getOperand(I) != Elt) return 0; return Elt; } //---- ConstantPointerNull::get() implementation. // ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { getRawType()->getContext().pImpl->NullPtrConstants.remove(this); destroyConstantImpl(); } //---- UndefValue::get() implementation. // UndefValue *UndefValue::get(const Type *Ty) { return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { getRawType()->getContext().pImpl->UndefValueConstants.remove(this); destroyConstantImpl(); } //---- BlockAddress::get() implementation. // BlockAddress *BlockAddress::get(BasicBlock *BB) { assert(BB->getParent() != 0 && "Block must have a parent"); return get(BB->getParent(), BB); } BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { BlockAddress *&BA = F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; if (BA == 0) BA = new BlockAddress(F, BB); assert(BA->getFunction() == F && "Basic block moved between functions"); return BA; } BlockAddress::BlockAddress(Function *F, BasicBlock *BB) : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, &Op<0>(), 2) { setOperand(0, F); setOperand(1, BB); BB->AdjustBlockAddressRefCount(1); } // destroyConstant - Remove the constant from the constant table. // void BlockAddress::destroyConstant() { getFunction()->getRawType()->getContext().pImpl ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); getBasicBlock()->AdjustBlockAddressRefCount(-1); destroyConstantImpl(); } void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { // This could be replacing either the Basic Block or the Function. In either // case, we have to remove the map entry. Function *NewF = getFunction(); BasicBlock *NewBB = getBasicBlock(); if (U == &Op<0>()) NewF = cast(To); else NewBB = cast(To); // See if the 'new' entry already exists, if not, just update this in place // and return early. BlockAddress *&NewBA = getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; if (NewBA == 0) { getBasicBlock()->AdjustBlockAddressRefCount(-1); // Remove the old entry, this can't cause the map to rehash (just a // tombstone will get added). getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); NewBA = this; setOperand(0, NewF); setOperand(1, NewBB); getBasicBlock()->AdjustBlockAddressRefCount(1); return; } // Otherwise, I do need to replace this with an existing value. assert(NewBA != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(NewBA); destroyConstant(); } //---- ConstantExpr::get() implementations. // /// This is a utility function to handle folding of casts and lookup of the /// cast in the ExprConstants map. It is used by the various get* methods below. static inline Constant *getFoldedCast( Instruction::CastOps opc, Constant *C, const Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); // Fold a few common cases if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) return FC; LLVMContextImpl *pImpl = Ty->getContext().pImpl; // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C); ExprMapKeyType Key(opc, argVec); return pImpl->ExprConstants.getOrCreate(Ty, Key); } Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { Instruction::CastOps opc = Instruction::CastOps(oc); assert(Instruction::isCast(opc) && "opcode out of range"); assert(C && Ty && "Null arguments to getCast"); assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); switch (opc) { default: llvm_unreachable("Invalid cast opcode"); break; case Instruction::Trunc: return getTrunc(C, Ty); case Instruction::ZExt: return getZExt(C, Ty); case Instruction::SExt: return getSExt(C, Ty); case Instruction::FPTrunc: return getFPTrunc(C, Ty); case Instruction::FPExt: return getFPExtend(C, Ty); case Instruction::UIToFP: return getUIToFP(C, Ty); case Instruction::SIToFP: return getSIToFP(C, Ty); case Instruction::FPToUI: return getFPToUI(C, Ty); case Instruction::FPToSI: return getFPToSI(C, Ty); case Instruction::PtrToInt: return getPtrToInt(C, Ty); case Instruction::IntToPtr: return getIntToPtr(C, Ty); case Instruction::BitCast: return getBitCast(C, Ty); } return 0; } Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getZExt(C, Ty); } Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getSExt(C, Ty); } Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getTrunc(C, Ty); } Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { assert(S->getType()->isPointerTy() && "Invalid cast"); assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); if (Ty->isIntegerTy()) return getPtrToInt(S, Ty); return getBitCast(S, Ty); } Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, bool isSigned) { assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::Trunc : (isSigned ? Instruction::SExt : Instruction::ZExt))); return getCast(opcode, C, Ty); } Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); if (SrcBits == DstBits) return C; // Avoid a useless cast Instruction::CastOps opcode = (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); return getCast(opcode, C, Ty); } Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "SrcTy must be larger than DestTy for Trunc!"); return getFoldedCast(Instruction::Trunc, C, Ty); } Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for SExt!"); return getFoldedCast(Instruction::SExt, C, Ty); } Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for ZExt!"); return getFoldedCast(Instruction::ZExt, C, Ty); } Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "This is an illegal floating point truncation!"); return getFoldedCast(Instruction::FPTrunc, C, Ty); } Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "This is an illegal floating point extension!"); return getFoldedCast(Instruction::FPExt, C, Ty); } Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal uint to floating point cast!"); return getFoldedCast(Instruction::UIToFP, C, Ty); } Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal sint to floating point cast!"); return getFoldedCast(Instruction::SIToFP, C, Ty); } Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to uint cast!"); return getFoldedCast(Instruction::FPToUI, C, Ty); } Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to sint cast!"); return