//===-- SlotCalculator.cpp - Calculate what slots values land in ------------=// // // This file implements a useful analysis step to figure out what numbered // slots values in a program will land in (keeping track of per plane // information as required. // // This is used primarily for when writing a file to disk, either in bytecode // or source format. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/SlotCalculator.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/Method.h" #include "llvm/GlobalVariable.h" #include "llvm/Module.h" #include "llvm/BasicBlock.h" #include "llvm/ConstPoolVals.h" #include "llvm/iOther.h" #include "llvm/DerivedTypes.h" #include "llvm/SymbolTable.h" #include "llvm/Support/STLExtras.h" #include "llvm/Support/DepthFirstIterator.h" #include #if 0 #define SC_DEBUG(X) cerr << X #else #define SC_DEBUG(X) #endif SlotCalculator::SlotCalculator(const Module *M, bool IgnoreNamed) { IgnoreNamedNodes = IgnoreNamed; TheModule = M; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::PrimitiveID)i)); insertVal(Type::getPrimitiveType((Type::PrimitiveID)i), true); } if (M == 0) return; // Empty table... processModule(); } SlotCalculator::SlotCalculator(const Method *M, bool IgnoreNamed) { IgnoreNamedNodes = IgnoreNamed; TheModule = M ? M->getParent() : 0; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::PrimitiveID)i)); insertVal(Type::getPrimitiveType((Type::PrimitiveID)i), true); } if (TheModule == 0) return; // Empty table... processModule(); // Process module level stuff incorporateMethod(M); // Start out in incorporated state } // processModule - Process all of the module level method declarations and // types that are available. // void SlotCalculator::processModule() { SC_DEBUG("begin processModule!\n"); // Add all of the global variables to the value table... // for_each(TheModule->gbegin(), TheModule->gend(), bind_obj(this, &SlotCalculator::insertValue)); // Scavenge the types out of the methods, then add the methods themselves to // the value table... // for_each(TheModule->begin(), TheModule->end(), // Insert methods... bind_obj(this, &SlotCalculator::insertValue)); // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... // if (TheModule->hasSymbolTable() && !IgnoreNamedNodes) { SC_DEBUG("Inserting SymbolTable values:\n"); processSymbolTable(TheModule->getSymbolTable()); } SC_DEBUG("end processModule!\n"); } // processSymbolTable - Insert all of the values in the specified symbol table // into the values table... // void SlotCalculator::processSymbolTable(const SymbolTable *ST) { for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I) for (SymbolTable::type_const_iterator TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) insertValue(TI->second); } void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) { for (SymbolTable::const_iterator I = ST->begin(), E = ST->end(); I != E; ++I) for (SymbolTable::type_const_iterator TI = I->second.begin(), TE = I->second.end(); TI != TE; ++TI) if (isa(TI->second)) insertValue(TI->second); } void SlotCalculator::incorporateMethod(const Method *M) { assert(ModuleLevel.size() == 0 && "Module already incorporated!"); SC_DEBUG("begin processMethod!\n"); // Save the Table state before we process the method... for (unsigned i = 0; i < Table.size(); ++i) ModuleLevel.push_back(Table[i].size()); SC_DEBUG("Inserting method arguments\n"); // Iterate over method arguments, adding them to the value table... for_each(M->getArgumentList().begin(), M->getArgumentList().end(), bind_obj(this, &SlotCalculator::insertValue)); // Iterate over all of the instructions in the method, looking for constant // values that are referenced. Add these to the value pools before any // nonconstant values. This will be turned into the constant pool for the // bytecode writer. // if (!IgnoreNamedNodes) { // Assembly writer does not need this! SC_DEBUG("Inserting method constants:\n"; for (constant_iterator I = constant_begin(M), E = constant_end(M); I != E; ++I) { cerr << " " << I->getType()->getDescription() << " " << I->getStrValue() << endl; }); // Emit all of the constants that are being used by the instructions in the // method... for_each(constant_begin(M), constant_end(M), bind_obj(this, &SlotCalculator::insertValue)); // If there is a symbol table, it is possible that the user has names for // constants that are not being used. In this case, we will have problems // if we don't emit the constants now, because otherwise we will get // symboltable references to constants not in the output. Scan for these // constants now. // if (M->hasSymbolTable()) processSymbolTableConstants(M->getSymbolTable()); } SC_DEBUG("Inserting Labels:\n"); // Iterate over basic blocks, adding them to the value table... for_each(M->begin(), M->end(), bind_obj(this, &SlotCalculator::insertValue)); SC_DEBUG("Inserting Instructions:\n"); // Add all of the instructions to the type planes... for_each(M->inst_begin(), M->inst_end(), bind_obj(this, &SlotCalculator::insertValue)); if (M->hasSymbolTable() && !IgnoreNamedNodes) { SC_DEBUG("Inserting SymbolTable values:\n"); processSymbolTable(M->getSymbolTable()); } SC_DEBUG("end processMethod!