/*===-- Lexer.l - Scanner for llvm assembly files --------------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the flex scanner for LLVM assembly languages files. // //===----------------------------------------------------------------------===*/ %option prefix="llvmAsm" %option yylineno %option nostdinit %option never-interactive %option batch %option noyywrap %option nodefault %option 8bit %option outfile="Lexer.cpp" %option ecs %option noreject %option noyymore %{ #include "ParserInternals.h" #include "llvm/Module.h" #include #include "llvmAsmParser.h" #include #include void set_scan_file(FILE * F){ yy_switch_to_buffer(yy_create_buffer( F, YY_BUF_SIZE ) ); } void set_scan_string (const char * str) { yy_scan_string (str); } // Construct a token value for a non-obsolete token #define RET_TOK(type, Enum, sym) \ llvmAsmlval.type.opcode = Instruction::Enum; \ llvmAsmlval.type.obsolete = false; \ return sym // Construct a token value for an obsolete token #define RET_TOK_OBSOLETE(type, Enum, sym) \ llvmAsmlval.type.opcode = Instruction::Enum; \ llvmAsmlval.type.obsolete = true; \ return sym // Construct a token value for an obsolete token #define RET_TY(CTYPE, SIGN, SYM) \ llvmAsmlval.TypeVal.type = new PATypeHolder(CTYPE); \ llvmAsmlval.TypeVal.signedness = SIGN; \ return SYM namespace llvm { // TODO: All of the static identifiers are figured out by the lexer, // these should be hashed to reduce the lexer size // atoull - Convert an ascii string of decimal digits into the unsigned long // long representation... this does not have to do input error checking, // because we know that the input will be matched by a suitable regex... // static uint64_t atoull(const char *Buffer) { uint64_t Result = 0; for (; *Buffer; Buffer++) { uint64_t OldRes = Result; Result *= 10; Result += *Buffer-'0'; if (Result < OldRes) // Uh, oh, overflow detected!!! GenerateError("constant bigger than 64 bits detected!"); } return Result; } static uint64_t HexIntToVal(const char *Buffer) { uint64_t Result = 0; for (; *Buffer; ++Buffer) { uint64_t OldRes = Result; Result *= 16; char C = *Buffer; if (C >= '0' && C <= '9') Result += C-'0'; else if (C >= 'A' && C <= 'F') Result += C-'A'+10; else if (C >= 'a' && C <= 'f') Result += C-'a'+10; if (Result < OldRes) // Uh, oh, overflow detected!!! GenerateError("constant bigger than 64 bits detected!"); } return Result; } // HexToFP - Convert the ascii string in hexidecimal format to the floating // point representation of it. // static double HexToFP(const char *Buffer) { // Behave nicely in the face of C TBAA rules... see: // http://www.nullstone.com/htmls/category/aliastyp.htm union { uint64_t UI; double FP; } UIntToFP; UIntToFP.UI = HexIntToVal(Buffer); assert(sizeof(double) == sizeof(uint64_t) && "Data sizes incompatible on this target!"); return UIntToFP.FP; // Cast Hex constant to double } // UnEscapeLexed - Run through the specified buffer and change \xx codes to the // appropriate character. If AllowNull is set to false, a \00 value will cause // an exception to be thrown. // // If AllowNull is set to true, the return value of the function points to the // last character of the string in memory. // char *UnEscapeLexed(char *Buffer, bool AllowNull) { char *BOut = Buffer; for (char *BIn = Buffer; *BIn; ) { if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) { char Tmp = BIn[3]; BIn[3] = 0; // Terminate string *BOut = (char)strtol(BIn+1, 0, 16); // Convert to number if (!AllowNull && !*BOut) GenerateError("String literal cannot accept \\00 escape!"); BIn[3] = Tmp; // Restore character BIn += 3; // Skip over handled chars ++BOut; } else { *BOut++ = *BIn++; } } return BOut; } } // End llvm namespace using namespace llvm; #define YY_NEVER_INTERACTIVE 1 %} /* Comments start with a ; and go till end of line */ Comment ;.