getFoldedCast(Instruction::FPToSI, C, Ty); } Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer"); assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral"); return getFoldedCast(Instruction::PtrToInt, C, DstTy); } Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral"); assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer"); return getFoldedCast(Instruction::IntToPtr, C, DstTy); } Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && "Invalid constantexpr bitcast!"); // It is common to ask for a bitcast of a value to its own type, handle this // speedily. if (C->getType() == DstTy) return C; return getFoldedCast(Instruction::BitCast, C, DstTy); } Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags) { // Check the operands for consistency first assert(Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext())) if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... std::vector argVec(1, C1); argVec.push_back(C2); ExprMapKeyType Key(Opcode, argVec, 0, Flags); LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getCompareTy(unsigned short predicate, Constant *C1, Constant *C2) { switch (predicate) { default: llvm_unreachable("Invalid CmpInst predicate"); case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: case CmpInst::FCMP_TRUE: return getFCmp(predicate, C1, C2); case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: return getICmp(predicate, C1, C2); } } Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags) { #ifndef NDEBUG switch (Opcode) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an integer operation on a non-integer type!"); break; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create a floating-point operation on a " "non-floating-point type!"); break; case Instruction::UDiv: case Instruction::SDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::URem: case Instruction::SRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a logical operation on a non-integral type!"); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a shift operation on a non-integer type!"); break; default: break; } #endif return getTy(C1->getType(), Opcode, C1, C2, Flags); } Constant *ConstantExpr::getSizeOf(const Type* Ty) { // sizeof is implemented as: (i64) gep (Ty*)null, 1 // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *GEP = getGetElementPtr( Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getAlignOf(const Type* Ty) { // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 // Note that a non-inbounds gep is used, as null isn't within any object. const Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *Indices[2] = { Zero, One }; Constant *GEP = getGetElementPtr(NullPtr, Indices, 2); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) { return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)); } Constant *ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) { // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx[] = { ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), FieldNo }; Constant *GEP = getGetElementPtr( Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getCompare(unsigned short pred, Constant *C1, Constant *C2) { assert(C1->getType() == C2->getType() && "Op types should be identical!"); return getCompareTy(pred, C1, C2); } Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, Constant *V1, Constant *V2) { assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); if (ReqTy == V1->getType()) if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) return SC; // Fold common cases std::vector argVec(3, C); argVec[1] = V1; argVec[2] = V2; ExprMapKeyType Key(Instruction::Select, argVec); LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } template Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, IndexTy const *Idxs, unsigned NumIdx, bool InBounds) { assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx) == cast(ReqTy)->getElementType() && "GEP indices invalid!"); if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs, NumIdx)) return FC; // Fold a few common cases. assert(C->getType()->isPointerTy() && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; ArgVec.reserve(NumIdx+1); ArgVec.push_back(C); for (unsigned i = 0; i != NumIdx; ++i) ArgVec.push_back(cast(Idxs[i])); const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, InBounds ? GEPOperator::IsInBounds : 0); LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } template Constant *ConstantExpr::getGetElementPtrImpl(Constant *C, IndexTy const *Idxs, unsigned NumIdx, bool InBounds) { // Get the result type of the getelementptr! const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx); assert(Ty && "GEP indices invalid!"); unsigned As = cast(C->getType())->getAddressSpace(); return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx,InBounds); } Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, unsigned NumIdx, bool InBounds) { return getGetElementPtrImpl(C, Idxs, NumIdx, InBounds); } Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant *const *Idxs, unsigned NumIdx, bool InBounds) { return getGetElementPtrImpl(C, Idxs, NumIdx, InBounds); } Constant * ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { assert(LHS->getType() == RHS->getType()); assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; ArgVec.push_back(LHS); ArgVec.push_back(RHS); // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); if (const VectorType *VT = dyn_cast(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getNumElements()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant * ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { assert(LHS->getType() == RHS->getType()); assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; ArgVec.push_back(LHS); ArgVec.push_back(RHS); // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); if (const VectorType *VT = dyn_cast(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getNumElements()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, Constant *Idx) { if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); ArgVec.push_back(Idx); const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { assert(Val->getType()->isVectorTy() && "Tried to create extractelement operation on non-vector type!"); assert(Idx->getType()->isIntegerTy(32) && "Extractelement index must be i32 type!"); return getExtractElementTy(cast(Val->getType())->getElementType(), Val, Idx); } Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, Constant *Elt, Constant *Idx) { if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); ArgVec.push_back(Elt); ArgVec.push_back(Idx); const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx) { assert(Val->getType()->isVectorTy() && "Tried to create insertelement operation on non-vector type!"); assert(Elt->getType() == cast(Val->getType())->getElementType() && "Insertelement types must match!"); assert(Idx->getType()->isIntegerTy(32) && "Insertelement index must be i32 type!"); return getInsertElementTy(Val->getType(), Val, Elt, Idx); } Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, Constant *V2, Constant *Mask) { if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, V1); ArgVec.push_back(V2); ArgVec.push_back(Mask); const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, Constant *Mask) { assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && "Invalid shuffle vector constant expr operands!"); unsigned NElts = cast(Mask->getType())->getNumElements(); const Type *EltTy = cast(V1->getType())->getElementType(); const Type *ShufTy = VectorType::get(EltTy, NElts); return getShuffleVectorTy(ShufTy, V1, V2, Mask); } Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg, Constant *Val, const unsigned *Idxs, unsigned NumIdx) { assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, Idxs+NumIdx) == Val->getType() && "insertvalue indices invalid!"); assert(Agg->getType() == ReqTy && "insertvalue type invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant InsertValue expression"); Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx); assert(FC && "InsertValue constant expr couldn't be folded!"); return FC; } Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, const unsigned *IdxList, unsigned NumIdx) { assert(Agg->getType()->isFirstClassType() && "Tried to create insertelement operation on non-first-class type!"); const Type *ReqTy = Agg->getType(); #ifndef NDEBUG const Type *ValTy = ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); #endif assert(ValTy == Val->getType() && "insertvalue indices invalid!"); return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx); } Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg, const unsigned *Idxs, unsigned NumIdx) { assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, Idxs+NumIdx) == ReqTy && "extractvalue indices invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant extractvalue expression"); Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx); assert(FC && "ExtractValue constant expr couldn't be folded!"); return FC; } Constant *ConstantExpr::getExtractValue(Constant *Agg, const unsigned *IdxList, unsigned NumIdx) { assert(Agg->getType()->isFirstClassType() && "Tried to create extractelement operation on non-first-class type!"); const Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); assert(ReqTy && "extractvalue indices invalid!"); return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx); } Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { assert(C->getType()->isIntOrIntVectorTy() && "Cannot NEG a nonintegral value!"); return getSub(ConstantFP::getZeroValueForNegation(C->getType()), C, HasNUW, HasNSW); } Constant *ConstantExpr::getFNeg(Constant *C) { assert(C->getType()->isFPOrFPVectorTy() && "Cannot FNEG a non-floating-point value!"); return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); } Constant *ConstantExpr::getNot(Constant *C) { assert(C->getType()->isIntOrIntVectorTy() && "Cannot NOT a nonintegral value!"); return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); } Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Add, C1, C2, Flags); } Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { return get(Instruction::FAdd, C1, C2); } Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Sub, C1, C2, Flags); } Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { return get(Instruction::FSub, C1, C2); } Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Mul, C1, C2, Flags); } Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { return get(Instruction::FMul, C1, C2); } Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::UDiv, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::SDiv, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { return get(Instruction::FDiv, C1, C2); } Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { return get(Instruction::URem, C1, C2); } Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { return get(Instruction::SRem, C1, C2); } Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { return get(Instruction::FRem, C1, C2); } Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { return get(Instruction::And, C1, C2); } Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { return get(Instruction::Or, C1, C2); } Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { return get(Instruction::Xor, C1, C2); } Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Shl, C1, C2, Flags); } Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::LShr, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::AShr, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { getRawType()->getContext().pImpl->ExprConstants.remove(this); destroyConstantImpl(); } const char *ConstantExpr::getOpcodeName() const { return Instruction::getOpcodeName(getOpcode()); } GetElementPtrConstantExpr:: GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, const Type *DestTy) : ConstantExpr(DestTy, Instruction::GetElementPtr, OperandTraits::op_end(this) - (IdxList.size()+1), IdxList.size()+1) { OperandList[0] = C; for (unsigned i = 0, E = IdxList.size(); i != E; ++i) OperandList[i+1] = IdxList[i]; } //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations /// replaceUsesOfWithOnConstant - Update this constant array to