\n"); } void SlotCalculator::purgeMethod() { assert(ModuleLevel.size() != 0 && "Module not incorporated!"); unsigned NumModuleTypes = ModuleLevel.size(); SC_DEBUG("begin purgeMethod!\n"); // First, remove values from existing type planes for (unsigned i = 0; i < NumModuleTypes; ++i) { unsigned ModuleSize = ModuleLevel[i]; // Size of plane before method came TypePlane &CurPlane = Table[i]; SC_DEBUG("Processing Plane " << i << " of size " << CurPlane.size() <::iterator NI = NodeMap.find(CurPlane.back()); assert(NI != NodeMap.end() && "Node not in nodemap?"); NodeMap.erase(NI); // Erase from nodemap CurPlane.pop_back(); // Shrink plane } } // We don't need this state anymore, free it up. ModuleLevel.clear(); // Next, remove any type planes defined by the method... while (NumModuleTypes != Table.size()) { TypePlane &Plane = Table.back(); SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " << Plane.size() << endl); while (Plane.size()) { NodeMap.erase(NodeMap.find(Plane.back())); // Erase from nodemap Plane.pop_back(); // Shrink plane } Table.pop_back(); // Nuke the plane, we don't like it. } SC_DEBUG("end purgeMethod!\n"); } int SlotCalculator::getValSlot(const Value *D) const { map::const_iterator I = NodeMap.find(D); if (I == NodeMap.end()) return -1; return (int)I->second; } int SlotCalculator::insertValue(const Value *D) { if (isa(D) || isa(D)) { const User *U = (const User *)D; // This makes sure that if a constant has uses (for example an array // of const ints), that they are inserted also. Same for global variable // initializers. // for_each(U->op_begin(), U->op_end(), bind_obj(this, &SlotCalculator::insertValue)); } int SlotNo = getValSlot(D); // Check to see if it's already in! if (SlotNo != -1) return SlotNo; return insertVal(D); } int SlotCalculator::insertVal(const Value *D, bool dontIgnore = false) { assert(D && "Can't insert a null value!"); assert(getValSlot(D) == -1 && "Value is already in the table!"); // If this node does not contribute to a plane, or if the node has a // name and we don't want names, then ignore the silly node... Note that types // do need slot numbers so that we can keep track of where other values land. // if (!dontIgnore) // Don't ignore nonignorables! if (D->getType() == Type::VoidTy || // Ignore void type nodes (IgnoreNamedNodes && // Ignore named and constants (D->hasName() || isa(D)) && !isa(D))) { SC_DEBUG("ignored value " << D << endl); return -1; // We do need types unconditionally though } // If it's a type, make sure that all subtypes of the type are included... if (const Type *TheTy = dyn_cast(D)) { SC_DEBUG(" Inserted type: " << TheTy->getDescription() << endl); // Loop over any contained types in the definition... in reverse depth first // order. This assures that all of the leafs of a type are output before // the type itself is. This also assures us that we will not hit infinite // recursion on recursive types... // for (df_iterator I = df_begin(TheTy, true), E = df_end(TheTy); I != E; ++I) if (*I != TheTy) { // If we haven't seen this sub type before, add it to our type table! const Type *SubTy = *I; if (getValSlot(SubTy) == -1) { SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << endl); doInsertVal(SubTy); } } } // Okay, everything is happy, actually insert the silly value now... return doInsertVal(D); } // doInsertVal - This is a small helper function to be called only be insertVal. // int SlotCalculator::doInsertVal(const Value *D) { const Type *Typ = D->getType(); unsigned Ty; // Used for debugging DefSlot=-1 assertion... //if (Typ == Type::TypeTy) // cerr << "Inserting type '" << cast(D)->getDescription() << "'!\n"; if (Typ->isDerivedType()) { int DefSlot = getValSlot(Typ); if (DefSlot == -1) { // Have we already entered this type? // Nope, this is the first we have seen the type, process it. DefSlot = insertVal(Typ, true); assert(DefSlot != -1 && "ProcessType returned -1 for a type?"); } Ty = (unsigned)DefSlot; } else { Ty = Typ->getPrimitiveID(); } if (Table.size() <= Ty) // Make sure we have the type plane allocated... Table.resize(Ty+1, TypePlane()); SC_DEBUG(" Inserting value [" << Ty << "] = " << D << endl); // Insert node into table and NodeMap... unsigned DestSlot = NodeMap[D] = Table[Ty].size(); Table[Ty].push_back(D); return (int)DestSlot; }