* /* Variable(Value) identifiers start with a % sign */ VarID %[-a-zA-Z$._][-a-zA-Z$._0-9]* /* Label identifiers end with a colon */ Label [-a-zA-Z$._0-9]+: QuoteLabel \"[^\"]+\": /* Quoted names can contain any character except " and \ */ StringConstant \"[^\"]*\" /* [PN]Integer: match positive and negative literal integer values that * are preceeded by a '%' character. These represent unnamed variable slots. */ EPInteger %[0-9]+ ENInteger %-[0-9]+ /* E[PN]Integer: match positive and negative literal integer values */ PInteger [0-9]+ NInteger -[0-9]+ /* FPConstant - A Floating point constant. */ FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)? /* HexFPConstant - Floating point constant represented in IEEE format as a * hexadecimal number for when exponential notation is not precise enough. */ HexFPConstant 0x[0-9A-Fa-f]+ /* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing * it to deal with 64 bit numbers. */ HexIntConstant [us]0x[0-9A-Fa-f]+ %% {Comment} { /* Ignore comments for now */ } begin { return BEGINTOK; } end { return ENDTOK; } true { return TRUETOK; } false { return FALSETOK; } declare { return DECLARE; } global { return GLOBAL; } constant { return CONSTANT; } internal { return INTERNAL; } linkonce { return LINKONCE; } weak { return WEAK; } appending { return APPENDING; } dllimport { return DLLIMPORT; } dllexport { return DLLEXPORT; } extern_weak { return EXTERN_WEAK; } uninitialized { return EXTERNAL; } /* Deprecated, turn into external */ external { return EXTERNAL; } implementation { return IMPLEMENTATION; } zeroinitializer { return ZEROINITIALIZER; } \.\.\. { return DOTDOTDOT; } undef { return UNDEF; } null { return NULL_TOK; } to { return TO; } except { RET_TOK(TermOpVal, Unwind, UNWIND); } not { return NOT; } /* Deprecated, turned into XOR */ tail { return TAIL; } target { return TARGET; } triple { return TRIPLE; } deplibs { return DEPLIBS; } endian { return ENDIAN; } pointersize { return POINTERSIZE; } datalayout { return DATALAYOUT; } little { return LITTLE; } big { return BIG; } volatile { return VOLATILE; } align { return ALIGN; } section { return SECTION; } module { return MODULE; } asm { return ASM_TOK; } sideeffect { return SIDEEFFECT; } cc { return CC_TOK; } ccc { return CCC_TOK; } csretcc { return CSRETCC_TOK; } fastcc { return FASTCC_TOK; } coldcc { return COLDCC_TOK; } x86_stdcallcc { return X86_STDCALLCC_TOK; } x86_fastcallcc { return X86_FASTCALLCC_TOK; } void { RET_TY(Type::VoidTy, isSignless, VOID); } bool { RET_TY(Type::BoolTy, isSignless, BOOL); } sbyte { RET_TY(Type::SByteTy, isSigned, SBYTE); } ubyte { RET_TY(Type::UByteTy, isUnsigned, UBYTE); } short { RET_TY(Type::ShortTy, isSigned, SHORT); } ushort { RET_TY(Type::UShortTy,isUnsigned, USHORT);} int { RET_TY(Type::IntTy, isSigned, INT); } uint { RET_TY(Type::UIntTy, isUnsigned, UINT); } long { RET_TY(Type::LongTy, isSigned, LONG); } ulong { RET_TY(Type::ULongTy, isUnsigned, ULONG); } float { RET_TY(Type::FloatTy, isSignless, FLOAT); } double { RET_TY(Type::DoubleTy,isSignless, DOUBLE);} label { RET_TY(Type::LabelTy, isSignless, LABEL); } type { return TYPE; } opaque { return OPAQUE; } add { RET_TOK(BinaryOpVal, Add, ADD); } sub { RET_TOK(BinaryOpVal, Sub, SUB); } mul { RET_TOK(BinaryOpVal, Mul, MUL); } div { RET_TOK_OBSOLETE(BinaryOpVal, UDiv, UDIV); } udiv { RET_TOK(BinaryOpVal, UDiv, UDIV); } sdiv { RET_TOK(BinaryOpVal, SDiv, SDIV); } fdiv { RET_TOK(BinaryOpVal, FDiv, FDIV); } rem { RET_TOK_OBSOLETE(BinaryOpVal, URem, UREM); } urem { RET_TOK(BinaryOpVal, URem, UREM); } srem { RET_TOK(BinaryOpVal, SRem, SREM); } frem { RET_TOK(BinaryOpVal, FRem, FREM); } and { RET_TOK(BinaryOpVal, And, AND); } or { RET_TOK(BinaryOpVal, Or , OR ); } xor { RET_TOK(BinaryOpVal, Xor, XOR); } setne { RET_TOK(BinaryOpVal, SetNE, SETNE); } seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); } setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); } setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); } setle { RET_TOK(BinaryOpVal, SetLE, SETLE); } setge { RET_TOK(BinaryOpVal, SetGE, SETGE); } phi { RET_TOK(OtherOpVal, PHI, PHI_TOK); } call { RET_TOK(OtherOpVal, Call, CALL); } cast { RET_TOK_OBSOLETE(CastOpVal, Trunc, TRUNC); } trunc { RET_TOK(CastOpVal, Trunc, TRUNC); } zext { RET_TOK(CastOpVal, ZExt, ZEXT); } sext { RET_TOK(CastOpVal, SExt, SEXT); } fptrunc { RET_TOK(CastOpVal, FPTrunc, FPTRUNC); } fpext { RET_TOK(CastOpVal, FPExt, FPEXT); } uitofp { RET_TOK(CastOpVal, UIToFP, UITOFP); } sitofp { RET_TOK(CastOpVal, SIToFP, SITOFP); } fptoui { RET_TOK(CastOpVal, FPToUI, FPTOUI); } fptosi { RET_TOK(CastOpVal, FPToSI, FPTOSI); } inttoptr { RET_TOK(CastOpVal, IntToPtr, INTTOPTR); } ptrtoint { RET_TOK(CastOpVal, PtrToInt, PTRTOINT); } bitcast { RET_TOK(CastOpVal, BitCast, BITCAST); } select { RET_TOK(OtherOpVal, Select, SELECT); } shl { RET_TOK(OtherOpVal, Shl, SHL); } shr { RET_TOK_OBSOLETE(OtherOpVal, LShr, LSHR); } lshr { RET_TOK(OtherOpVal, LShr, LSHR); } ashr { RET_TOK(OtherOpVal, AShr, ASHR); } vanext { return VANEXT_old; } vaarg { return VAARG_old; } va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); } ret { RET_TOK(TermOpVal, Ret, RET); } br { RET_TOK(TermOpVal, Br, BR); } switch { RET_TOK(TermOpVal, Switch, SWITCH); } invoke { RET_TOK(TermOpVal, Invoke, INVOKE); } unwind { RET_TOK(TermOpVal, Unwind, UNWIND); } unreachable { RET_TOK(TermOpVal, Unreachable, UNREACHABLE); } malloc { RET_TOK(MemOpVal, Malloc, MALLOC); } alloca { RET_TOK(MemOpVal, Alloca, ALLOCA); } free { RET_TOK(MemOpVal, Free, FREE); } load { RET_TOK(MemOpVal, Load, LOAD); } store { RET_TOK(MemOpVal, Store, STORE); } getelementptr { RET_TOK(MemOpVal, GetElementPtr, GETELEMENTPTR); } extractelement { RET_TOK(OtherOpVal, ExtractElement, EXTRACTELEMENT); } insertelement { RET_TOK(OtherOpVal, InsertElement, INSERTELEMENT); } shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); } {VarID} { UnEscapeLexed(yytext+1); llvmAsmlval.StrVal = strdup(yytext+1); // Skip % return VAR_ID; } {Label} { yytext[strlen(yytext)-1] = 0; // nuke colon UnEscapeLexed(yytext); llvmAsmlval.StrVal = strdup(yytext); return LABELSTR; } {QuoteLabel} { yytext[strlen(yytext)-2] = 0; // nuke colon, end quote UnEscapeLexed(yytext+1); llvmAsmlval.StrVal = strdup(yytext+1); return LABELSTR; } {StringConstant} { // Note that we cannot unescape a string constant here! The // string constant might contain a \00 which would not be // understood by the string stuff. It is valid to make a // [sbyte] c"Hello World\00" constant, for example. // yytext[strlen(yytext)-1] = 0; // nuke end quote llvmAsmlval.StrVal = strdup(yytext+1); // Nuke start quote return STRINGCONSTANT; } {PInteger} { llvmAsmlval.UInt64Val = atoull(yytext); return EUINT64VAL; } {NInteger} { uint64_t Val = atoull(yytext+1); // +1: we have bigger negative range if (Val > (uint64_t)INT64_MAX+1) GenerateError("Constant too large for signed 64 bits!"); llvmAsmlval.SInt64Val = -Val; return ESINT64VAL; } {HexIntConstant} { llvmAsmlval.UInt64Val = HexIntToVal(yytext+3); return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL; } {EPInteger} { uint64_t Val = atoull(yytext+1); if ((unsigned)Val != Val) GenerateError("Invalid value number (too large)!"); llvmAsmlval.UIntVal = unsigned(Val); return UINTVAL; } {ENInteger} { uint64_t Val = atoull(yytext+2); // +1: we have bigger negative range if (Val > (uint64_t)INT32_MAX+1) GenerateError("Constant too large for signed 32 bits!"); llvmAsmlval.SIntVal = (int)-Val; return SINTVAL; } {FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; } {HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; } <> { /* Make sure to free the internal buffers for flex when we are * done reading our input! */ yy_delete_buffer(YY_CURRENT_BUFFER); return EOF; } [ \r\t\n] { /* Ignore whitespace */ } . { return yytext[0]; } %%