change uses of /// 'From' to be uses of 'To'. This must update the uniquing data structures /// etc. /// /// Note that we intentionally replace all uses of From with To here. Consider /// a large array that uses 'From' 1000 times. By handling this case all here, /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that /// single invocation handles all 1000 uses. Handling them one at a time would /// work, but would be really slow because it would have to unique each updated /// array instance. /// void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; std::pair Lookup; Lookup.first.first = cast(getRawType()); Lookup.second = this; std::vector &Values = Lookup.first.second; Values.reserve(getNumOperands()); // Build replacement array. // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. bool isAllZeros = false; unsigned NumUpdated = 0; if (!ToC->isNullValue()) { for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); if (Val == From) { Val = ToC; ++NumUpdated; } Values.push_back(Val); } } else { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) { Constant *Val = cast(O->get()); if (Val == From) { Val = ToC; ++NumUpdated; } Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } Constant *Replacement = 0; if (isAllZeros) { Replacement = ConstantAggregateZero::get(getRawType()); } else { // Check to see if we have this array type already. bool Exists; LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! pImpl->ArrayConstants.MoveConstantToNewSlot(this, I); // Update to the new value. Optimize for the case when we have a single // operand that we're changing, but handle bulk updates efficiently. if (NumUpdated == 1) { unsigned OperandToUpdate = U - OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); setOperand(OperandToUpdate, ToC); } else { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (getOperand(i) == From) setOperand(i, ToC); } return; } } // Otherwise, I do need to replace this with an existing value. assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); std::pair Lookup; Lookup.first.first = cast(getRawType()); Lookup.second = this; std::vector &Values = Lookup.first.second; Values.reserve(getNumOperands()); // Build replacement struct. // Fill values with the modified operands of the constant struct. Also, // compute whether this turns into an all-zeros struct. bool isAllZeros = false; if (!ToC->isNullValue()) { for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) Values.push_back(cast(O->get())); } else { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } Values[OperandToUpdate] = ToC; LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; Constant *Replacement = 0; if (isAllZeros) { Replacement = ConstantAggregateZero::get(getRawType()); } else { // Check to see if we have this struct type already. bool Exists; LLVMContextImpl::StructConstantsTy::MapTy::iterator I = pImpl->StructConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant struct, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! pImpl->StructConstants.MoveConstantToNewSlot(this, I); // Update to the new value. setOperand(OperandToUpdate, ToC); return; } } assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); std::vector Values; Values.reserve(getNumOperands()); // Build replacement array... for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) Val = cast(To); Values.push_back(Val); } Constant *Replacement = get(cast(getRawType()), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, Use *U) { assert(isa(ToV) && "Cannot make Constant refer to non-constant!"); Constant *To = cast(ToV); Constant *Replacement = 0; if (getOpcode() == Instruction::GetElementPtr) { SmallVector Indices; Constant *Pointer = getOperand(0); Indices.reserve(getNumOperands()-1); if (Pointer == From) Pointer = To; for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) Val = To; Indices.push_back(Val); } Replacement = ConstantExpr::getGetElementPtr(Pointer, &Indices[0], Indices.size(), cast(this)->isInBounds()); } else if (getOpcode() == Instruction::ExtractValue) { Constant *Agg = getOperand(0); if (Agg == From) Agg = To; ArrayRef Indices = getIndices(); Replacement = ConstantExpr::getExtractValue(Agg, &Indices[0], Indices.size()); } else if (getOpcode() == Instruction::InsertValue) { Constant *Agg = getOperand(0); Constant *Val = getOperand(1); if (Agg == From) Agg = To; if (Val == From) Val = To; ArrayRef Indices = getIndices(); Replacement = ConstantExpr::getInsertValue(Agg, Val, &Indices[0], Indices.size()); } else if (isCast()) { assert(getOperand(0) == From && "Cast only has one use!"); Replacement = ConstantExpr::getCast(getOpcode(), To, getRawType()); } else if (getOpcode() == Instruction::Select) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); Constant *C3 = getOperand(2); if (C1 == From) C1 = To; if (C2 == From) C2 = To; if (C3 == From) C3 = To; Replacement = ConstantExpr::getSelect(C1, C2, C3); } else if (getOpcode() == Instruction::ExtractElement) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; Replacement = ConstantExpr::getExtractElement(C1, C2); } else if (getOpcode() == Instruction::InsertElement) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); Constant *C3 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; if (C3 == From) C3 = To; Replacement = ConstantExpr::getInsertElement(C1, C2, C3); } else if (getOpcode() == Instruction::ShuffleVector) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); Constant *C3 = getOperand(2); if (C1 == From) C1 = To; if (C2 == From) C2 = To; if (C3 == From) C3 = To; Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); } else if (isCompare()) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; if (getOpcode() == Instruction::ICmp) Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); else { assert(getOpcode() == Instruction::FCmp); Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); } } else if (getNumOperands() == 2) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData); } else { llvm_unreachable("Unknown ConstantExpr type!"); return; } assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); }